1
|
Na ES. Epigenetic Mechanisms of Obesity: Insights from Transgenic Animal Models. Life (Basel) 2025; 15:653. [PMID: 40283207 PMCID: PMC12028693 DOI: 10.3390/life15040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Obesity is a chronic disease with prevalence rates that have risen dramatically over the past four decades. This increase is not due to changes in the human genome but rather to environmental factors that promote maladaptive physiological responses. Emerging evidence suggests that external influences, such as high-fat diets, modify the epigenome-the interface between genes and the environment-leading to persistent alterations in energy homeostasis. This review explores the role of epigenetic mechanisms in obesity, emphasizing insights from transgenic animal models and clinical studies. Additionally, we discuss the evolution of obesity research from homeostatic to allostatic frameworks, highlighting key neuroendocrine regulators of energy balance.
Collapse
Affiliation(s)
- Elisa S Na
- School of Social Work, Psychology, & Philosophy, Texas Woman's University, Denton, TX 76209, USA
| |
Collapse
|
2
|
Liang L, Dang B, Ouyang X, Zhao X, Huang Y, Lin Y, Cheng X, Xie G, Lin J, Mi P, Ye Z, Guleng B, Cheng SC. Dietary succinate supplementation alleviates DSS-induced colitis via the IL-4Rα/Hif-1α Axis. Int Immunopharmacol 2025; 152:114408. [PMID: 40086056 DOI: 10.1016/j.intimp.2025.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/22/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Inflammatory bowel disease (IBD) remains a pressing global health challenge, necessitating novel therapeutic strategies. Succinate, a metabolite known for its role in type 2 immunity and tuft cell activation in the small intestine, presents its potential in IBD management. However, its impact on colonic inflammation has not been explored. Here, we demonstrate that succinate administration induces a type 2 immune response, significantly alleviating dextran sulfate sodium (DSS)-induced colonic inflammation. Succinate enhances antibacterial capacity, reduces intestinal permeability, and reshapes the colonic cytokine milieu. Mechanistically, succinate promotes myeloid cell expansion in peripheral blood, mesenteric lymph nodes, and the colonic lamina propria. The protective effects of succinate were abolished in Ccr2-/- mice, confirming the role of monocyte recruitment, but persisted in Rag1-/- mice, indicating independence from adaptive immunity. Adoptive transfer of monocytes from succinate-treated donors mitigated intestinal inflammation in recipient mice. Transcriptomic analysis revealed heightened expression of Il1b and Il6, and higher lactate production in monocytes upon lipopolysaccharide (LPS) stimulation, highlighting a reprogrammed pro-inflammatory trained immunity phenotype. Finally, we identify the IL-4Rα/Hif-1α axis is critical for succinate-mediated protection. These findings reveal the ability of succinate to reprogram monocytes into protective intestinal macrophages via induction of type 2 response, restoring homeostasis through enhanced barrier function and immune modulation. Our study positions thus uncover succinate as a promising therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Laiying Liang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China; Department of Laboratory Medicine, West China Xiamen Hospital of Sichuan University, Xiamen 361000, China
| | - Buyun Dang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China; State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaomei Ouyang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xianling Zhao
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yongdong Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Ying Lin
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiaoshen Cheng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Guijing Xie
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Junhui Lin
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Peng Mi
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Zhenyu Ye
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China.
| | - Shih-Chin Cheng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China; State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Yang Y, Luo L, Li Y, Shi X, Li C, Chai J, Jiang S, Zheng R. Succinic Acid Improves the Metabolism of High-Fat Diet-Induced Mice and Promotes White Adipose Browning. Nutrients 2024; 16:3828. [PMID: 39599615 PMCID: PMC11597198 DOI: 10.3390/nu16223828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Succinic acid plays a crucial role as an essential intermediate in the mitochondrial tricarboxylic acid cycle in mitochondria. In recent years, growing evidence has supported the the important role of succinic acid in fat metabolism. Therefore, we aimed to investigate the effects of succinic acid on adipose tissue metabolism and insulin sensitivity in high-fat diet (HFD)-induced obese mice and try to explore its potential mechanism. We found that the addition of succinic acid (40 mM) to drinking water inhibited the hypertrophy of inguinal white adipose tissue (iWAT) in HFD-induced mice. Furthermore, succinic acid supplementation enhanced insulin sensitivity and improved their glucose tolerance in obese mice. Interestingly, succinic acid supplementation improved lipid metabolism in HFD-fed mice, as shown by decreased serum levels of TG, TC, LDL-C, and increased HDL-C. In addition, succinic acid supplementation increased the expression of browning markers and mitochondria-related genes in iWAT. Further studies showed that the addition of succinic acid to drinking water promotes the browning of iWAT by activating the PI3K-AKT/MAPK signaling pathway. These results suggest that succinic acid has the potential to be used as an effective component for dietary intervention and may, therefore, play an important role in ameliorating and preventing obesity and associated metabolic diseases caused by HFD.
