1
|
Li Z, Jin Y, Zhao H, Gu Y, Zhang Y, Cheng S, Zhang L, He P, Liu X, Jia Y. Aurantio-Obtusin Regulates Gut Microbiota and Serum Metabolism to Alleviate High-Fat Diet-Induced Obesity-Associated Non-Alcoholic Fatty Liver Disease in Mice. Phytother Res 2025; 39:1946-1965. [PMID: 39953693 DOI: 10.1002/ptr.8459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive condition with limited effective treatments. This study investigated the therapeutic effects of Aurantio-obtusin (AO), a bioactive compound from Cassiae Semen, on obesity-associated NAFLD. An obesity-related NAFLD model was established in ApoE -/- mice fed a high-fat diet (HFD) for 24 weeks, with AO administered during the last 16 weeks. Mouse body weight, adipose tissue weights, liver weights, serum lipid levels, hepatic steatosis, inflammatory damage, and colonic tissue barrier integrity were evaluated. Gut microbial communities and serum metabolic profiles were analyzed using 16S rRNA sequencing and untargeted metabolomics. Hepatic lipid metabolism-related gene expression was assessed using molecular biology techniques. AO treatment significantly ameliorated HFD-induced adiposity, hyperlipidemia, and NAFLD symptoms. It preserved intestinal barrier integrity, modulated gut microbial composition by enriching beneficial taxa, and improved serum metabolic profiles. AO favorably adjusted hepatic lipid metabolism by upregulating PPARα and CPT1A while downregulating SREBP1, FASN, and SCD1. Correlation analysis revealed significant associations among gut microbial composition, serum metabolites, and disease indicators. AO's therapeutic benefits in NAFLD might be attributed to its ability to modulate gut microbial community composition and serum metabolic profile, enhance intestinal barrier function, and regulate hepatic lipid metabolism gene expression. AO presents a promising therapeutic agent for obesity-associated NAFLD, warranting further investigation into its potential clinical applications.
Collapse
Affiliation(s)
- Zhaoyong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Jin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Huashan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyan Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaxin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lifang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peikun He
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xiaoyu Liu
- Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Chen L, Bao Y, Wang D, Tian Y, Zeng T, Gu T, Xu W, Lu L. Integrated omics analysis reveals the differentiation of intestinal microbiota and metabolites between Pekin ducks and Shaoxing ducks. Poult Sci 2024; 103:103976. [PMID: 39024692 PMCID: PMC11315098 DOI: 10.1016/j.psj.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Pekin ducks and Shaoxing ducks are 2 Chinese local duck breeds, both domesticated from mallard, but after domestication and long-term artificial selection, the body weight of Pekin ducks is significantly higher than that of Shaoxing ducks. It is no debate that genetic factors are the main factors responsible for this difference, but whether intestinal microbiota contribute to this difference is yet unknown. Thus, we performed comparative intestinal metagenomics and metabolomics analysis between Pekin ducks and Shaoxing ducks. We found obvious differentiation of intestinal metagenome and metabolome between the 2 breeds. Four cecal microbial genera, including Fusobacterium, Methanobrevibacter, Butyricicoccus, and Anaerotignum showed higher abundance in Pekin ducks. Among them, Methanobrevibacter and Butyricicoccus may positively correlate with fat deposition and body weight. A total of 310 metabolites showed difference between the 2 breeds. Functions of these differential metabolites were mainly enriched in amino acid metabolism, including energy metabolism-related histidine metabolism. Integrated omics analysis showed that microbial changes were closely related to altered metabolites. Especially, Butyricicoccus showing higher abundance in Pekin ducks was significantly negatively correlated with D-glucosamine-6-phosphate, which has been reported to prevent body weight gains. These findings may contribute to further understand the difference in body weight between Pekin ducks and Shaoxing ducks.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Ukraine Joint Laboratory for Poultry Germplasm Resources Conservation, Exploitation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Ying Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Ukraine Joint Laboratory for Poultry Germplasm Resources Conservation, Exploitation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dandan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Ukraine Joint Laboratory for Poultry Germplasm Resources Conservation, Exploitation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Ukraine Joint Laboratory for Poultry Germplasm Resources Conservation, Exploitation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Ukraine Joint Laboratory for Poultry Germplasm Resources Conservation, Exploitation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Ukraine Joint Laboratory for Poultry Germplasm Resources Conservation, Exploitation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Ukraine Joint Laboratory for Poultry Germplasm Resources Conservation, Exploitation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Ukraine Joint Laboratory for Poultry Germplasm Resources Conservation, Exploitation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Tain YL, Hsu CN. Amino Acids during Pregnancy and Offspring Cardiovascular-Kidney-Metabolic Health. Nutrients 2024; 16:1263. [PMID: 38732510 PMCID: PMC11085482 DOI: 10.3390/nu16091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Amino acids are essential