1
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
2
|
Wang X, Zhang L, Si H. Combining luteolin and curcumin synergistically suppresses triple-negative breast cancer by regulating IFN and TGF-β signaling pathways. Biomed Pharmacother 2024; 178:117221. [PMID: 39111078 DOI: 10.1016/j.biopha.2024.117221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Combining two or more chemicals in chemotherapy is rapidly increasing because of its higher efficacy, lower toxicity, lower dosages, and lower drug resistance. Here, we identified a novel combination of luteolin (LUT) and curcumin (CUR), two bioactive compounds from foods, synergistically suppressed triple-negative breast cancer (TNBC) cell proliferation (LUT 30 µM + CUR 20 µM), colony formation (LUT 1 µM + CUR 2 µM), and tumor growth in xenograft mice (LUT 10 mg/kg body weight/day + CUR 20 mg/kg body weight/day, i.p. injection every other day, 5 weeks), while the individual chemical alone did not show these inhibitory effects significantly at the selected concentrations/dosages. Our total RNA transcriptome analysis in xenograft tumors revealed that combining LUT and CUR synergistically activated type I interferon (IFN) signaling and suppressed transforming growth factor-beta (TGF-β) signaling pathways, which was further confirmed by the expression/activity of several proteins of the pathways in tumors. In addition, this combination of LUT and CUR also synergistically decreased oncoprotein levels of c-Myc and Notch1, the critical molecules required to maintain stem cell properties, tumor clonal evolution, and drug resistance. These results suggest that the combination of LUT and CUR synergistically inhibits TNBC by suppressing multiple cellular mechanisms, such as proliferation, colony formation, and transformation, as well as tumor migration, invasion, and metastasis, via regulating IFN and TGF-β signaling pathways. Therefore, combining LUT and CUR may be an effective therapeutic agent to treat highly aggressive, drug-resistant TNBC patients after clinical trials.
Collapse
Affiliation(s)
- Xiaoyong Wang
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN 37209, USA; Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lijuan Zhang
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Hongwei Si
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
3
|
Brüser L, Teichmann E, Hinz B. Effect of Flavonoids on MCP-1 Expression in Human Coronary Artery Endothelial Cells and Impact on MCP-1-Dependent Migration of Human Monocytes. Int J Mol Sci 2023; 24:16047. [PMID: 38003237 PMCID: PMC10671372 DOI: 10.3390/ijms242216047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
The monocyte chemoattractant protein-1 (MCP-1), also known as chemokine (CC motif) ligand 2 (CCL2), is involved in the formation, progression, and destabilization of atheromatous plaques. Flavonoids, found in fruits and vegetables, have been associated with various health-promoting properties, including antioxidant, anti-inflammatory, and cardioprotective effects. In the present study, the flavonoids quercetin, kaempferol, and luteolin, but not cannflavin A, were shown to substantially inhibit interleukin (IL)-1β-induced MCP-1 mRNA and protein expression in human coronary artery endothelial cells (HCAEC). At the functional level, conditioned medium (CM) from IL-1β-stimulated HCAEC caused an increase in the migration of THP-1 monocytes compared with CM from unstimulated HCAEC. However, this induction was suppressed when IL-1β-treated HCAEC were coincubated with quercetin, kaempferol, or luteolin. The functional importance of MCP-1 in IL-1β-induced monocyte migration was supported by experiments showing that neutralization of MCP-1 in the CM of IL-1β-treated HCAEC led to a significant inhibition of migration. In addition, a concentration-dependent induction of monocyte migration in the presence of recombinant MCP-1 was demonstrated. Collectively, the flavonoids quercetin, kaempferol, and luteolin were found to exert potential antiatherogenic effects in HCAEC, challenging further studies with these compounds.
Collapse
Affiliation(s)
| | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (L.B.); (E.T.)
| |
Collapse
|
4
|
Ebrahimi F, Ghazimoradi MM, Fatima G, Bahramsoltani R. Citrus flavonoids and adhesion molecules: Potential role in the management of atherosclerosis. Heliyon 2023; 9:e21849. [PMID: 38028000 PMCID: PMC10663934 DOI: 10.1016/j.heliyon.2023.e21849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis as a chronic inflammatory disorder is accompanied with oxidative stress which causes a high morbidity and mortality. Adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), P-selectin, and E-selectin, are amongst the most important contributors in atherosclerosis. In such cases, dietary interventions with functional foods containing natural antioxidant and anti-inflammatory constituents are of a great interest. Citrus fruits are rich sources of flavonoids as natural pigments with potent antioxidant and anti-inflammatory activities. This study aims to review current evidence regarding the role of citrus flavonoids in the management of atherosclerosis with a focus on their effect on adhesion molecules. Electronic databases including PubMed, Scopus, and Web of Science were searched with the names of adhesion molecules and flavonoids from inception until January 2023. The included articles highly support the beneficial effects of citrus flavonoids in preclinical models of atherosclerosis. Quercetin, naringin and naringenin, hesperidin and hesperetin, nobiletin, rutin, luteolin, apigenin, and kaempferol are the most common flavonoids in citrus fruits which could modulate adhesion molecules including ICAM-1, VCAM-1, E-selectin, and P-selectin. Additionally, markers of chronic inflammation such as interleukins, tumor necrosis factor-α, nuclear factor-κB, and nitric oxide signaling, as well as oxidative stress markers like superoxide dismutase and glutathione were all normalized upon administration of citrus flavonoids. Conclusively, this review confirms the modulatory role of flavonoids on adhesion molecules in atherosclerosis based on the preclinical evaluations. Thus, citrus fruits can be further studied in atherosclerotic patients regarding their activity in reducing adhesion molecules.