Collapse
Affiliation(s)
- Yuxuan Yang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liang Luo
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yiqi Li
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangda Shi
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Li
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jin Chai
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Siwen Jiang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Rong Zheng
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
4
|
Yan YS, Mo JY, Huang YT, Zhu H, Wu HY, Lin ZL, Liu R, Liu XQ, Lv PP, Feng C, Sheng JZ, Jin M, Huang HF. Intrauterine hyperglycaemia during late gestation caused mitochondrial dysfunction in skeletal muscle of male offspring through CREB/PGC1A signaling. Nutr Diabetes 2024; 14:56. [PMID: 39043630 PMCID: PMC11266655 DOI: 10.1038/s41387-024-00299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/03/2024] [Accepted: 05/29/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Maternal diabetes mellitus can influence the development of offspring. Gestational diabetes mellitus (GDM) creates a short-term intrauterine hyperglycaemic environment in offspring, leading to glucose intolerance in later life, but the long-term effects and specific mechanism involved in skeletal muscle dysfunction in offspring remain to be clarified. METHODS Pregnant mice were divided into two groups: The GDM group was intraperitoneally injected with 100 mg/kg streptozotocin on gestational days (GDs) 6.5 and 12.5, while the control (CTR) group was treated with vehicle buffer. Only pregnant mice whose random blood glucose level was higher than 16.8 mmol/L beginning on GD13.5 were regarded as the GDM group. The growth of the offspring was monitored, and the glucose tolerance test was performed at different time points. Body composition analysis and immunohistochemical methods were used to evaluate the development of lean mass at 8 weeks. The exercise capacity and grip strength of the male mouse offspring were assessed at the same period. Transmission electron microscopy was used to observe the morphology inside skeletal muscle at 8 weeks and as a foetus. The genes and proteins associated with mitochondrial biogenesis and oxidative metabolism were investigated. We also coanalyzed RNA sequencing and proteomics data to explore the underlying mechanism. Chromatin immunoprecipitation and bisulfite-converted DNA methylation detection were performed to evaluate this phenomenon. RESULTS Short-term intrauterine hyperglycaemia inhibited the growth and reduced the lean mass of male offspring, leading to decreased endurance exercise capacity. The myofiber composition of the tibialis anterior muscle of GDM male offspring became more glycolytic and less oxidative. The morphology and function of mitochondria in the skeletal muscle of GDM male offspring were destroyed, and coanalysis of RNA sequencing and proteomics of foetal skeletal muscle showed that mitochondrial elements and lipid oxidation were consistently impaired. In vivo and in vitro myoblast experiments also demonstrated that high glucose concentrations impeded mitochondrial organisation and function. Importantly, the transcription of genes associated with mitochondrial biogenesis and oxidative metabolism decreased at 8 weeks and during the foetal period. We predicted Ppargc1α as a key upstream regulator with the help of IPA software. The proteins and mRNA levels of Ppargc1α in the skeletal muscle of GDM male offspring were decreased as a foetus (CTR vs. GDM, 1.004 vs. 0.665, p = 0.002), at 6 weeks (1.018 vs. 0.511, p = 0.023) and 8 weeks (1.006 vs. 0.596, p = 0.018). In addition, CREB phosphorylation was inhibited in GDM group, with fewer activated pCREB proteins binding to the CRE element of Ppargc1α (1.042 vs. 0.681, p = 0.037), Pck1 (1.091 vs. 0.432, p = 0.014) and G6pc (1.118 vs. 0.472, p = 0.027), resulting in their decreased transcription. Interestingly, we found that sarcopenia and mitochondrial dysfunction could even be inherited by the next generation. CONCLUSIONS Short-term intrauterine hyperglycaemia significantly reduced lean mass in male offspring at 8 weeks, resulting in decreased exercise endurance and metabolic disorders. Disrupted organisation and function of the mitochondria in skeletal muscle were also observed among them. Foetal exposure to hyperglycaemia decreased the ratio of phosphorylated CREB and reduced the transcription of Ppargc1α, which inhibited the transcription of downstream genes involving in mitochondrial biogenesis and oxidative metabolism. Abnormal mitochondria, which might be transmitted through aberrant gametes, were also observed in the F2 generation.
