1
|
Ulhe A, Raina P, Chaudhary A, Kaul-Ghanekar R. Alpha-linolenic acid-mediated epigenetic reprogramming of cervical cancer cell lines. Epigenetics 2025; 20:2451551. [PMID: 39895102 PMCID: PMC11792827 DOI: 10.1080/15592294.2025.2451551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Cervical cancer, the fourth most common cancer globally and the second most prevalent cancer among women in India, is primarily caused by Human Papilloma Virus (HPV). The association of diet with cancer etiology and prevention has been well established and nutrition has been shown to regulate cancer through modulation of epigenetic markers. Dietary fatty acids, especially omega-3, reduce the risk of cancer by preventing or reversing the progression through a variety of cellular targets, including epigenetic regulation. In this work, we have evaluated the potential of ALA (α linolenic acid), an ω-3 fatty acid, to regulate cervical cancer through epigenetic mechanisms. The effect of ALA was evaluated on the regulation of histone deacetylases1, DNA methyltransferases 1, and 3b, and global DNA methylation by ELISA. RT-PCR was utilized to assess the expression of tumor regulatory genes (hTERT, DAPK, RARβ, and CDH1) and their promoter methylation in HeLa (HPV18-positive), SiHa (HPV16-positive) and C33a (HPV-negative) cervical cancer cell lines. ALA increased DNA demethylase, HMTs, and HATs while decreasing global DNA methylation, DNMT, HDMs, and HDACs mRNA expression/activity in all cervical cancer cell lines. ALA downregulated hTERT oncogene while upregulating the mRNA expression of TSGs (Tumor Suppressor Genes) CDH1, RARβ, and DAPK in all the cell lines. ALA reduced methylation in the 5' CpG island of CDH1, RARβ, and DAPK1 promoters and reduced global DNA methylation in cervical cancer cell lines. These results suggest that ALA regulates the growth of cervical cancer cells by targeting epigenetic markers, shedding light on its potential therapeutic role in cervical cancer management.
Collapse
Affiliation(s)
- Amrita Ulhe
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prerna Raina
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Analytical Department (ADT), Lupin Limited, Pune, India
| | - Amol Chaudhary
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Symbiosis Centre for Research and Innovation (SCRI); Symbiosis International Deemed University (SIU), Pune, India
- Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International Deemed University (SIU), Pune, India
| |
Collapse
|
2
|
Zhong X, Bilal M, Zhou Y, Yang X, Qin Z, Li Q, Yang Y, Han TL, Li M. Elucidating the role of fatty acid reprogramming in ovarian cancer: insights cross-talk between blood, subcutaneous fat, and ovarian cancer tissues. Front Oncol 2025; 15:1530487. [PMID: 40371224 PMCID: PMC12074969 DOI: 10.3389/fonc.2025.1530487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Aberrant fatty acid (FA) metabolism is increasingly recognized as a significant factor in ovarian cancer (OC) progression, although the comprehensive metabolic alterations across different body tissues remain unclear. Methods In this study, sixteen OC patients and twenty-nine non-cancer (NC) patients were recruited for metabolic profiling using a global and targeted metabolomic strategy based on a gas chromatography-hydrogen flame ionization detector (GC-FID). The patient survival was followed up to 3 years, and PFS was calculated. Results Our findings revealed distinct metabolite profiles that differentiate OC from NC groups across all sample types. We found seven, nine, and thirteen significant metabolites in subcutaneous fat, plasma, and ovarian tissue respectively. In particular, docosahexaenoic acid (DHA) and arachidonic acid (AA) levels were notably elevated in all sample types of OC patients. Furthermore, receiver operating characteristic (ROC) analysis highlight that three plasma FA showed the best specificity and sensitivity in differentiating the OC group from the NC group (Area Under The Curve, AUC > 0.89), including