Collapse
Affiliation(s)
- Farnaz Ebrahimi
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | | | - Ghizal Fatima
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023; 31:1069-1093. [PMID: 36997729 PMCID: PMC10062691 DOI: 10.1007/s10787-023-01136-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Chemokines belong to the family of cytokines with chemoattractant properties that regulate chemotaxis and leukocyte migration, as well as the induction of angiogenesis and maintenance of hemostasis. Curcumin, the major component of the Curcuma longa rhizome, has various pharmacological actions, including anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties. Chemokines and chemokine receptors are influenced/modulated by curcumin. Thus, the current review focuses on the molecular mechanisms associated with curcumin's effects on chemoattractant cytokines, as well as putting into context the many studies that have reported curcumin-mediated regulatory effects on inflammatory conditions in the organs/systems of the body (e.g., the central nervous system, liver, and cardiovascular system). Curcumin's effects on viral and bacterial infections, cancer, and adverse pregnancy outcomes are also reviewed.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91779-48564, Iran.
| |
Collapse
|
7
|
Application Potential of Luteolin in the Treatment of Viral Pneumonia. J Food Biochem 2023. [DOI: 10.1155/2023/1810503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Aim of the Review. This study aims to summarize the therapeutic effect of luteolin on the pathogenesis of viral pneumonia, explore its absorption and metabolism in the human body, evaluate the possibility of luteolin as a drug to treat viral pneumonia, and provide a reference for future research. Materials and Methods. We searched MEDLINE/PubMed, Web of Science, China National Knowledge Infrastructure, and Google Scholar and collected research on luteolin in the treatment of viral pneumonia and related diseases since 2003. Then, we summarized the efficacy and potential of luteolin in directly inhibiting viral activity, limiting inflammatory storms, reducing pulmonary inflammation, and treating pneumonia complications. Results and Conclusion. Luteolin has the potential to treat viral pneumonia in multiple ways. Luteolin has a direct inhibitory effect on coronavirus, influenza virus, and respiratory syncytial virus. Luteolin can alleviate the inflammatory factor storm induced by multiple factors by inhibiting the function of macrophages or mast cells. Luteolin can reduce pulmonary inflammation, pulmonary edema, or pulmonary fibrosis induced by multiple factors. In addition, viral pneumonia may cause multisystem complications, while luteolin has extensive protective effects on the gastrointestinal system, cardiovascular system, and nervous system. However, due to the first-pass metabolism mediated by phase II enzymes, the bioavailability of oral luteolin is low. The bioavailability of luteolin can be improved, and its potential value can be further developed by changing the dosage form or route of administration.
Collapse
|
8
|
Shoaib S, Ansari MA, Kandasamy G, Vasudevan R, Hani U, Chauhan W, Alhumaidi MS, Altammar KA, Azmi S, Ahmad W, Wahab S, Islam N. An Attention towards the Prophylactic and Therapeutic Options of Phytochemicals for SARS-CoV-2: A Molecular Insight. Molecules 2023; 28:795. [PMID: 36677853 PMCID: PMC9864057 DOI: 10.3390/molecules28020795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Waseem Chauhan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Maryam S. Alhumaidi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Khadijah A. Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Sarfuddin Azmi
- Molecular Microbiology Biology Division, Scientific Research Centre (SRC), Prince Sultan Military Medical City (PSMMC), Riyadh 11159, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Shadma Wahab
- Deparment of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Najmul Islam
- Department Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
9
|
Cai Z, Mao C, Wang Y, Zhu Z, Xu S, Chen D, Chen Y, Ruan W, Fang B. Research Progress with Luteolin as an Anti-Tumor Agent. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221133579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this review, we outline the new expertise and research progress with luteolin as an antitumor agent, and clarify the related results from the aspects of tumor proliferation, apoptosis, invasion, metastasis, sensitivity to radiotherapy and chemotherapy, angiogenesis, and immunotherapy. In recent years, with the development of medical technology, the early detection rate of tumors has increased significantly. However, the number of cancer patients remains high. Therefore, a new and reasonably effective tumor therapeutic drug is urgently demanded. Luteolin, a flavonoid and widespread in nature, attracts more and more attention due to its universal biological utility, especially in the study of antitumor activity. This article reviews the work published in the past 20 years on the role and mechanism of luteolin as an antitumor agent, showing that this compound has a variety of effects for antitumor treatment by acting on different cytokines. Although clinical studies have not yet been widely carried out, a series of basic studies have confirmed that luteolin is a reasonably effective antineoplastic agent or anticancer adjuvant. Besides, derivatives of luteolin have good application prospects.
