1
|
Zhang R, Jadhav DA, Kim N, Kramer B, Gonzalez-Vicente A. Profiling Cell Heterogeneity and Fructose Transporter Expression in the Rat Nephron by Integrating Single-Cell and Microdissected Tubule Segment Transcriptomes. Int J Mol Sci 2024; 25:3071. [PMID: 38474316 PMCID: PMC10931557 DOI: 10.3390/ijms25053071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Single-cell RNA sequencing (scRNAseq) is a crucial tool in kidney research. These technologies cluster cells based on transcriptome similarity, irrespective of the anatomical location and order within the nephron. Thus, a transcriptome cluster may obscure the heterogeneity of the cell population within a nephron segment. Elevated dietary fructose leads to salt-sensitive hypertension, in part, through fructose reabsorption in the proximal tubule (PT). However, the organization of the four known fructose transporters in apical PTs (SGLT4, SGLT5, GLUT5, and NaGLT1) remains poorly understood. We hypothesized that cells within each subsegment of the proximal tubule exhibit complex, heterogeneous fructose transporter expression patterns. To test this hypothesis, we analyzed rat kidney transcriptomes and proteomes from publicly available scRNAseq and tubule microdissection databases. We found that microdissected PT-S1 segments consist of 81% ± 12% cells with scRNAseq-derived transcriptional characteristics of S1, whereas PT-S2 express a mixture of 18% ± 9% S1, 58% ± 8% S2, and 19% ± 5% S3 transcripts, and PT-S3 consists of 75% ± 9% S3 transcripts. The expression of all four fructose transporters was detectable in all three PT segments, but key fructose transporters SGLT5 and GLUT5 progressively increased from S1 to S3, and both were significantly upregulated in S3 vs. S1/S2 (Slc5a10: 1.9 log2FC, p < 1 × 10-299; Scl2a5: 1.4 log2FC, p < 4 × 10-105). A similar distribution was found in human kidneys. These data suggest that S3 is the primary site of fructose reabsorption in both humans and rats. Finally, because of the multiple scRNAseq transcriptional phenotypes found in each segment, our findings also imply that anatomical labels applied to scRNAseq clusters may be misleading.
Collapse
Affiliation(s)
- Ronghao Zhang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Darshan Aatmaram Jadhav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Najeong Kim
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Benjamin Kramer
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Kidney Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Huang G, Chen X, Li N, Xie T, Guo Y, Fu Y, Jiao T. A convenient synthesis of gold nanoparticles in Spirulina extract for rapid visual detection of dopamine in human urine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
xu C, Yu J. Pathophysiological Mechanisms of Hypertension Development Induced by Fructose Consumption. Food Funct 2022; 13:1702-1717. [DOI: 10.1039/d1fo03381f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the past several decades, there has been a dramatic increase in fructose consumption worldwide in parallel with epidemics of metabolic diseases. Accumulating evidence has suggested that excessive fructose consumption...
Collapse
|
4
|
Ogonowski N, Rukavina Mikusic NL, Kouyoumdzian NM, Choi MR, Fellet A, Balaszczuk AM, Celuch SM. Cardiotoxic Effects of the Antineoplastic Doxorubicin in a Model of Metabolic Syndrome: Oxidative Stress and Transporter Expression in the Heart. J Cardiovasc Pharmacol 2021; 78:784-791. [PMID: 34524257 DOI: 10.1097/fjc.0000000000001137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/18/2021] [Indexed: 12/22/2022]
Abstract
The aim of the present work was to examine whether metabolic syndrome-like conditions in rats with fructose (F) overload modify the cardiotoxic effects induced by doxorubicin (DOX) and whether the treatment altered the expression of P-gp, breast cancer resistance protein, and organic cation/carnitine transporters in the heart. Male Sprague-Dawley rats received either tap water (control group [C]; n = 16) or water with F 10% wt/vol (n = 16) during 8 weeks. Three days before being killed, the animals received a single dose of DOX (6 mg/kg, ip, md) (C-DOX and F-DOX groups) or vehicle (VEH; ISS 1 mL/kg BW; ip) (C-VEH and F-VEH groups) (n = 8 per group). F overload enhanced thiobarbituric acid-reactive substance levels in the left ventricle, and DOX injection further increased those values. DOX did not alter