caprylic acid, myristoleic acid, and tetracosaenoic acid. Most of the significant FA in subcutaneous fat and ovarian tissue showed a high risk of OC. However, caprylic acid and tetracosanoic acid were identified as protective factors in the plasma sample. We also found that high levels of linoelaidic acid in subcutaneous fat and palmitelaidic acid in ovarian tissue were associated with poor prognosis. Pathway analysis indicated upregulation of fatty acid synthesis, inflammatory signaling, and ferroptosis pathways in OC patients. Discussion This study reveals a coordinated reprogramming of FA metabolism across multiple biospecimens in OC patients. Our results suggest that specific fatty acids may contribute to OC progression through dysregulation of fatty acid synthesis, inflammatory signaling, and ferroptosis. These findings offer mechanistic insights into OC progression and highlighting potential biomarkers and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xiaocui Zhong
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mamona Bilal
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanqiu Zhou
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojia Yang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Zuchao Qin
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qibing Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Min Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Frankhouser DE, DeWess T, Snodgrass IF, Cole RM, Steck S, Thomas D, Kalu C, Belury MA, Clinton SK, Newman JW, Yee LD. Randomized dose-response trial of n-3 fatty acids in hormone receptor negative breast cancer survivors - impact on breast adipose oxylipin and DNA methylation patterns. Am J Clin Nutr 2025:S0002-9165(25)00239-4. [PMID: 40288580 DOI: 10.1016/j.ajcnut.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Increasing evidence suggests the unique susceptibility of estrogen receptor and progesterone receptor negative [ERPR(-)] breast cancer to dietary fat amount and type. Dietary n-3 (ω-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), may modulate breast adipose fatty acids and downstream metabolites to counteract procarcinogenic signaling in the mammary microenvironment. OBJECTIVES We aimed to determine effects of ∼1 to 5 g/d EPA+DHA over 12 mo on breast adipose fatty acid and oxylipin profiles in survivors of ERPR(-) breast cancer, a high-risk molecular subtype. METHODS We conducted a proof-of-concept 12-mo randomized double-blind trial comparing ∼5 g/d and ∼1 g/d EPA+DHA supplementation in females within 5 y of completing standard therapy for ERPR(-) breast cancer Stages 0 to III. Blood and breast adipose tissue specimens were collected every 3 mo for fatty acid, oxylipin, and DNA methylation (DNAm) analyses. RESULTS A total of 51 participants completed the 12-mo intervention. Study treatments were generally well tolerated. Although both doses increased n-3 PUFAs from baseline in breast adipose, erythrocytes, and plasma, the 5 g/d supplement was more potent with differences of 0.76 (95% confidence interval [CI]: 0.56, 0.96), 6.25 (95% CI: 5.02, 7.48), and 5.89 (95% CI: 4.53, 7.25), respectively. The 5 g/d dose also reduced plasma triglycerides from baseline, with changes of 27.38 (95% CI: 10.99, 43.78) and 24.58 (95% CI: 9.05, 40.10) at 6 and 12 months, respectively. Breast adipose oxylipins showed dose-dependent increases in DHA and EPA metabolites. Distinct DNAm patterns in adipose tissue after 12 mo suggest potential downregulation of aberrant lipid metabolism pathways at the 5 g/d dose. CONCLUSIONS Over 1 y, EPA+DHA dose-dependently increased breast adipose concentrations of these fatty acids and their derivative oxylipin metabolites and produced differential DNAm profiles involved in metabolism-related pathways critical to ERPR(-) breast cancer development. This distinct metabolic and epigenetic modulation of the breast microenvironment is achievable with high-dose n-3 PUFA supplementation. This trial was registered at clinicaltrials.gov as NCT02295059.
