1
|
Stepanyan A, Brojakowska A, Zakharyan R, Hakobyan S, Davitavyan S, Sirunyan T, Khachatryan G, Khlgatian MK, Bisserier M, Zhang S, Sahoo S, Hadri L, Rai A, Garikipati VNS, Arakelyan A, Goukassian DA. Evaluating sex-specific responses to western diet across the lifespan: impact on cardiac function and transcriptomic signatures in C57BL/6J mice at 530 and 640/750 days of age. Cardiovasc Diabetol 2024; 23:454. [PMID: 39732652 PMCID: PMC11682651 DOI: 10.1186/s12933-024-02565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia.
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Roksana Zakharyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Tamara Sirunyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Gisane Khachatryan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Mary K Khlgatian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Lahouaria Hadri
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amit Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - David A Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
| |
Collapse
|
2
|
Xu K, Zheng P, Zhao S, Feng J, Pu J, Wang J, Zhao S, Wang H, Chen J, Xie P. Altered MANF and RYR2 concentrations associated with hypolipidemia in the serum of patients with schizophrenia. J Psychiatr Res 2023; 163:142-149. [PMID: 37210832 DOI: 10.1016/j.jpsychires.2023.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Schizophrenia (SCZ) is associated with abnormal serum lipid profiles, but their relationship is poorly understood. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an important regulator of lipid metabolism. Previous studies have shown its involvement in the pathogenesis of numerous neuropsychiatric disorders, while its role in SCZ is still unknown. Therefore, this study was conducted to examine serum MANF levels in patients with SCZ, and to investigate the potential relationship between MANF, serum lipid levels and SCZ. The results showed that total cholesterol (TC) levels were significantly lower in 225 patients with SCZ than in 233 healthy controls (HCs). According to Ingenuity Pathway Analysis, hypolipidemia is associated with SCZ via MANF/ryanodine receptor 2 (RYR2) pathway. This theory was supported by another sample set, which showed significantly lower MANF levels and higher RYR2 levels in the serum of 170 SCZ patients compared to 80 HCs. Moreover, MANF and RYR2 levels both were significantly correlated with the severity of psychotic symptoms and TC levels. In addition, a model consisting of MANF and RYR2 was found to be effective in distinguishing SCZ patients from HCs. These findings suggested that the MANF/RYR2 pathway might serve as a bridge between hypolipidemia and SCZ, and MANF and RYR2 held promise as biomarkers for SCZ.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiubing Wang
- Department of Clinical Laboratory, Chongqing Mental Health Centre, Chongqing, China
| | - Shuqian Zhao
- Department of Clinical Psychology, Chongqing Mental Health Centre, Chongqing, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Fanalli SL, da Silva BPM, Gomes JD, Durval MC, de Almeida VV, Moreira GCM, Silva-Vignato B, Afonso J, Freitas FAO, Reecy JM, Koltes JE, Koltes D, Garrick D, Correia de Almeida Regitano L, Balieiro JCDC, Mourão GB, Coutinho LL, Fukumasu H, de Alencar SM, Luchiari Filho A, Cesar ASM. RNA-seq transcriptome profiling of pigs' liver in response to diet with different sources of fatty acids. Front Genet 2023; 14:1053021. [PMID: 36816031 PMCID: PMC9936315 DOI: 10.3389/fgene.2023.1053021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Pigs (Sus scrofa) are an animal model for metabolic diseases in humans. Pork is an important source of fatty acids (FAs) in the human diet, as it is one of the most consumed meats worldwide. The effects of dietary inclusion of oils such as canola, fish, and soybean oils on pig gene expression are mostly unknown. Our objective was to evaluate FA composition, identify changes in gene expression in the liver of male pigs fed diets enriched with different FA profiles, and identify impacted metabolic pathways and gene networks to enlighten the biological mechanisms' variation. Large White male pigs were randomly allocated to one of three diets with 