Collapse
Affiliation(s)
- Zhun Cai
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Zhejiang, China
| | - Chenyang Mao
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Zhejiang, China
| | - Yeqing Wang
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Zheyi Zhu
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Sisi Xu
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Dongqing Chen
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Yufeng Chen
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Wenjie Ruan
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Binbo Fang
- Department of Medicine, Taizhou University, Jiaojiang, China
| |
Collapse
|
10
|
Zhang Z, Wang J, Lin Y, Chen J, Liu J, Zhang X. Nutritional activities of luteolin in obesity and associated metabolic diseases: an eye on adipose tissues. Crit Rev Food Sci Nutr 2022; 64:4016-4030. [PMID: 36300856 DOI: 10.1080/10408398.2022.2138257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is characterized by excessive body fat accumulation and is a high-risk factor for metabolic comorbidities, including type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. In lean individuals, adipose tissue (AT) is not only an important regulatory organ for energy storage and metabolism, but also an indispensable immune and endocrine organ. The sustained energy imbalance induces adipocyte hypotrophy and hyperplasia as well as AT remodeling, accompanied by chronic low-grade inflammation and adipocytes dysfunction in AT, ultimately leading to systemic insulin resistance and ectopic lipid deposition. Luteolin is a natural flavonoid widely distributed in fruits and vegetables and possesses multifold biological activities, such as antioxidant, anticancer, and anti-inflammatory activities. Diet supplementation of this flavonoid has been reported to inhibit AT lipogenesis and inflammation as well as the ectopic lipid deposition, increase AT thermogenesis and systemic energy expenditure, and finally improve obesity and associated metabolic diseases. The purpose of this review is to reveal the nutritional activities of luteolin in obesity and its complications with emphasis on its action on AT energy metabolism, immunoregulation, and endocrine intervention.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jiahui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
11
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Zhang L, Wang X, Si H. Synergistic anti-inflammatory effects and mechanisms of the combination of resveratrol and curcumin in human vascular endothelial cells and rodent aorta. J Nutr Biochem 2022; 108:109083. [PMID: 35691595 DOI: 10.1016/j.jnutbio.2022.109083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/16/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022]
Abstract
Chronic increased pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) play critical roles in the development of endothelial dysfunction and therefore induce cardiovascular disease. Although phytochemicals have the potential ability to reduce the risk of CVD, the big gap between required high concentration in cells and the low bioavailability in the blood of phytochemicals compromise their therapeutic potentials. This study aims to investigate if combined phytochemicals at low levels exert a synergistic anti-inflammatory effect and to define relevant molecular mechanisms. Our results found that combined curcumin (5 µM) and resveratrol (5 µM) synergistically (combination index is 0.78) inhibited TNF-α-induced monocytes adhesion to human endothelial EA.hy 926 cells while the individual chemicals did not have such effect at the selected concentrations. The concentrations of curcumin (5 µM) and resveratrol (5 µM) are very close to the maximum level of curcumin (3.56 µM) and resveratrol (2 µM) in human blood. Dietary supplementation of combined curcumin (500mg/kg) and resveratrol (200mg/kg) synergistically reduced TNF-α-induced vascular inflammation in C57BL/6 mice with a similar pattern in cells. Moreover, the combination ameliorated the TNF-α-induced protein expressions and circulating levels of vascular cell adhesion molecule 1 and monocyte chemotactic protein-1 in EA.hy 926 cells, mice aorta and serum. Furthermore, combined curcumin and resveratrol significantly inhibited TNF-α-induced nuclear factor-kappaB (NF-κB) p65 nuclear protein expression than that by the individual chemical alone in EA.hy 926 cells, indicating that the synergistic effect of the combination may result from that curcumin reduces the required minimum concentration for resveratrol to inhibit the nuclear translocation of NF-κB. In conclusion, the combination of curcumin and resveratrol protects against TNF-α-induced vascular inflammation by suppressing NF-κB signaling in vitro and in vivo models. This study suggests that dietary intake of a combination of curcumin and resveratrol or its foods may be a practical, safe approach to prevent vascular inflammation and therefore prevent/treat vascular diseases in humans.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA; Department of Veterinary Medicine, Northwest University for Nationalities, Lanzhou, Gansu China
| | - Xiaoyong Wang
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA; Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hongwei Si
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA.