Collapse
Affiliation(s)
- David E Frankhouser
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA
| | - Todd DeWess
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA; Department of Surgery, City of Hope, Duarte, CA
| | - Isabel F Snodgrass
- University of California Davis West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA
| | - Rachel M Cole
- Department of Food Science and Technology, The Ohio State University, Columbus, OH
| | - Sarah Steck
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | - Martha A Belury
- Department of Food Science and Technology, The Ohio State University, Columbus, OH; The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Steven K Clinton
- The Ohio State University Comprehensive Cancer Center, Columbus, OH; Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - John W Newman
- University of California Davis West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA; Department of Nutrition, University of California Davis, Davis, CA; United States Department of Agriculture Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA
| | - Lisa D Yee
- Department of Surgery, City of Hope, Duarte, CA; City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
4
|
Zooravar D, Soltani P, Khezri S. Mediterranean diet and diabetic microvascular complications: a systematic review and meta-analysis. BMC Nutr 2025; 11:66. [PMID: 40170125 PMCID: PMC11963465 DOI: 10.1186/s40795-025-01038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Diabetic microvascular complications, including diabetic retinopathy (DR), diabetic nephropathy (DN), and diabetic peripheral neuropathy (DPN), contribute significantly to morbidity and healthcare burdens among individuals with diabetes. The Mediterranean diet (MD) has been associated with improved metabolic health, but its role in mitigating microvascular complications remains unclear. This systematic review and meta-analysis aimed to assess the impact of MD adherence on the risk and progression of these complications. METHODS A comprehensive search of PubMed, Web of Science, Embase, and Scopus was conducted through February 12, 2025 to identify studies evaluating MD adherence and diabetic microvascular complications. Meta-analysis was performed where possible, with effect sizes reported as odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (CIs). RESULTS Fourteen studies, encompassing 138 to 71,392 participants, were included. Meta-analysis indicated a significant reduction in DR risk among individuals adhering to the MD (HR: 0.69, 95% CI: 0.49-0.97, p = 0.03; OR: 0.32, 95% CI: 0.12-0.82, p = 0.02). A lower likelihood of DN development was observed (HR: 0.85, 95% CI: 0.73-0.99, p = 0.04; OR: 0.49, 95% CI: 0.25-0.96, p = 0.04). However, results for diabetic neuropathy were inconclusive due to study heterogeneity. Sensitivity analyses revealed notable heterogeneity and publication bias was detected in some analyses. CONCLUSION Adherence to the Mediterranean diet is associated with a reduced risk of diabetic nephropathy and retinopathy, supporting its potential as a dietary intervention for diabetes management. However, the evidence for neuropathy remains inconclusive. Future well-controlled randomized trials are needed to strengthen causal inferences and refine clinical recommendations for MD-based interventions in diabetic microvascular complications.
Collapse
Affiliation(s)
- Diar Zooravar
- School of Medicine, Iran University of Medical Sciences, P.O. Box, Tehran, 14836-76479, Iran.
| | - Pedram Soltani
- School of Medicine, Iran University of Medical Sciences, P.O. Box, Tehran, 14836-76479, Iran
| | - Saeed Khezri
- School of Medicine, Iran University of Medical Sciences, P.O. Box, Tehran, 14836-76479, Iran
| |
Collapse
|
5
|
Bischoff-Ferrari HA, Gängler S, Wieczorek M, Belsky DW, Ryan J, Kressig RW, Stähelin HB, Theiler R, Dawson-Hughes B, Rizzoli R, Vellas B, Rouch L, Guyonnet S, Egli A, Orav EJ, Willett W, Horvath S. Individual and additive effects of vitamin D, omega-3 and exercise on DNA methylation clocks of biological aging in older adults from the DO-HEALTH trial. NATURE AGING 2025; 5:376-385. [PMID: 39900648 PMCID: PMC11922767 DOI: 10.1038/s43587-024-00793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/04/2024] [Indexed: 02/05/2025]
Abstract
While observational studies and small pilot trials suggest that vitamin D, omega-3 and exercise may slow biological aging, larger clinical trials testing these treatments individually or in combination are lacking. Here, we report the results of a post hoc analysis among 777 participants of the DO-HEALTH trial on the effect of vitamin D (2,000 IU per day) and/or omega-3 (1 g per day) and/or a home exercise program on four next-generation DNA methylation (DNAm) measures of biological aging (PhenoAge, GrimAge, GrimAge2 and DunedinPACE) over 3 years. Omega-3 alone slowed the DNAm clocks PhenoAge, GrimAge2 and DunedinPACE, and all three treatments had additive benefits on PhenoAge. Overall, from baseline to year 3, standardized effects ranged from 0.16 to 0.32 units (2.9-3.8 months). In summary, our trial indicates a small protective effect of omega-3 treatment on slowing biological aging over 3 years across several clocks, with an additive protective effect of omega-3, vitamin D and exercise based on PhenoAge.