18 pigs in each; all diets comprised a base of corn and soybean meal to which either 3% of soybean oil (SOY), 3% canola oil (CO), or 3% fish oil (FO) was added for a 98-day trial during the growing and finishing phases. RNA sequencing was performed on the liver samples of each animal by Illumina technology for differential gene expression analyses, using the R package DESeq2. The diets modified the FA profile, mainly in relation to polyunsaturated and saturated FAs. Comparing SOY vs. FO, 143 differentially expressed genes (DEGs) were identified as being associated with metabolism, metabolic and neurodegenerative disease pathways, inflammatory processes, and immune response networks. Comparing CO vs. SOY, 148 DEGs were identified, with pathways related to FA oxidation, regulation of lipid metabolism, and metabolic and neurodegenerative diseases. Our results help explain the behavior of genes with differential expression in metabolic pathways resulting from feeding different types of oils in pig diets.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | | | - Julia Dezen Gomes
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Mariah Castro Durval
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | | | | | - Bárbara Silva-Vignato
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | | | - Felipe André Oliveira Freitas
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - James Mark Reecy
- Animal Science Department, Iowa State University, Ames, IA, United States
| | | | - Dawn Koltes
- Animal Science Department, Iowa State University, Ames, IA, United States
| | - Dorian Garrick
- AL Rae Centre for Genetics and Breeding, Massey University, Hamilton, New Zealand
| | | | | | - Gerson Barreto Mourão
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Luiz Lehmann Coutinho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | - Severino Matias de Alencar
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Albino Luchiari Filho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil,Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil,*Correspondence: Aline Silva Mello Cesar,
| |
Collapse
|
4
|
MANF/EWSR1/ANXA6 pathway might as the bridge between hypolipidemia and major depressive disorder. Transl Psychiatry 2022; 12:527. [PMID: 36585419 PMCID: PMC9803680 DOI: 10.1038/s41398-022-02287-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Major depressive disorder (MDD) involves changes in lipid metabolism, but previous findings are contradictory. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is considered to be a regulator of lipid metabolism. To date, the function of MANF has been studied in many brain disorders, but not in MDD. Therefore, to better understand the role of lipids in MDD, this study was conducted to examine lipid levels in the serum of MDD patients and to investigate the potential function of MANF in MDD. First, the data on total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) in serum from 354 MDD patients and 360 healthy controls (HCs) were collected and analyzed. The results showed that there were significantly lower concentrations of TC and LDL-C in MDD patients compared with HCs, and TC levels were positively correlated with LDL-C levels. Bioinformatics analysis indicated that MANF/EWSR1/ANXA6 pathway might serve as the connecting bridge through which hypolipidemia played a functional role in MDD. Second, to verify this hypothesis, serum samples were collected from 143 MDD patients, and 67 HCs to measure the levels of MANF, EWSR1, and ANXA6 using ELISA kits. The results showed that compared to HCs, MDD patients had a significantly lower level of MANF and higher levels of ANXA6 and EWSR1, and these molecules were significantly correlated with both TC level and Hamilton Depression Rating Scales (HDRS) score. In addition, a discriminative model consisting of MANF, EWSR1, and ANXA6 was identified. This model was capable of distinguishing MDD subjects from HCs, yielded an area under curve of 0.9994 in the training set and 0.9569 in the testing set. Taken together, our results suggested that MANF/EWSR1/ANXA6 pathway might act as the bridge between hypolipidemia and MDD, and these molecules held promise as potential biomarkers for MDD.