| |
Collapse
|
13
|
Xie T, Yuan J, Mei L, Li P, Pan R. Luteolin suppresses TNF‑α‑induced inflammatory injury and senescence of nucleus pulposus cells via the Sirt6/NF‑κB pathway. Exp Ther Med 2022; 24:469. [PMID: 35747154 PMCID: PMC9204575 DOI: 10.3892/etm.2022.11396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/06/2022] Open
Abstract
Luteolin (3',4',5,7-tetrahydroxy flavone) is a flavonoid, which is widely distributed in various plants including flowers, vegetables, and medicinal herbs and spices. Luteolin can be applied in the treatment of various diseases due to its multiple biological activities, such as anti-inflammatory, anticancer, and antioxidative activity. However, its role in intervertebral disc degeneration has not been previously reported. Therefore, the purpose of the present study was to explore the effects of luteolin on Tumor necrosis factor (TNF)-α-induced inflammatory injury and senescence of human nucleus pulposus cells (HNPCs), as well as the underlying mechanisms of action of this compound. Cell viability and apoptosis were assessed by MTT assay and TUNEL staining, respectively. ELISA kits were applied to detect the levels of inflammatory cytokines and the activity of telomerase. Senescence β-galactosidase staining was used to detect the activity levels of β-galactosidase in the cells. Cell transfection was performed to achieve interference of sirtuin 6 (Sirt6). The protein expression levels were detected by western blot analysis. TUNEL staining and western blot analysis were performed to assess the expression levels of apoptosis-related proteins. The results indicated that TNF-α induced a significant decrease in HNPC viability and an increase in inflammatory factor levels, while the application of luteolin effectively increased cell viability and decreased intracellular interleukin (IL)-1β and IL-6 expression levels. Furthermore, luteolin decreased apoptosis compared with the TNF-α groups in a dose-dependent manner. In addition, the results of the detection kits suggested that luteolin reversed TNF-α-induced senescence. Notably, interference with Sirt6 partially reduced the protective effect of luteolin on TNF-α-induced HNPC senescence via the Sirt6/NF-κB pathway. In summary, the data indicated that luteolin suppresses TNF-α-induced inflammatory injury and senescence of HNPCs via the Sirt6/NF-κB pathway.
Collapse
Affiliation(s)
- Tian Xie
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, P.R. China
| | - Jun Yuan
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, P.R. China
| | - Ling Mei
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, P.R. China
| | - Ping Li
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, P.R. China
| | - Ruijie Pan
- College of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
14
|
Immunomodulatory effects of Curcuma longa L. and Carthamus tinctorius L. on RAW 264.7 macrophages and cyclophosphamide-induced immunosuppression C57BL/6 mouse models. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Ding J, Wang Y, Wang Z, Hu S, Li Z, Le C, Huang J, Xu X, Huang J, Qiu P. Luteolin Ameliorates Methamphetamine-Induced Podocyte Pathology by Inhibiting Tau Phosphorylation in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5909926. [PMID: 35368760 PMCID: PMC8970803 DOI: 10.1155/2022/5909926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
Methamphetamine (METH) can cause kidney dysfunction. Luteolin is a flavonoid compound that can alleviate kidney dysfunction. We aimed to observe the renal-protective effect of luteolin on METH-induced nephropathies and to clarify the potential mechanism of action. The mice were treated with METH (1.0-20.0 mg/kg/d bodyweight) for 14 consecutive days. Morphological studies, renal function, and podocyte specific proteins were analyzed in the chronic METH model in vivo. Cultured podocytes were used to support the protective effects of luteolin on METH-induced podocyte injury. We observed increased levels of p-Tau and p-GSK3β and elevated glomerular pathology, renal dysfunction, renal fibrosis, foot process effacement, macrophage infiltration, and podocyte specific protein loss. Inhibition of GSK3β activation protected METH-induced kidney injury. Furthermore, luteolin could obliterate glomerular pathologies, inhibit podocyte protein loss, and stop p-Tau level increase. Luteolin could also abolish the METH-induced podocyte injury by inactivating GSK3β-p-Tau in cultured podocytes. These results indicate that luteolin might ameliorate methamphetamine-induced podocyte pathology through GSK3β-p-Tau axis.
Collapse
Affiliation(s)
- Jiuyang Ding
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuanhe Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zhuo Wang
- Department of Infertility and Sexual Medicine, The Third Affiliated hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Zhu Li
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cuiyun Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
16
|
Liu Z, Gao S, Bu Y, Zheng X. Luteolin Protects Cardiomyocytes Cells against Lipopolysaccharide-Induced Apoptosis and Inflammatory Damage by Modulating Nlrp3. Yonsei Med J 2022; 63:220-228. [PMID: 35184424 PMCID: PMC8860941 DOI: 10.3349/ymj.2022.63.3.220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE In this article, we aimed to investigate the influences of luteolin on inflammatory injury to cardiomyocytes induced by lipopolysaccharide (LPS). MATERIALS AND METHODS H9c2 cells were pretreated with different concentrations of luteolin (10, 20, and 50 µM) for 12 h and then stimulated with 10 µg/mL LPS or no LPS for 6 h. Cell viability was detected by CCK-8 assay. Cell apoptosis was determined by flow cytometry. QRT-PCR and Western blotting were utilized to examine mRNA and protein levels. ELISA was used to determine the levels of monocyte chemoattractant protein-1, tumor necrosis factor-alpha, interleukin (IL)-6, IL-1β, and IL-18 in cell supernatants among different groups of H9c2 cells. Immunofluorescence was applied to evaluate reactive oxygen species formation in H9c2 cells. M-mode images of echocardiography, the ejection fraction test, fractional shortening test, end-systolic volume test, and end-diastolic volume test of mouse heart function were obtained by ultrasonic electrocardiogram. RESULTS Luteolin could alleviate inflammatory damage and inflammatory factor expression among LPS-induced H9c2 cells. Additionally, we found that luteolin decreased LPS-stimulated inflammatory damage in H9c2 cells by down-regulating NOD-like receptor family pyrin domain containing 3 (Nlrp3). Luteolin also improved myocardial function in mice treated with LPS and reduced myocardial relaxation. Luteolin reversed myocardial histological abnormalities in mice and reduced inflammation and cardiomyocyte apoptosis. Additionally, luteolin inhibited oxidative stress-mediated myocardial and systemic tissue damage in mice. Finally, luteolin reduced LPS-induced inflammatory damage in mouse cardiomyocytes by down-regulating Nlrp3. CONCLUSION We found that luteolin could reduce inflammatory damage to cardiomyocytes induced by LPS by down-regulating Nlrp3.