Collapse
Affiliation(s)
- Heike A Bischoff-Ferrari
- Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland.
- Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland.
- Department of Aging Medicine Felix-Platter, University of Basel, Basel, Switzerland.
| | - Stephanie Gängler
- Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland
- Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
- Department of Aging Medicine Felix-Platter, University of Basel, Basel, Switzerland
| | - Maud Wieczorek
- Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland
- Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
- Department of Aging Medicine Felix-Platter, University of Basel, Basel, Switzerland
| | - Daniel W Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joanne Ryan
- Biological Neuropsychiatry & Dementia Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Reto W Kressig
- University Department of Geriatric Medicine Felix Platter, University of Basel, Basel, Switzerland
| | | | - Robert Theiler
- Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland
- Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Bruno Vellas
- IHU HealthAge, Toulouse, France
- Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- CERPOP UMR1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Laure Rouch
- CERPOP UMR1295, University of Toulouse III, Inserm, UPS, Toulouse, France
- University Paul Sabatier Toulouse III, Toulouse, France
- Department of Pharmacy, Toulouse University Hospitals, Purpan Hospital, Toulouse, France
| | - Sophie Guyonnet
- IHU HealthAge, Toulouse, France
- Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
- CERPOP UMR1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Andreas Egli
- Department of Geriatrics and Aging Research, University of Zurich, Zurich, Switzerland
- Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
| | - E John Orav
- Department of Health Policy and Management, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Walter Willett
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | | |
Collapse
|
6
|
Ediriweera MK, Gayashani Sandamalika WM. The epigenetic impact of fatty acids as DNA methylation modulators. Drug Discov Today 2025; 30:104277. [PMID: 39710232 DOI: 10.1016/j.drudis.2024.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
DNA methylation is a key epigenetic mechanism that regulates gene expression. Fatty acids, the building blocks of many essential lipids, play a crucial role in various biological events. Aberrant acetylation and methylation profiles are linked to a number of non-communicable diseases. Various fatty acids have been identified as potential 'epi-drugs' because of their ability to correct aberrant acetylation and methylation profiles in a number of non-communicable diseases, enhancing the value of their biochemical properties. This review summarizes the effects of selected saturated and unsaturated fatty acids and fatty-acid-rich food items on disease-associated DNA methylation profiles, aiming to justify the classification of fatty acids as DNA methylation modulators.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 8, Sri Lanka.
| | - W M Gayashani Sandamalika
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Sri Lanka
| |
Collapse
|
7
|
Frankhouser DE, DeWess T, Snodgrass IF, Cole RM, Steck S, Thomas D, Kalu C, Belury MA, Clinton SK, Newman JW, Yee LD. Randomized dose-response trial of n-3 fatty acids in hormone receptor negative breast cancer survivors- impact on breast adipose oxylipin and DNA methylation patterns. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.16.24313691. [PMID: 39371146 PMCID: PMC11451633 DOI: 10.1101/2024.09.16.24313691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Increasing evidence suggests the unique susceptibility of estrogen receptor and progesterone receptor negative (ERPR-) breast cancer to dietary fat amount and type. Dietary n-3 polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), may modulate breast adipose fatty acid profiles and downstream bioactive metabolites to counteract pro-inflammatory, pro-carcinogenic signaling in the mammary microenvironment. Objective To determine effects of ~1 to 5 g/d EPA+DHA over 12 months on breast adipose fatty acid and oxylipin profiles in women with ERPR(-) breast cancer, a high-risk molecular subtype. Methods We conducted a 12-month randomized controlled, double-blind clinical trial of ~5g/d vs ~1g/d DHA+EPA supplementation in women within 5 years of completing standard therapy for ERPR(-) breast cancer Stages 0-III. Blood and breast adipose tissue specimens were collected every 3 months for biomarker analyses including fatty acids by gas chromatography, oxylipins by LC-MS/MS, and DNA methylation by reduced-representation bisulfite sequencing (RRBS). Results A total of 51 participants completed the 12-month intervention. Study treatments were