thiobarbituric acid-reactive substance production in C animals. DOX caused a decrease of 30% in the ejection fraction and a nearly 40% reduction in the fractional shortening in F animals, but not in C rats. Cardiac tissue levels of P-gp decreased by about 30% in F rats compared with the C groups. DOX did not modify cardiac P-gp expression. Breast cancer resistance protein and organic cation/carnitine transporter (OCTN 1/2/3) protein levels did not change with either F or DOX. It is suggested that DOX could cause greater cardiotoxicity in rats receiving F, probably due to enhanced cardiac lipid peroxidation and lower expression of cardiac P-gp. These results support the hypothesis that the cardiotoxicity of DOX could be increased under metabolic syndrome-like conditions or in other health disorders that involve cardiovascular risk factors.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Antibiotics, Antineoplastic
- Cardiotoxicity
- Disease Models, Animal
- Doxorubicin
- Heart Diseases/chemically induced
- Heart Diseases/metabolism
- Heart Diseases/pathology
- Heart Diseases/physiopathology
- Lipid Peroxidation
- Male
- Metabolic Syndrome/complications
- Metabolic Syndrome/metabolism
- Myocardium/metabolism
- Myocardium/pathology
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Oxidative Stress
- Rats, Sprague-Dawley
- Ventricular Function, Left/drug effects
- Rats
Collapse
Affiliation(s)
- Natalia Ogonowski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Instituto de Química y Metabolismo del Fármaco, CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nicolás Martín Kouyoumdzian
- Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET, Ciudad Autónoma de Buenos Aires, Argentina; and
| | - Marcelo Roberto Choi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET, Ciudad Autónoma de Buenos Aires, Argentina; and
| | - Andrea Fellet
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Instituto de Química y Metabolismo del Fármaco, CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana María Balaszczuk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Instituto de Química y Metabolismo del Fármaco, CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Stella Maris Celuch
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas, CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Kouyoumdzian NM, Rukavina Mikusic NL, Robbesaul GD, Gorzalczany SB, Carranza A, Trida V, Fernández BE, Choi MR. Acute infusion of angiotensin II regulates organic cation transporters function in the kidney: its impact on the renal dopaminergic system and sodium excretion. Hypertens Res 2021; 44:286-298. [PMID: 32934369 DOI: 10.1038/s41440-020-00552-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
A close relationship between angiotensin II (ANG II) and the renal dopaminergic system (RDS) has been reported. Our aim was to study whether renal dopamine and ANG II can interact to modify renal sodium handling and then to elucidate the related mechanism. Anesthetized male Sprague-Dawley rats were used in experiments. ANG II, exogenous dopamine, and decynium-22 (or D-22, an isocyanine that specifically blocks electrogenic organic cation transporters, OCTs), were infused in vivo for 120 min. We analyzed renal and hemodynamic parameters, renal Na+, K+-ATPase levels, OCT activity, and urinary dopamine concentrations. We also evaluated the expression of D1 receptor, electroneutral organic cation transporters (OCTNs), and OCTs. ANG II decreased renal excretion of sodium in the presence of exogenous dopamine, increased Na+, K+-ATPase activity, and decreased the urinary dopamine concentration. D-22 treatment exacerbated the ANG II-mediated decrease in renal excretion of sodium and dopamine urine excretion but did not modify ANG II stimulation of Na+, K+-ATPase activity. The infusion of ANG II did not affect the expression of D1 receptor, OCTs, or OCTNs. However, the activity of OCTs was diminished by the presence of ANG II. Although ANG II did not alter the expression of D1 receptor, OCTs, and OCTNs in renal tissues, it modified the activity of OCTs and thereby decreased the urinary dopamine concentration, showing a novel mechanism by which ANG II decreases dopamine transport and its availability in the tubular lumen to stimulate D1 receptor. This study demonstrates a relationship between ANG II and dopamine, where both agents counteract their effects on sodium excretion.
