1
|
Zhou X, Zhang Y, Wei L, Yang Y, Wang B, Liu C, Bai J, Wang C. In vitro fermentation characteristics of fucoidan and its regulatory effects on human gut microbiota and metabolites. Food Chem 2025; 465:141998. [PMID: 39549519 DOI: 10.1016/j.foodchem.2024.141998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Dietary polysaccharides affect the intestinal microorganisms and their metabolites in the host. Clarifying the relationship among polysaccharides, intestinal microflora, and their metabolites is helpful to formulate dietary nutrition intervention strategies. Thus, we explored the regulatory effects of fucoidan on the human gut microbiota and its metabolites. After 48 h of fermentation, fucoidan significantly reduced the pH value in the broth, accompanied by an increase in total short-chain fatty acids, acetic acid, and propanoic acid contents. Fucoidan significantly reduced the relative abundance of Escherichia_shigella and Blebsiella and increased the relative abundance of Bifidobacterium and Lactobacillus. Concurrently, fucoidan altered the composition of intestinal microbial metabolites. These results indicate that fucoidan can regulate the metabolism of the intestinal flora and host, which may contribute to the intestinal health of the host.
Collapse
Affiliation(s)
- Xu Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Li Wei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhan Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong 250000, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China.
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Mansour MAK, Ali SG, Hassan MAM, Gabra FA, Mawad AMM. Optimization of citrulline production from a Bacillus subtilis BH-01 isolated from raw buffalo milk. BMC Microbiol 2025; 25:71. [PMID: 39930373 PMCID: PMC11809042 DOI: 10.1186/s12866-025-03768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025] Open
Abstract
The main purpose of this study was to optimize the L-citrulline production process using Plackett-Burman and Box-Behnken designs. L-citrulline-producing bacterium BH-01 was isolated from raw buffalo milk. The isolate was tested for probiotic activities such as tolerance to simulated gastric and intestinal juices, antagonistic activity against six antibiotic-resistant bacteria, and temperature tolerance. L-citrulline production and arginine deiminase (ADI) activity were optimized using statistical designs. The bacterial isolate was molecularly identified as Bacillus subtilis strain AUMC B-498 (accession number PP574248.1). The strain exhibited resistance at pH 2.0 and bile salt 0.5% for a two-hour exposure period. It could inhibit the growth of Escherichia coli, Klebsiella pneumonia, Serratia sp., Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae. From the results of statistical optimization, the Plackett-Burman design identified temperature, L-arginine, incubation period, and peptone as the most effective factors among the eight selected variables. Based on these, the Box-Behnken design was used to optimize the factors required to maximize citrulline production. The maximum L-citrulline was 632.5 µg/L, and ADI activity was 1.42 U/mL. Therefore, BH-01 isolated from Buffalo milk might be a promising candidate in food, biotechnological, and pharmaceutical applications due to its dual functionality for citrulline production and probiotic characteristics.
Collapse
Affiliation(s)
- Marwa A K Mansour
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Salah G Ali
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Manal A M Hassan
- Food Science and Technology Department, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| | - Fify A Gabra
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Metabolic and Genetics Disorder Unit, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Asmaa M M Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Department of Biology, College of Science, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
3
|
Zhao X, Lin T, Jiang W, Lin Y, Xiao L, Tian Y, Ma K, Zhang C, Ji F, Mahsa GC, Rui X, Li W. Lactobacillus helveticus LZ-R-5 Ameliorates DSS-Induced Colitis in Mice by Modulating Gut Microbiota and Enhancing Intestinal Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:464-477. [PMID: 39688942 DOI: 10.1021/acs.jafc.4c07895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Lactobacillus helveticus LZ-R-5 (R-5), a strain with high epithelial adhesion and bioactive exopolysaccharide production, was isolated from Tibetan kefir grains. This study investigated its potential to alleviate intestinal inflammation using a DSS-induced colitis model in BALB/c mice. We integrated microbial diversity and serological analyses to assess changes in gut flora and cytokines following the R-5 treatment. Pathological assessments showed that R-5 reduced crypt distortion in the proximal colon and mitigated hepatic immune challenges by enhancing gut barrier function. The increased relative expression of TGF-β1 and the downregulation of NLRP3-related inflammatory factors were conducive to preventing organ damage in the thymus and spleen of mice with colitis. Additionally, R-5 stimulated GPR43 expression and improved epithelial nutrition, promoting mucin production to prevent enterotoxin leakage. It also modulated the gut microbiota by suppressing Bacteroides and Erysipelatoclostridium, leading to a microbiota composition more akin to that of normal flora.