Collapse
Affiliation(s)
- Zhongfen Liu
- Department of Emergency Medical, The People's Hospital of Zhangqiu District, Jinan, Shandong, China
| | - Shaohua Gao
- Department of Ultrasound, The Traditional Chinese Medical Hospital of Zhangqiu District, Jinan, Shandong, China
| | - Ying Bu
- Department of Emergency Medical, The People's Hospital of Zhangqiu District, Jinan, Shandong, China
| | - Xiaoyan Zheng
- Department of Logistics Support, Jinan Central Hospital, Jinan, Shandong, China.
| |
Collapse
|
17
|
Wang C, Zhang Y, Xue H, Yang M, Leng F, Wang Y. Extraction kinetic model of polysaccharide from Codonopsis pilosula and the application of polysaccharide in wound healing. Biomed Mater 2022; 17. [PMID: 35090145 DOI: 10.1088/1748-605x/ac5008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 11/11/2022]
Abstract
The crude polysaccharide (CPNP) of Codonopsis pilosula was obtained by hot-water extraction technology. The extraction kinetic model established according to Fick's first law of diffusion and related parameters of polysaccharide was studied. CPNP microcapsules were prepared by blending with sodium alginate, Ca2+ ions and crude CPNP. The quality control (Drug loading rate, embedding rate and release rate, etc) of CPNP microcapsules were analyzed by pharmacopeas standards. The structure feature of CPNP microcapsules also were determined with various methods. The wound healing ability of CPNP microcapsules loading with different concentration of CPNP was evaluated using the rat wound model. The activity of various enzymes and the expression levels of pro-inflammatory factors in the model skin tissue also were determined by enzyme linked immunosorbent assay (ELISA). Hematoxylin-eosin staining (HE), Masson, immunohistochemistry were used to investigate the external application effect of CPNP microcapsules on skin wound repair. The extraction kinetics of CPNP was established with the linear correlation coefficient (R2) of 0.83-0.93, implied that the extraction process was fitted well with the Fick's first law of diffusion. The CPNP has good compatibility with sodium alginate and Ca2+ ions by SEM and TEM observation, and the particle size of CPNP microcapsules was 21.25±2.84 μm with the good degradation rate, loading rate (61.59%) and encapsulation rate (55.99%), maximum swelling rate (397.380 ±25.321%). Compared with control group, the redness, and swelling, bleeding, infection, and exudate of the damaged skin decreased significantly after CPNP microcapsules treatment, and the CPNP microcapsules groups exhibited good wound healing function with less inflammatory cell infiltration. The pathological structure showed that in the CPNP microcapsules group, more newborn capillaries, complete skin structure, and relatively tight and orderly arrangement of collagen fibers were observed in the skin of rats. CPNP microcapsules could effectively inhibit the high expression of pro-inflammatory factors in damaged skin, and significantly increase the contents of related enzymes (GSH-Px, T-AOC, LPO) and collagen fibers. The relative expression levels of genes (VEGF and miRNA21) in the CPNP microcapsules group were higher than those in the model group and the negative group. The above results suggested that the CPNP microcapsules could controlled-release the CPNP to the wound surface, and then played a better role in antibacterial, anti-inflammatory and skin wound repair.
Collapse
Affiliation(s)
- Chenliang Wang
- Lanzhou University of Technology, , Lanzhou, Gansu, 730050, CHINA
| | - Yuchun Zhang
- Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, Lanzhou, 730050, CHINA
| | - Hongyan Xue
- Lanzhou University of Technology, School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, Gansu Province, P. R. China, Lanzhou, Gansu, 730050, CHINA
| | - Mingjun Yang
- Lanzhou University of Technology, , Lanzhou, 730050, CHINA
| | - Feifan Leng
- Lanzhou University of Technology, , Lanzhou, Gansu, 730050, CHINA
| | - Yonggang Wang
- Lanzhou University of Technology, , Lanzhou, 730050, CHINA
| |
Collapse
|
18
|
The Effect of Dietary Polyphenols on Vascular Health and Hypertension: Current Evidence and Mechanisms of Action. Nutrients 2022; 14:nu14030545. [PMID: 35276904 PMCID: PMC8840535 DOI: 10.3390/nu14030545] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
The aim of this review was to explore existing evidence from studies conducted on humans and summarize the mechanisms of action of dietary polyphenols on vascular health, blood pressure and hypertension. There is evidence that some polyphenol-rich foods, including berry fruits rich in anthocyanins, cocoa and green tea rich in flavan-3-ols, almonds and pistachios rich in hydroxycinnamic acids, and soy products rich in isoflavones, are able to improve blood pressure levels. A variety of mechanisms can elucidate the observed effects. Some limitations of the evidence, including variability of polyphenol content in plant-derived foods and human absorption, difficulty disentangling the effects of polyphenols from other dietary compounds, and discrepancy of doses between animal and human studies should be taken into account. While no single food counteracts hypertension, adopting a plant-based dietary pattern including a variety of polyphenol-rich foods is an advisable practice to improve blood pressure.