Collapse
Affiliation(s)
- Nicolás M Kouyoumdzian
- Universidad de Buenos Aires. CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.
| | - Natalia L Rukavina Mikusic
- Universidad de Buenos Aires. CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
| | - Gabriel D Robbesaul
- Universidad de Buenos Aires. CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
| | - Susana B Gorzalczany
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Verónica Trida
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Bioquímica Clínica, Buenos Aires, Argentina
| | - Belisario E Fernández
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| | - Marcelo R Choi
- Universidad de Buenos Aires. CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| |
Collapse
|
6
|
Abstract
Background Oxidative stress and high salt intake could be independent or intertwined risk factors in the origin of hypertension. Kidneys are the major organ to regulate sodium homeostasis and blood pressure and the renal dopamine system plays a pivotal role in sodium regulation during sodium replete conditions. Oxidative stress has been implicated in renal dopamine dysfunction and development of hypertension, especially in salt‐sensitive animal models. Here we show the nexus between high salt intake and oxidative stress causing renal tubular dopamine oxidation, which leads to mitochondrial and lysosomal dysfunction and subsequently causes renal inflammation and hypertension. Methods and Results Male Sprague Dawley rats were divided into the following groups, vehicle (V)—tap water, high salt (HS)—1% NaCl, L‐buthionine‐sulfoximine (BSO), a prooxidant, and HS plus BSO without and with antioxidant resveratrol (R) for 6 weeks. Oxidative stress was significantly higher in BSO and HS+BSO–treated rat compared with vehicle; however, blood pressure was markedly higher in the HS+BSO group whereas an increase in blood pressure in the BSO group was modest. HS+BSO–treated rats had significant renal dopamine oxidation, lysosomal and mitochondrial dysfunction, and increased renal inflammation; however, HS alone had no impact on organelle function or inflammation. Resveratrol prevented oxidative stress, dopamine oxidation, organelle dysfunction, inflammation, and hypertension in BSO and HS+BSO rats. Conclusions These data suggest that dopamine oxidation, especially during increased sodium intake and oxidative milieu, leads to lysosomal and mitochondrial dysfunction and renal inflammation with subsequent increase in blood pressure. Resveratrol, while preventing oxidative stress, protects renal function and mitigates hypertension.
Collapse
Affiliation(s)
- Anees A Banday
- Heart and Kidney Institute College of Pharmacy University of Houston TX
| | | |
Collapse
|
7
|
Fructose increases the activity of sodium hydrogen exchanger in renal proximal tubules that is dependent on ketohexokinase. J Nutr Biochem 2019; 71:54-62. [DOI: 10.1016/j.jnutbio.2019.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
|
8
|
Dietary Fructose Increases the Sensitivity of Proximal Tubules to Angiotensin II in Rats Fed High-Salt Diets. Nutrients 2018; 10:nu10091244. [PMID: 30200571 PMCID: PMC6164674 DOI: 10.3390/nu10091244] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
Dietary fructose causes salt-sensitive hypertension. Proximal tubules (PTs) reabsorb 70% of the filtered NaCl. Angiotensin II (Ang II), atrial natriuretic peptide (ANP) and norepinephrine (NE) regulate this process. Although Ang II signaling blockade ameliorates fructose-induced salt-sensitive hypertension, basal PT Na⁺ reabsorption and its sensitivity to the aforementioned factors have not been studied in this model. We hypothesized consuming fructose with a high-salt diet selectively enhances the sensitivity of PT transport to Ang II. We investigated the effects of Ang II, ANP and NE on PT Na reabsorption in rats fed a high-salt diet drinking tap water (HS) or 20% fructose (HS-FRU). Oxygen consumption (QO₂) was used as a measure of all ATP-dependent transport processes. Na⁺/K⁺-ATPase and Na⁺/H⁺-exchange (NHE) activities were studied because they represent primary apical and basolateral transporters in this segment. The effect of 10-12 mol/L Ang II in QO₂ by PTs from HS-FRU was larger than HS (p < 0.02; n = 7). In PTs from HS-FRU 10-12 mol/L Ang II stimulated NHE activity by 2.6 ± 0.7 arbitrary fluorescence units/s (p < 0.01; n = 5) but not in those from HS. The stimulatory effect of Ang II on PT Na⁺/K⁺-ATPase activity was not affected by HS-FRU. Responses of QO₂ and NHE activity to ANP did not differ between groups. The response of QO₂ to NE was unaltered by HS-FRU. We concluded that the sensitivity of PT Na⁺ reabsorption specifically to Ang II is enhanced by HS-FRU. This maintains high rates of transport even in the presence of low concentrations of the peptide, and likely contributes to the hypertension.