Collapse
Affiliation(s)
- Xiaogan Zhao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tao Lin
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, PR China
| | - Wenkai Jiang
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yihan Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjing 301617, PR China
| | - Luyao Xiao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yufang Tian
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Changliang Zhang
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Ghahvechi Chaeipeima Mahsa
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
4
|
Bui G, Torres-Fuentes C, Pusceddu MM, Gareau MG, Marco ML. Milk and Lacticaseibacillus paracasei BL23 effects on intestinal responses in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G659-G675. [PMID: 38591132 PMCID: PMC11376982 DOI: 10.1152/ajpgi.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus paracasei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a dextran sodium sulfate (DSS, 3% wt/vol) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, whereas milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Proinflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared with controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.NEW & NOTEWORTHY Sex-dependent responses to probiotic Lacticaseibacillus paracasei and milk and the potential of the dairy matrix to enhance probiotic protection against colitis in this context have not been previously explored. Female mice were more sensitive than males to colonic injury, and neither treatment effectively alleviated inflammation in both sexes. These sex-dependent responses may result from differences in the higher baseline proportions of Akkermansia in the gut microbiome of female mice.
Collapse
Affiliation(s)
- Glory Bui
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| | - Cristina Torres-Fuentes
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| |
Collapse
|
5
|
Gaur P, Rajendran Y, Srivastava B, Markandey M, Fishbain-Yoskovitz V, Mohapatra G, Suhail A, Chaudhary S, Tyagi S, Yadav SC, Pandey AK, Merbl Y, Bajaj A, Ahuja V, Srikanth C. Rab7-dependent regulation of goblet cell protein CLCA1 modulates gastrointestinal homeostasis. eLife 2024; 12:RP89776. [PMID: 38593125 PMCID: PMC11003743 DOI: 10.7554/elife.89776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Inflammation in ulcerative colitis is typically restricted to the mucosal layer of distal gut. Disrupted mucus barrier, coupled with microbial dysbiosis, has been reported to occur prior to the onset of inflammation. Here, we show the involvement of vesicular trafficking protein Rab7 in regulating the colonic mucus system. We identified a lowered Rab7 expression in goblet cells of colon during human and murine colitis. In vivo Rab7 knocked down mice (Rab7KD) displayed a compromised mucus layer, increased microbial permeability, and depleted gut microbiota with enhanced susceptibility to dextran sodium-sulfate induced colitis. These abnormalities emerged owing to altered mucus composition, as revealed by mucus proteomics, with increased expression of mucin protease chloride channel accessory 1 (CLCA1). Mechanistically, Rab7 maintained optimal CLCA1 levels by controlling its lysosomal degradation, a process that was dysregulated during colitis. Overall, our work establishes a role for Rab7-dependent control of CLCA1 secretion required for maintaining mucosal homeostasis.