Collapse
|
5
|
Aspalathin and Other Rooibos Flavonoids Trapped α-Dicarbonyls and Inhibited Formation of Advanced Glycation End Products In Vitro. Int J Mol Sci 2022; 23:ijms232314738. [PMID: 36499065 PMCID: PMC9738946 DOI: 10.3390/ijms232314738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The excessive dietary intake of simple sugars and abnormal metabolism in certain diseases contribute to the increased production of α-dicarbonyls (α-DCs), such as methylglyoxal (MGO) and glyoxal (GO), the main precursors of the formation of advanced glycation end products (AGEs). AGEs play a vital role, for example, in the development of cardiovascular diseases and diabetes. Aspalathus linearis (Burman f.) R. Dahlgren (known as rooibos tea) exhibits a wide range of activities beneficial for cardio-metabolic health. Thus, the present study aims to investigate unfermented and fermented rooibos extracts and their constituents for the ability to trap MGO and GO. The individual compounds identified in extracts were tested for the capability to inhibit AGEs (with MGO or GO as a glycation agent). Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) was used to investigate α-DCs' trapping capacities. To evaluate the antiglycation activity, fluorescence measurement was used. The extract from the unfermented rooibos showed a higher ability to capture MGO/GO and inhibit AGE formation than did the extract from fermented rooibos, and this effect was attributed to a higher content of dihydrochalcones. The compounds detected in the extracts, such as aspalathin, nothofagin, vitexin, isovitexin, and eriodictyol, as well as structurally related phloretin and phloroglucinol (formed by the biotransformation of certain flavonoids), trapped MGO, and some also trapped GO. AGE formation was inhibited the most by isovitexin. However, it was the high content of aspalathin and its higher efficiency than that of metformin that determined the antiglycation and trapping properties of green rooibos. Therefore, A. linearis, in addition to other health benefits, could potentially be used as an α-DC trapping agent and AGE inhibitor.
Collapse
|
6
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Gao M, Peng X, Tang J, Deng J, Wang F, Zhang Y, Zhao P, Kan H, Liu Y. Anti-Inflammatory Effects of Camellia fascicularis Polyphenols via Attenuation of NF-κB and MAPK Pathways in LPS-Induced THP-1 Macrophages. J Inflamm Res 2022; 15:851-864. [PMID: 35177920 PMCID: PMC8843420 DOI: 10.2147/jir.s349981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Plant polyphenols possess beneficial functions against various diseases. This study aimed to identify phenolic ingredients in Camellia fascicularis (C. fascicularis) and investigate its possible underlying anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced human monocytes (THP-1) macrophages. Methods C. fascicularis polyphenols (CFP) were characterized by ultra-performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight mass/mass spectrometry (Q-TOF-MS/MS). The THP-1 cells were differentiated into macrophages under the stimulation of phorbol 12-myristate 13-acetate (PMA) and then treated with LPS to build a cellular inflammation model. The cell viability was detected by CCK-8 assay. The levels of reactive oxygen species (ROS) were assessed by flow cytometry. The secretion and expression of inflammatory cytokines were tested by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). In addition, the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were analyzed by Western blotting. Results Twelve phenolic constituents including (–)-epicatechin, casuariin, agastachoside, etc. in CFP were identified. The CCK-8 assay showed that CFP exhibited no significant cytotoxicity between 100 and 300 μg/mL. After treated with CFP, the release of ROS was significantly suppressed. CFP inhibited inflammation in macrophages by attenuating the polarization of LPS-induced THP-1 macrophages, down-regulating the expression of the pro-inflammatory cytokines IL-6, IL-1β and TNF-α, and up-regulating the expression of the anti-inflammatory cytokine IL-10. Western blotting experiments manifested that CFP could markedly inhibit the phosphorylation of p65, ERK and JNK, thereby suppressing the activation of NF-κB and MAPK signaling pathways. Conclusion These findings indicated that CFP exerted anti-inflammatory activity by inhibiting the activation NF-κB and MAPK pathways which may induce the secretion of pro-inflammatory cytokines. This study offers a reference for C. fascicularis as the source of developing natural, safe anti-inflammatory agents in the future.
Collapse
Affiliation(s)
- Miaozi Gao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Highly-efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, People’s Republic of China
| | - Xiaowei Peng
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Jia Deng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Fang Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Highly-efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, People’s Republic of China
- Correspondence: Ping Zhao; Yun Liu, Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, #300, Bailong Road, Kunming, 650224, People’s Republic of China, Email ;
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, People’s Republic of China
- School of Life Science, Southwest Forestry University, Kunming, People’s Republic of China
| |
Collapse
|