Collapse
|
19
|
Oh ES, Petersen KS, Kris-Etherton PM, Rogers CJ. Four weeks of spice consumption lowers plasma proinflammatory cytokines and alters the function of monocytes in adults at risk of cardiometabolic disease: secondary outcome analysis in a 3-period, randomized, crossover, controlled feeding trial. Am J Clin Nutr 2022; 115:61-72. [PMID: 34601551 PMCID: PMC8755038 DOI: 10.1093/ajcn/nqab331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Numerous studies demonstrate acute anti-inflammatory properties of individual spices, but none have examined the effect of longer-term consumption of a spice blend incorporated in a meal. OBJECTIVES We investigated the effect of longer-term spice consumption on inflammatory cytokines and monocyte subsets [classical (CM), intermediate (IM), nonclassical (NCM)] in adults at risk of cardiometabolic disease. METHODS A 3-period, randomized, crossover, controlled feeding trial was conducted. Participants (n = 71 recruited; n = 63 completed) randomly consumed diets differing in terms of the quantity of spices: 0.547 g (low-dose spice diet; LSD), 3.285 g (medium-dose spice diet; MSD), or 6.571 g (high-dose spice diet; HSD) · d-1 · 2100 kcal-1, for 4 wk with a ≥2-wk washout between diets. At baseline and after each diet period, proinflammatory cytokines (IL-1β, IL-6, IL-8, monocyte chemoattractant protein-1, and TNF-α) in plasma and LPS-stimulated peripheral blood mononuclear cell culture supernatants, and the phenotype and function of monocyte subsets, were measured in fasted participants. Postprandial proinflammatory cytokines also were quantified at baseline by consumption of a low-spice-dose test meal, and after each diet period by consumption of a test meal containing a spice dose corresponding to daily spice consumption during the preceding 4-wk diet period. RESULTS Fasting plasma IL-6 was reduced (mean ± SEM: -118.26 ± 50.63 fg/mL; P < 0.05) after MSD compared with baseline. Postprandial plasma IL-1β, IL-8, and TNF-α were lower (mean ± SEM : -9.47 ± 2.70 fg/mL, -0.20 ± 0.05 pg/mL, and -33.28 ± 12.35 fg/mL, respectively) after MSD compared with LSD (main diet effect; P < 0.05). CM adherence was reduced (mean ± SEM: -0.86 ± 0.34; P = 0.034) after HSD compared with LSD. IM migration was reduced after MSD and HSD compared with LSD (mean ± SEM: -0.39 ± 0.09 and -0.56 ± 0.14, respectively; P < 0.05). CONCLUSIONS Four weeks of MSD consumption reduced fasting plasma IL-6 and postprandial plasma IL-1β, IL-8, and TNF-α as well as altering monocyte function.This trial was registered at clinicaltrials.gov as NCT03064932.
Collapse
Affiliation(s)
- Ester S Oh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
20
|
Yousaf M, Razmovski-Naumovski V, Zubair M, Chang D, Zhou X. Synergistic Effects of Natural Product Combinations in Protecting the Endothelium Against Cardiovascular Risk Factors. J Evid Based Integr Med 2022; 27:2515690X221113327. [PMID: 35849068 PMCID: PMC9297466 DOI: 10.1177/2515690x221113327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction is an early hallmark of cardiovascular diseases (CVDs). Monotherapies are limited due to the complex, multifactorial pathways. The multi-component and multi-targeted approach of natural products have the potential to manage CVDs. This review aims to provide a comprehensive insight into the synergistic mechanism of natural product combinations in protecting the endothelium against various cardiovascular risk factors. Databases (PubMed, MEDLINE and EMBASE) and Google Scholar were searched, and studies in English published between January 2000 and February 2022 were collated. Clinical and pre-clinical studies of natural product combinations with or without pharmaceutical medicines, compared with monotherapy and/or proposing the underlying mechanism in protecting endothelial function, were included. Four clinical studies demonstrated that natural product combinations or natural product-pharmaceutical combinations improved endothelial function. This was associated with multi-targeted effects or improved absorption of the active substances in the body. Seventeen preclinical studies showed that natural product combinations produced synergistic (demonstrated by combination index or Bliss independence model) or enhanced effects in protecting the endothelium against hyperlipidemia, hypertension, diabetes mellitus, platelet activation, oxidative stress and hyperhomocysteinemia. The molecular targets included reactive oxygen species, Nrf2-HO-1, p38MAPK, P13K/Akt and NF-κB. Thus, the current available evidence of natural product combinations in targeting endothelial dysfunction is predominantly from preclinical studies. These have demonstrated synergistic/enhanced pharmacological activities and proposed associated mechanisms. However, evidence from larger, well-designed clinical trials remains weak. More cohesion is required between preclinical and clinical data to support natural product combinations in preventing or slowing the progression of CVDs.