generally well-tolerated. While both doses increased n-3 PUFAs from baseline in breast adipose, erythrocytes, and plasma, the 5g/d supplement was more potent (n =51, p <0.001). The 5g/d dose also reduced plasma triglycerides from baseline (p =0.008). Breast adipose oxylipins at 0, 6, and 12 months showed dose-dependent increases in unesterified and esterified DHA and EPA metabolites (n =28). Distinct DNA methylation patterns in adipose tissue after 12 months were identified, with effects unique to the 5g/d dose group (n =17). Conclusions Over the course of 1 year, EPA+DHA dose-dependently increased concentrations of these fatty acids and their derivative oxylipin metabolites, producing differential DNA methylation profiles of gene promoters involved in metabolism-related pathways critical to ERPR(-) breast cancer development and progression. These data provide evidence of both metabolic and epigenetic effects of n-3 PUFAs in breast adipose tissue, elucidating novel mechanisms of action for high-dose EPA+DHA-mediated prevention of ERPR(-) breast cancer.
Collapse
Affiliation(s)
- David E. Frankhouser
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA 91010
| | - Todd DeWess
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA 91010
- Department of Surgery, City of Hope, Duarte CA 91010
| | - Isabel F. Snodgrass
- University of California Davis West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA, 95616
| | - Rachel M. Cole
- Department of Food Science and Technology, The Ohio State University, Columbus OH 43210
| | - Sarah Steck
- The Ohio State University Comprehensive Cancer Center, Columbus OH 43210
| | | | - Chidimma Kalu
- Department of Surgery, City of Hope, Duarte CA 91010
| | - Martha A. Belury
- Department of Food Science and Technology, The Ohio State University, Columbus OH 43210
- The Ohio State University Comprehensive Cancer Center, Columbus OH 43210
| | - Steven K. Clinton
- The Ohio State University Comprehensive Cancer Center, Columbus OH 43210
- Department of Internal Medicine, The Ohio State University, Columbus OH 43210
| | - John W. Newman
- University of California Davis West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA, 95616
- Department of Nutrition, University of California Davis, Davis CA, 956169
- United States Department of Agriculture Agricultural Research Service, Western Human Nutrition Research Center, Davis CA, 95616
| | - Lisa D. Yee
- Department of Surgery, City of Hope, Duarte CA 91010
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| |
Collapse
|
8
|
García-García I, Grisotto G, Heini A, Gibertoni S, Nusslé S, Gonseth Nusslé S, Donica O. Examining nutrition strategies to influence DNA methylation and epigenetic clocks: a systematic review of clinical trials. FRONTIERS IN AGING 2024; 5:1417625. [PMID: 39077104 PMCID: PMC11284312 DOI: 10.3389/fragi.2024.1417625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024]
Abstract
Nutrition has powerful impacts on our health and longevity. One of the mechanisms by which nutrition might influence our health is by inducing epigenetic modifications, modulating the molecular mechanisms that regulate aging. Observational studies have provided evidence of a relationship between nutrition and differences in DNA methylation. However, these studies are limited in that they might not provide an accurate control of the interactions between different nutrients, or between nutrition and other lifestyle behaviors. Here we systematically reviewed clinical studies examining the impact of nutrition strategies on DNA methylation. We examined clinical studies in community-dwelling adults testing the effects of nutrition interventions on i) global DNA methylation and its proxies, and ii) epigenetic clocks. We included 21 intervention studies that focused on the effects of healthy nutrition patterns, specific foods or nutrients, as well as the effect of multivitamin or multimineral supplements. In four studies on the methylation effects of healthy dietary patterns, as defined by being rich in vegetables, fruits, whole-grains, and nuts and reduced in the intake of added sugars, saturated fat, and alcohol, two of them suggested that a healthy diet, is associated with lower epigenetic age acceleration, one of them reported increases in global DNA methylation, while another one found no diet effects. Studies examining epigenetic effects of specific foods, nutrients, or mixtures of nutrients were scarce. For both folic acid and polyunsaturated fatty acids, the available independent studies produced conflicting findings. Although more evidence is still needed to draw firm conclusions, results begin to suggest that healthy dietary patterns have positive effects on DNA methylation. Additional evidence from large randomized-controlled clinical trials is needed to support the effects of healthy nutrition on the DNA methylome.