Collapse
|
9
|
Rukavina Mikusic NL, Kouyoumdzian NM, Uceda A, Del Mauro JS, Pandolfo M, Gironacci MM, Puyó AM, Toblli JE, Fernández BE, Choi MR. Losartan prevents the imbalance between renal dopaminergic and renin angiotensin systems induced by fructose overload. l-Dopa/dopamine index as new potential biomarker of renal dysfunction. Metabolism 2018; 85:271-285. [PMID: 29727629 DOI: 10.1016/j.metabol.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND The renin angiotensin system (RAS) and the renal dopaminergic system (RDS) act as autocrine and paracrine systems to regulate renal sodium management and inflammation and their alterations have been associated to hypertension and renal damage. Nearly 30-50% of hypertensive patients have insulin resistance (IR), with a strong correlation between hyperinsulinemia and microalbuminuria. OBJECTIVE The aim of this study was to demonstrate the existence of an imbalance between RAS and RDS associated to IR, hypertension and kidney damage induced by fructose overload (FO), as well as to establish their prevention, by pharmacological inhibition of RAS with losartan. MATERIALS/METHODS Ninety-six male Sprague-Dawley rats were randomly divided into four groups and studied at 4, 8 and 12 weeks: control group (C4, C8 and C12; tap water to drink); fructose-overloaded group (F4, F8 and F12; 10% w/v fructose solution to drink); losartan-treated control (L) group (L4, L8 and L12; losartan 30 mg/kg/day, in drinking water); and fructose-overloaded plus losartan group (F + L4, F + L8 and F + L12, in fructose solution). RESULTS FO induced metabolic and hemodynamic alterations as well as an imbalance between RAS and RDS, characterized by increased renal angiotensin II levels and AT1R overexpression, reduced urinary excretion of dopamine, increased excretion of l-dopa (increased l-dopa/dopamine index) and down-regulation of D1R and tubular dopamine transporters OCT-2, OCT-N1 and total OCTNs. This imbalance was accompanied by an overexpression of renal tubular Na+, K+-ATPase, pro-inflammatory (NF-kB, TNF-α, IL-6) and pro-fibrotic (TGF-β1 and collagen) markers and by renal damage (microalbuminuria and reduced nephrin expression). Losartan prevented the metabolic and hemodynamic alterations induced by FO from week 4. Increased urinary l-dopa/dopamine index and decreased D1R renal expression associated to FO were also prevented by losartan since week 4. The same pattern was observed for renal expression of OCTs/OCTNs, Na+, K+-ATPase, pro-inflammatory and pro-fibrotic markers from week 8. The appearance of microalbuminuria and reduced nephrin expression was prevented by losartan at week 12. CONCLUSION The results of this study provide new insight regarding the mechanisms by which a pro-hypertensive and pro-inflammatory system, such as RAS, downregulates another anti-hypertensive and anti-inflammatory system such as RDS. Additionally, we propose the use of l-dopa/dopamine index as a biochemical marker of renal dysfunction in conditions characterized by sodium retention, IR and/or hypertension, and as a predictor of response to treatment and follow-up of these processes.
Collapse
Affiliation(s)
- Natalia Lucía Rukavina Mikusic
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina.
| | - Nicolás Martín Kouyoumdzian
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Ana Uceda
- Hospital Alemán, Laboratorio de Medicina Experimental, Av Pueyrredón 1640, C1118AAT CABA, Buenos Aires, Argentina
| | - Julieta Sofía Del Mauro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Marcela Pandolfo
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Mariela Mercedes Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Ana María Puyó
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Jorge Eduardo Toblli
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Hospital Alemán, Laboratorio de Medicina Experimental, Av Pueyrredón 1640, C1118AAT CABA, Buenos Aires, Argentina
| | - Belisario Enrique Fernández
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Av. Gral Las Heras 2191, C1127AAD CABA, Buenos Aires, Argentina
| | - Marcelo Roberto Choi
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Av. Gral Las Heras 2191, C1127AAD CABA, Buenos Aires, Argentina
| |
Collapse
|