Collapse
Affiliation(s)
- Muhammad Yousaf
- Department of Bioinformatics and Biotechnology, 72594Government College University, Faisalabad, Pakistan
| | - Valentina Razmovski-Naumovski
- NICM Health Research Institute, 6489Western Sydney University, Westmead, Australia.,South Western Sydney Clinical School, School of Medicine & Health, 7800University of New South Wales (UNSW), Sydney, Australia
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, 72594Government College University, Faisalabad, Pakistan
| | - Dennis Chang
- NICM Health Research Institute, 6489Western Sydney University, Westmead, Australia
| | - Xian Zhou
- NICM Health Research Institute, 6489Western Sydney University, Westmead, Australia
| |
Collapse
|
21
|
Hong S, Dia VP, Zhong Q. Synergistic anti-inflammatory activity of apigenin and curcumin co-encapsulated in caseins assessed with lipopolysaccharide-stimulated RAW 264.7 macrophages. Int J Biol Macromol 2021; 193:702-712. [PMID: 34717976 DOI: 10.1016/j.ijbiomac.2021.10.153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Dietary polyphenols are potential anti-inflammatory agents, and their combinations with enhanced biological activities may lower toxicity and side effects. The objective of this work was to investigate the potential synergistic anti-inflammatory activities of apigenin and curcumin co-nanoencapsulated in sodium caseinate, with comparison to unencapsulated polyphenol combinations. Non-toxic concentrations of apigenin, curcumin, and their combinations in the free and co-encapsulated forms were studied in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Combinations of free polyphenols produced stronger inhibition of nitric oxide (NO) production, more significant at a higher proportion of curcumin, which was further enhanced after co-encapsulation. The enhanced reduction of NO was concomitant with the decreased expression of iNOS, the enhanced inhibition of pro-inflammatory cytokines of IL-6 and TNF-α, and the reduced production of intracellular reactive oxygen species. The potential multi-target effects and the enhanced solubility, proximity, and bioavailability of AP and CUR after co-encapsulation contributed to the synergistic activities. These results demonstrated that co-nanoencapsulation of apigenin and curcumin may enable the practical application utilizing the synergistic anti-inflammation effects to improve health.
Collapse
Affiliation(s)
- Shan Hong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA.
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
22
|
Phenolic-protein interactions in foods and post ingestion: Switches empowering health outcomes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Gan XX, Zhong LK, Shen F, Feng JH, Li YY, Li SJ, Cai WS, Xu B. Network Pharmacology to Explore the Molecular Mechanisms of Prunella vulgaris for Treating Hashimoto's Thyroiditis. Front Pharmacol 2021; 12:700896. [PMID: 34690752 PMCID: PMC8527019 DOI: 10.3389/fphar.2021.700896] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose:Prunella vulgaris (PV), a traditional Chinese medicine, has been used to treat patients with thyroid disease for centuries in China. The purpose of the present study was to investigate its bioactive ingredients and mechanisms against Hashimoto’s thyroiditis (HT) using network pharmacology and molecular docking technology to provide some basis for experimental research. Methods: Ingredients of the PV formula were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Additionally, HT-related genes were retrieved from the UniProt and GeneCards databases. Cytoscape constructed networks for visualization. A protein–protein interaction (PPI) network analysis was constructed, and a PPI network was built using the Search Tool for the Retrieval of Interacting Genes (STRING) database. These key targets of PV were enriched and analyzed by molecular docking verification, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Results: The compound–target network included 11 compounds and 66 target genes. Key targets contained Jun proto-oncogene (JUN), hsp90aa1.1 (AKI), mitogen-activated protein kinase 1 (MAPK1), and tumor protein p53 (TP53). The main pathways included the AGE-RAGE signaling pathway, the TNF signaling pathway, the PI3K–Akt signaling pathway, and the mitogen-activated protein kinase signaling pathway. The molecular docking results revealed that the main compound identified in the Prunella vulgaris was luteolin, followed by kaempferol, which had a strong affinity for HT. Conclusion: Molecular docking studies indicated that luteolin and kaempferol were bioactive compounds of PV and might play an essential role in treating HT by regulating multiple signaling pathways.