Collapse
Affiliation(s)
| | | | - Adrian Heini
- Clinique la Prairie, Clarens-Montreux, Vaud, Switzerland
| | | | | | | | - Olga Donica
- Clinique la Prairie, Clarens-Montreux, Vaud, Switzerland
| |
Collapse
|
9
|
Yang F, Zhang X, Xie Y, Yuan J, Gao J, Chen H, Li X. The pathogenesis of food allergy and protection offered by dietary compounds from the perspective of epigenetics. J Nutr Biochem 2024; 128:109593. [PMID: 38336123 DOI: 10.1016/j.jnutbio.2024.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Food allergy is a global food safety concern, with an increasing prevalence in recent decades. However, the immunological and cellular mechanisms involved in allergic reactions remain incompletely understood, which impedes the development of effective prevention and treatment strategies. Current evidence supports those epigenetic modifications regulate the activation of immune cells, and their dysregulation can contribute to the development of food allergies. Patients with food allergy show epigenetic alterations that lead to the onset, duration and recovery of allergic disease. Moreover, many preclinical studies have shown that certain dietary components exert nutriepigenetic effects in changing the course of food allergies. In this review, we provide an up-to-date overview of DNA methylation, noncoding RNA and histone modification, with a focus on their connections to food allergies. Following this, we discuss the epigenetic mechanisms that regulate the activation and differentiation of innate and adapted immune cell in the context of food allergies. Subsequently, this study specifically focuses on the multidimensional epigenetic effects of dietary components in modulating the immune response, which holds promise for preventing food allergies in the future.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yanhai Xie
- Sino-German Joint Research Institute, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- Sino-German Joint Research Institute, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
10
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
11
|
Dama A, Shpati K, Daliu P, Dumur S, Gorica E, Santini A. Targeting Metabolic Diseases: The Role of Nutraceuticals in Modulating Oxidative Stress and Inflammation. Nutrients 2024; 16:507. [PMID: 38398830 PMCID: PMC10891887 DOI: 10.3390/nu16040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The escalating prevalence of metabolic and cardiometabolic disorders, often characterized by oxidative stress and chronic inflammation, poses significant health challenges globally. As the traditional therapeutic approaches may sometimes fall short in managing these health conditions, attention is growing toward nutraceuticals worldwide; with compounds being obtained from natural sources with potential therapeutic beneficial effects being shown to potentially support and, in some cases, replace pharmacological treatments, especially for individuals who do not qualify for conventional pharmacological treatments. This review delves into the burgeoning field of nutraceutical-based pharmacological modulation as a promising strategy for attenuating oxidative stress and inflammation in metabolic and cardiometabolic disorders. Drawing from an extensive body of research, the review showcases various nutraceutical agents, such as polyphenols, omega-3 fatty acids, and antioxidants, which exhibit antioxidative and anti-inflammatory properties. All these can be classified as novel nutraceutical-based drugs that are capable of regulating pathways to mitigate oxidative-stress- and inflammation-associated metabolic diseases. By exploring the mechanisms through which nutraceuticals interact with oxidative stress pathways and immune responses, this review highlights their potential to restore redox balance and temper chronic inflammation. Additionally, the challenges and prospects of nutraceutical-based interventions are discussed, encompassing bioavailability enhancement, personalized treatment approaches, and clinical translation. Through a comprehensive analysis of the latest scientific reports, this article underscores the potential of nutraceutical-based pharmacological treatment modulation as a novel avenue to fight oxidative stress and inflammation in the complex landscape of metabolic disorders, particularly accentuating their impact on cardiovascular health.