for normal pregnancy and fetal development. Disruptions in maternal amino acid metabolism have been associated with various adult diseases later in life, a phenomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we examine the recent evidence highlighting the significant impact of amino acids on fetal programming, their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes, particularly in the context of cardiovascular-kidney-metabolic (CKM) syndrome. Furthermore, we delve into experimental studies that have unveiled the protective effects of therapies targeting amino acids. These interventions have demonstrated the potential to reprogram traits associated with CKM in offspring. The discussion encompasses the challenges of translating the findings from animal studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose potential solutions to overcome these challenges. Ultimately, as we move forward, future research endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the optimal dosage and mode of administration. This exploration is essential for maximizing the reprogramming effects, ultimately contributing to the enhancement of cardiovascular-kidney-metabolic health in offspring.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Jiao W, Sang Y, Wang X, Wang S. Metabonomics and the gut microbiome analysis of the effect of 6-shogaol on improving obesity. Food Chem 2023; 404:134734. [DOI: 10.1016/j.foodchem.2022.134734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
5
|
Yang X, Bao L, Zhang Y, Long J, Li Y, Wang H, Cui Y, Yan D. Novel weight loss diet attenuates dietary-induced obesity in mice and might correlate with altered gut microbiota and metabolite profiles. Front Nutr 2022; 9:987955. [DOI: 10.3389/fnut.2022.987955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although many dietary patterns have been studied for weight loss, various limitations still exist. Therefore, we designed a novel weight loss diet (NWLD) with carbohydrate, protein, and fat (energy) contents of 45%, 20%, and 35%, respectively. The saturated fatty acids: monounsaturated fatty acids:polyunsaturated fatty acids ratio was 1:2:1, and the insoluble: soluble dietary fiber ratio was 2:1. We aimed to observe the effect of NWLD on weight loss and understand the underlying metabolic mechanisms. Twenty-nine male C57BL/6J mice were selected. Nine mice were fed ordinary feed in a blank control group, and the rest were fed a high-fat diet (HFD) to establish obese mouse models. Twelve weeks later, obesity models were established, and 10 obese mice were switched to NWLD feeding. Six weeks after switching the diet, the serum, intestinal feces, and kidneys of mice were collected. Obesity-related indicators, gut microbial composition, and fecal metabolite profiles of all the mice were determined, and the correlations among these indicators were analyzed. Kidney function indicators were also assessed. The results showed that the NWLD attenuated HFD-induced weight gain, serum triglycerides (TG), and inflammatory factors, optimized the body composition without kidney function impairment. Amino acid metabolism pathways and metabolites might play key roles in this process. The findings of this research imply that NWLD could be an effective nutritional remedy for managing dietary-induced obesity.
Collapse
|
6
|
Gonzales GB, Lelijveld N, Bourdon C, Chimwezi E, Nyirenda MJ, Wells JC, Kerac M, Bandsma RHJ. Childhood Malnutrition and Association of Lean Mass with Metabolome and Hormone Profile in Later Life. Nutrients 2020; 12:E3593. [PMID: 33238545 PMCID: PMC7700560 DOI: 10.3390/nu12113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the associations of targeted metabolomics and hormone profiles data with lean mass index (LMI), which were estimated using bioelectrical impedance, in survivors of child severe malnutrition (SM) (n = 69) and controls (n = 77) in Malawi 7 years after being treated. Linear associations between individual metabolite or hormone and LMI were determined, including their interaction with nutrition status 7 years prior. Path analysis was performed to determine structural associations. Lastly, predictive models for LMI were developed using the metabolome and hormone profile by elastic net regularized regression (EN). Metabolites including several lipids, amino acids, and hormones were individually associated (p < 0.05 after false discovery rate correction) with LMI. However, plasma FGF21 (Control: β = -0.02, p = 0.59; Case: β = -0.14, p < 0.001) and tryptophan (Control: β = 0.15, p = 0.26; Case: β = 0.70, p < 0.001) were associated with LMI among cases but not among controls (both interaction p-values < 0.01). Moreover, path analysis revealed that tryptophan mediates the association between child SM and LMI. EN revealed that most predictors of LMI differed between groups, further indicating altered metabolic mechanisms driving lean mass accretion among SM survivors later in life.
Collapse
Affiliation(s)
- Gerard Bryan Gonzales
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 WE Wageningen, The Netherlands
- Laboratory of Gastroenterology, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | | | - Celine Bourdon
- Translational Medicine Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (C.B.); (R.H.J.B.)
- The Childhood Acute Illness & Nutrition Network, Nairobi 43640-00100, Kenya
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S, Canada
| | - Emmanuel Chimwezi
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi;
| | | | - Jonathan C. Wells
- Childhood Nutrition Research Centre, Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Marko Kerac
- Department of Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| | - Robert H. J. Bandsma
- Translational Medicine Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (C.B.); (R.H.J.B.)