Collapse
Affiliation(s)
- Xiao-Xiong Gan
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lin-Kun Zhong
- Department of General Surgery, Zhongshan City People's Hospital Affiliated to Sun Yat-sen University, Zhongshan, China
| | - Fei Shen
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jian-Hua Feng
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ya-Yi Li
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Si-Jing Li
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen-Song Cai
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Bo Xu
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Protective Effects of Curcumin on Endothelium: An Updated Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34331686 DOI: 10.1007/978-3-030-56153-6_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Endothelial dysfunction is the common early stage of most cardiovascular afflictions. The endothelium is considered the main mediator of vascular homeostasis via its vasodilator, anti-inflammatory and anticoagulant properties. Among the different endothelial-derived mediators, nitric oxide is produced by nitric oxide synthase and has a critical role in regulating endothelial function. Physiological and pathological processes such as aging and diabetes mellitus are associated with disturbances of endothelial function which, at least at the earliest stage, can be reversed by lifestyle and pharmacological intervention to reduce the risk of incident cardiovascular diseases. Among dietary strategies, curcumin is a cheap and safe nutraceutical polyphenol with proven antioxidant and anti-inflammatory properties. Given the important role of such processes in the development of endothelium dysfunction, a role for curcumin in the prevention or treatment of this condition has been hypothesized. This review summarizes the available literature on the beneficial role of curcumin on vascular endothelial function.
Collapse
|
25
|
Yu J, Li W, Zhao L, Qiao Y, Yu J, Huang Q, Yang Y, Xiao X, Guo D. Quyu Shengxin capsule (QSC) inhibits Ang-II-induced abnormal proliferation of VSMCs by down-regulating TGF-β, VEGF, mTOR and JAK-STAT pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114112. [PMID: 33905820 DOI: 10.1016/j.jep.2021.114112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quyu Shengxin capsule (QSC) is an herbal compound commonly used to treat blood stasis syndrome in China, and blood stasis syndrome is considered to be the root of cardiovascular diseases (CVD) in traditional Chinese medicine. However, the potential molecular mechanism of QSC is still unknown. AIM OF STUDY To study the therapeutic effect of QSC on the abnormal proliferation of VSMCs induced by Ang-II, and to explore its possible mechanism of action. MATERIALS AND METHODS Qualitative analysis and quality control of QSC through UPLC-MS/MS and UPLC. The rat thoracic aorta vascular smooth muscle cells (VSMCs) were cultured in vitro, and then stimulated with Angiotensin Ⅱ (Ang-II) (10-7 mol/L) for 24 h to establish a cardiovascular cell model. The cells were then treated with different concentrations of QSC drug-containing serum or normal goat serum. MTT assay was used to detect the viability of VSMCs and abnormal cell proliferation. In order to analyze the possible signal transduction pathways, the content of various factors in the supernatant of VSMCs was screened and determined by means of the Luminex liquid suspension chip detection platform, and the phosphoprotein profile in VSMCs was screened by Phospho Explorer antibody array. RESULTS Compared with the model group, serum cell viability and inflammatory factor levels with QSC were significantly decreased (P < 0.001). In addition, the expression levels of TGF-β, VEGF, mTOR and JAK-STAT in the QSC-containing serum treatment group were significantly lower than those in the model group. QSC may regulate the pathological process of CVD by reducing the levels of inflammatory mediators and cytokines, and protecting VSMCs from the abnormal proliferation induced by Ang-II. CONCLUSION QSC inhibits Ang-II-induced abnormal proliferation of VSMCs, which is related to the down-regulation of TGF-β, VEGF, mTOR and JAK-STAT pathways.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Lintao Zhao
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, PR China
| | - Yuan Qiao
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Dong Guo
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, PR China.
| |
Collapse
|
26
|
Dietary Anti-Aging Polyphenols and Potential Mechanisms. Antioxidants (Basel) 2021; 10:antiox10020283. [PMID: 33668479 PMCID: PMC7918214 DOI: 10.3390/antiox10020283] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
For years, the consumption of a diet rich in fruits and vegetables has been considered healthy, increasing longevity, and decreasing morbidities. With the assistance of basic research investigating the potential mechanisms, it has become clear that the beneficial effects of plant-based foods are mainly due to the large amount of bioactive phenolic compounds contained. Indeed, substantial dietary intervention studies in humans have supported that the supplementation of polyphenols have various health-promoting effects, especially in the elderly population. In vitro examinations on the anti-aging mechanisms of polyphenols have been widely performed, using different types of natural and synthetic phenolic compounds. The aim of this review is to critically evaluate the experimental evidence demonstrating the beneficial effects of polyphenols on aging-related diseases. We highlight the potential anti-aging mechanisms of polyphenols, including antioxidant signaling, preventing cellular senescence, targeting microRNA, influencing NO bioavailability, and promoting mitochondrial function. While the trends on utilizing polyphenols in preventing aging-related disorders are getting growing attention, we suggest the exploration of the beneficial effects of the combination of multiple polyphenols or polyphenol-rich foods, as this would be more physiologically relevant to daily life.
Collapse
|
27
|
Phenolic Compounds Exerting Lipid-Regulatory, Anti-Inflammatory and Epigenetic Effects as Complementary Treatments in Cardiovascular Diseases. Biomolecules 2020; 10:biom10040641. [PMID: 32326376 PMCID: PMC7226566 DOI: 10.3390/biom10040641] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.
Collapse
|