Collapse
Affiliation(s)
- Aida Dama
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Kleva Shpati
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Patricia Daliu
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Seyma Dumur
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, 34408 Istanbul, Türkiye;
| | - Era Gorica
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, 8952 Zurich, Switzerland
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
12
|
Yu H, Gong Z, Wang G, Cao R, Yin H, Ma L, Guo A. DHA attenuates cartilage degeneration by mediating apoptosis and autophagy in human chondrocytes and rat models of osteoarthritis. In Vitro Cell Dev Biol Anim 2023; 59:455-466. [PMID: 37450265 DOI: 10.1007/s11626-023-00781-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that usually occurs in the elderly, and docosahexaenoic acid (DHA) plays a therapeutic role in cardiovascular disease, diabetes, and rheumatoid arthritis (RA) with its anti-inflammatory and antioxidant effects. The objective of this study is to investigate the effect and mechanism of DHA on hypertrophic differentiation and senescence of OA chondrocytes to provide a theoretical basis for the effect of OA clinical treatment. A human OA chondrocyte model was established by IL-1β, and a rat model of OA was established by anterior cruciate ligament (ACL) transection and medial meniscectomy. The result showed DHA promoted chondrocyte proliferation and reduced apoptosis. Transmission electron microscopy (TEM) analysis showed that there were more autophagosomes in the cytoplasm under the treatment of DHA. Compared to the OA group, samples from the OA + DHA group showed thickened cartilage, reduced degeneration, and an increased rate of collagen II-positive cells, while the Mankin score was significantly lower. In addition, DHA decreased the expression of phosphorylated mammalian target of rapamycin (p-mTOR) and the ratio of light chain 3-I/II (LC3-I/II) and increased the expression of Beclin-1 and Bcl-2 measured by western blot analysis. Therefore, DHA promotes chondrocyte proliferation, reduces apoptosis, and increases autophagy in OA chondrocytes, a process that is accomplished by inhibiting the expression of mTOR, c-Jun N-terminal kinase (JNK), and p38 signaling pathways, providing new perspectives and bootstrap points for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Haomiao Yu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, Xicheng Distinct, Beijing, 100050, People's Republic of China
| | - Zishun Gong
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, Xicheng Distinct, Beijing, 100050, People's Republic of China
| | - Guodong Wang
- Department of Orthopaedics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ruiqi Cao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, Xicheng Distinct, Beijing, 100050, People's Republic of China
| | - Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, Xicheng Distinct, Beijing, 100050, People's Republic of China
| | - Lifeng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, Xicheng Distinct, Beijing, 100050, People's Republic of China.
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, Xicheng Distinct, Beijing, 100050, People's Republic of China.
| |
Collapse
|
13
|
Contribution of n-3 Long-Chain Polyunsaturated Fatty Acids to the Prevention of Breast Cancer Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137936. [PMID: 35805595 PMCID: PMC9265492 DOI: 10.3390/ijerph19137936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023]
Abstract
Nowadays, diet and breast cancer are studied at different levels, particularly in tumor prevention and progression. Thus, the molecular mechanisms leading to better knowledge are deciphered with a higher precision. Among the molecules implicated in a preventive and anti-progressive way, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs) are good candidates. These molecules, like docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, are generally found in marine material, such as fat fishes or microalgae. EPA and DHA act as anti-proliferative, anti-invasive, and anti-angiogenic molecules in breast cancer cell lines, as well as in in vivo studies. A better characterization of the cellular and molecular pathways involving the action of these fatty acids is essential to have a realistic image of the therapeutic avenues envisaged behind their use. This need is reinforced by the increase in the number of clinical trials involving more and more n-3 LC-PUFAs, and this, in various pathologies ranging from obesity to a multitude of cancers. The objective of this review is, therefore, to highlight the new elements showing the preventive and beneficial effects of n-3 LC-PUFAs against the development and progression of breast cancer.
Collapse
|