Collapse
Affiliation(s)
- Preksha Gaur
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for BiotechnologyFaridabadIndia
| | - Yesheswini Rajendran
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for BiotechnologyFaridabadIndia
| | | | - Manasvini Markandey
- Department of Gastroenterology, All India Institute of Medical SciencesDelhiIndia
| | | | | | - Aamir Suhail
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Shikha Chaudhary
- Department of Anatomy, All India Institute of Medical SciencesNew DelhiIndia
| | - Shaifali Tyagi
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology InstituteFaridabadIndia
| | | | - Amit Kumar Pandey
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology InstituteFaridabadIndia
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Avinash Bajaj
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for BiotechnologyFaridabadIndia
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical SciencesDelhiIndia
| | - Chittur Srikanth
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for BiotechnologyFaridabadIndia
| |
Collapse
|
6
|
Liu M, Guo S, Wang L. Systematic review of metabolomic alterations in ulcerative colitis: unveiling key metabolic signatures and pathways. Therap Adv Gastroenterol 2024; 17:17562848241239580. [PMID: 38560428 PMCID: PMC10981261 DOI: 10.1177/17562848241239580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite numerous metabolomic studies on ulcerative colitis (UC), the results have been highly variable, making it challenging to identify key metabolic abnormalities in UC. Objectives This study aims to uncover key metabolites and metabolic pathways in UC by analyzing existing metabolomics data. Design A systematic review. Data sources and methods We conducted a comprehensive search in databases (PubMed, Cochrane Library, Embase, and Web of Science) and relevant study references for metabolomic research on UC up to 28 December 2022. Significant metabolite differences between UC patients and controls were identified, followed by an analysis of relevant metabolic pathways. Results This review incorporated 78 studies, identifying 2868 differentially expressed metabolites between UC patients and controls. The metabolites were predominantly from 'lipids and lipid-like molecules' and 'organic acids and derivatives' superclasses. We found 101 metabolites consistently altered in multiple datasets within the same sample type and 78 metabolites common across different sample types. Of these, 62 metabolites exhibited consistent regulatory trends across various datasets or sample types. Pathway analysis revealed 22 significantly altered metabolic pathways, with 6 pathways being recurrently enriched across different sample types. Conclusion This study elucidates key metabolic characteristics in UC, offering insights into molecular mechanisms and biomarker discovery for the disease. Future research could focus on validating these findings and exploring their clinical applications.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siyi Guo
- Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Aprea G, Del Matto I, Tucci P, Marino L, Scattolini S, Rossi F. In Vivo Functional Properties of Dairy Bacteria. Microorganisms 2023; 11:1787. [PMID: 37512959 PMCID: PMC10385490 DOI: 10.3390/microorganisms11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This literature review aimed to collect investigations on the in vivo evidence for bacteria associated with fermented dairy foods to behave as probiotics with beneficial effects in the prevention and treatment of various diseases. All main bacterial groups commonly present in high numbers in fermented milks or cheeses were taken into account, namely starter lactic acid bacteria (SLAB) Lactobacillus delbrueckii subsp. bulgaricus and lactis, L. helveticus, Lactococcus lactis, Streptococcus thermophilus, non-starter LAB (NSLAB) Lacticaseibacillus spp., Lactiplantibacillus plantarum, dairy propionibacteria, and other less frequently encountered species. Only studies regarding strains of proven dairy origin were considered. Studies in animal models and clinical studies showed that dairy bacteria ameliorate symptoms of inflammatory bowel disease (IBD), mucositis, metabolic syndrome, aging and oxidative stress, cancer, bone diseases, atopic dermatitis, allergies, infections and damage caused by pollutants, mild stress, and depression. Immunomodulation and changes in the intestinal microbiota were the mechanisms most often involved in the observed effects. The results of the studies considered indicated that milk and dairy products are a rich source of beneficial bacteria that should be further exploited to the advantage of human and animal health.
Collapse
Affiliation(s)
- Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Ilaria Del Matto
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Patrizia Tucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
8
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
9
|
Functional Fermented Milk with Fruit Pulp Modulates the In Vitro Intestinal Microbiota. Foods 2022; 11:foods11244113. [PMID: 36553855 PMCID: PMC9778618 DOI: 10.3390/foods11244113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The effect of putative probiotic fermented milk (FM) with buriti pulp (FMB) or passion fruit pulp (FMPF) or without fruit pulp (FMC) on the microbiota of healthy humans was evaluated. FM formulations were administered into a simulator of the human intestinal microbial ecosystem (SHIME®) to evaluate the viability of lactic acid bacteria (LAB), microbiota composition, presence of short-chain fatty acids (SCFA), and ammonium ions. The probiotic LAB viability in FM was affected by the addition of the fruit pulp. Phocaeicola was dominant in the FMPF and FMB samples; Bifidobacterium was related to FM formulations, while Alistipes was associated with FMPF and FMB, and Lactobacillus and Lacticaseibacillus were predominant in FMC. Trabulsiella was the central element in the FMC, while Mediterraneibacter was the central one in the FMPF and FMB networks. The FM formulations increased the acetic acid, and a remarkably high amount of propionic and butyric acids were detected in the FMB treatment. All FM formulations decreased the ammonium ions compared to the control; FMPF samples stood out for having lower amounts of ammonia. The probiotic FM with fruit pulp boosted the beneficial effects on the intestinal microbiota of healthy humans in addition to increasing SCFA in SHIME® and decreasing ammonium ions, which could be related to the presence of bioactive compounds.
Collapse
|