- The Childhood Acute Illness & Nutrition Network, Nairobi 43640-00100, Kenya
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S, Canada
| |
Collapse
|
7
|
Abstract
Dietary proteins have been used for years to treat obesity. Body weight loss is beneficial when it concerns fat mass, but loss of fat free mass - especially muscle might be detrimental. This occurs because protein breakdown predominates over synthesis, thus administering anabolic dietary compounds like proteins might counter fat free mass loss while allowing for fat mass loss.Indeed, varying the quantity of proteins will decrease muscle anabolic response and increase hyperphagia in rodents fed a low protein diet; but it will favor lean mass maintenance and promote satiety, in certain age groups of humans fed a high protein diet. Beyond protein quantity, protein source is an important metabolic regulator: whey protein and plant based diets exercize favorable effects on the risk of developing obesity, body composition, metabolic parameters or fat free mass preservation of obese patients. Specific amino-acids like branched chain amino acids (BCAA), methionine, tryptophan and its metabolites, and glutamate can also positively influence parameters and complications of obesity especially in rodent models, with less studies translating this in humans.Tuning the quality and quantity of proteins or even specific amino-acids can thus be seen as a potential therapeutic intervention on the body composition, metabolic syndrome parameters and appetite regulation of obese patients. Since these effects vary across age groups and much of the data comes from murine models, long-term prospective studies modulating proteins and amino acids in the human diet are needed.
Collapse
Affiliation(s)
- Mathilde Simonson
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Yves Boirie
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
| | - Christelle Guillet
- UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
8
|
Li R, Huang X, Liang X, Su M, Lai KP, Chen J. Integrated omics analysis reveals the alteration of gut microbe-metabolites in obese adults. Brief Bioinform 2020; 22:5882185. [PMID: 32770198 DOI: 10.1093/bib/bbaa165] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity, a risk to health, is a global problem in modern society. The prevalence of obesity was approximately 13% among world's adult population. Recently, several reports suggested that the interference of gut microbiota composition and function is associated with metabolic disorders, including obesity. Gut microbiota produce a board range of metabolites involved in energy and glucose homeostasis, leading to the alteration in host metabolism. However, systematic evaluation of the relationship between gut microbiota, gut metabolite and host metabolite profiles in obese adults is still lacking. In this study, we used comparative metagenomics and metabolomics analysis to determine the gut microbiota and gut-host metabolite profiles in six normal and obese adults of Chinese origin, respectively. Following the functional and pathway analysis, we aimed to understand the possible impact of gut microbiota on the host metabolites via the change in gut metabolites. The result showed that the change in gut microbiota may result in the modulation of gut metabolites contributing to glycolysis, tricarboxylic acid cycle and homolactic fermentation. Furthermore, integrated metabolomic analysis demonstrated a possible positive correlation of dysregulated metabolites in the gut and host, including l-phenylalanine, l-tyrosine, uric acid, kynurenic acid, cholesterol sulfate and glucosamine, which were reported to contribute to metabolic disorders such as obesity and diabetes. The findings of this study provide the possible association between gut microbiota-metabolites and host metabolism in obese adults. The identified metabolite changes could serve as biomarkers for the evaluation of obesity and metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Min Su
- Guilin Medical University
| | | | | |
Collapse
|
9
|
Javed K, Bröer S. Mice Lacking the Intestinal and Renal Neutral Amino Acid Transporter SLC6A19 Demonstrate the Relationship between Dietary Protein Intake and Amino Acid Malabsorption. Nutrients 2019; 11:E2024. [PMID: 31470570 PMCID: PMC6770948 DOI: 10.3390/nu11092024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Dietary protein restriction has beneficial impacts on metabolic health. B0AT1 (SLC6A19) is the major transporter of neutral amino acids at the intestinal epithelia and absorbs the bulk of the diet-derived neutral amino acids from the intestinal lumen. It also reabsorbs neutral amino acids in the renal proximal tubules. Mice lacking B0AT1 show cellular outcomes of protein restriction, such as high FGF21 levels and low mTORC1 activity. Moreover, they have improved glucose homeostasis and resist diet-induced obesity. In this study, we investigated the relationship between protein restriction and dietary protein intake in C57Bl6/J wild-type (wt) and SLC6A19-knockout (SLC6A19ko) mice. When SLC6A19ko mice were fed diets containing 5%, 25%, or 52% of their total calories derived from protein, no differences in food intake or weight gain were observed. All essential amino acids significantly positively correlated with increasing dietary casein content in the wt mice. The SLC6A19ko mice showed reduced postprandial levels of essential amino acids in plasma, particularly following high-protein diets. Upon fasting, essential amino acids were the same in the wt and SLC6A19ko mice due to reduced amino acid catabolism. Bacterial metabolites originating from amino acid fermentation correlated with the dietary protein content, but showed a complex profile in the blood of the SLC6A19ko mice. This study highlights the potential of SLC6A19 as a knock-out or inhibition target to induce protein restriction for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Kiran Javed
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
10
|
Rose AJ. Role of Peptide Hormones in the Adaptation to Altered Dietary Protein Intake. Nutrients 2019; 11:E1990. [PMID: 31443582 PMCID: PMC6770041 DOI: 10.3390/nu11091990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Dietary protein profoundly influences organismal traits ultimately affecting healthspan. While intracellular signalling downstream of altered amino acid supply is undoubtedly important, peptide hormones have emerged as critical factors determining systemic responses to variations in protein intake. Here the regulation and role of certain peptides hormones in such responses to altered dietary protein intake is reviewed.
Collapse
Affiliation(s)
- Adam J Rose
- Nutrient Metabolism & Signalling Laboratory, Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia.
| |
Collapse
|