Collapse
Affiliation(s)
- Yi-Shang Yan
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Jia-Ying Mo
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Yu-Tong Huang
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Hai-Yan Wu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Zhong-Liang Lin
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Rui Liu
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Xuan-Qi Liu
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Ping-Ping Lv
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Chun Feng
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Jian-Zhong Sheng
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China.
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China.
| | - Min Jin
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China.
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China.
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China.
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Zhai X, Dang L, Wang S, Li W, Sun C. Effects of Succinate on Growth Performance, Meat Quality and Lipid Synthesis in Bama Miniature Pigs. Animals (Basel) 2024; 14:999. [PMID: 38612238 PMCID: PMC11011074 DOI: 10.3390/ani14070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Succinate, one of the intermediates of the tricarboxylic acid cycle, is now recognized to play a role in a broad range of physiological and pathophysiological settings, but its role in adipogenesis is unclear. Our study used Bama miniature pigs as a model to explore the effects of succinate on performance, meat quality, and fat formation. The results showed that adding 1% succinate significantly increased the average daily gain, feed/gain ratio, eye muscle area, and body fat content (p < 0.05), but had no effect on feed intake. Further meat quality analysis showed that succinate increased the marbling score and intramuscular fat content of longissimus dorsi muscle (LM), while decreasing the shear force and the cross-sectional area of LM (p < 0.05). Metabolomics analysis of LM revealed that succinate reshaped levels of fatty acids, triglycerides, glycerophospholipids, and sphingolipids in LM. Succinate promotes adipogenic differentiation in porcine primary preadipocytes. Finally, dietary succinate supplementation increased succinylation modification rather than acetylation modification in the adipose tissue pool. This study elucidated the effects of succinate on the growth and meat quality of pigs and its mechanism of action and provided a reference for the role of succinate in the nutrition and metabolism of pigs.
Collapse
Affiliation(s)
- Xiangyun Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.Z.); (L.D.); (S.W.)
| | - Liping Dang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.Z.); (L.D.); (S.W.)
| | - Shiyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.Z.); (L.D.); (S.W.)
| | - Wenyuan Li
- Agriculture and Rural Bureau of Yuanyang County, Xinxiang 453000, China;
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.Z.); (L.D.); (S.W.)
| |
Collapse
|
6
|
Ji T, Fang B, Zhang M, Liu Y. Succinate Enhances Lipolysis and Decreases Adipocytes Size in Both Subcutaneous and Visceral Adipose Tissue from High-Fat-Diet-Fed Obese Mice. Foods 2023; 12:4285. [PMID: 38231706 DOI: 10.3390/foods12234285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Obesity is a risk factor for many chronic diseases related to the overexpansion of adipose tissue during obesity, leading to metabolic dysfunction and ectopic lipids. Previous studies reported a close relationship between succinate and obesity and its co-morbidities, and studies have also reported on its anti-obesity potential. To confirm its efficacy in obesity interventions, we supplemented mice with obesity induced by a high-fat diet with succinate (1.5% m/v in drinking water) for 11 weeks without changing the diet. After succinate supplementation, the changes in body weight, adipose tissue deposition, glucose tolerance, energy expenditure and lipid metabolism were evaluated. It was found that succinate supplementation significantly decreased subcutaneous adipose tissue (HFD: 4239.3 ± 211.2 mg; HFD-SA: 3268.9 ± 265.7 mg. p < 0.05), triglyceride contents (decreased by 1.53 mmol/g and 0.39 mmol/g in eWAT and ingWAT, respectively, p < 0.05) and NEFA (decreased by 1.41 μmol/g and 1.31 μmol/g in eWAT and ingWAT, respectively, p < 0.05). The adipocytes' sizes all significantly decreased in both subcutaneous and visceral adipose tissue (the proportion of adipocytes with diameters larger than 100 μm in eWAT and ingWAT decreased by 16.83% and 11.96%, respectively. p < 0.05). Succinate significantly enhanced lipolysis in adipose tissue (eWAT: Adrb3, Hsl and Plin1; ingWAT: Hsl and CPT1a; p < 0.05), whereas the expression of lipogenesis-related genes remained unchanged (p > 0.05). Succinate supplementation also enhanced the activity of BAT by stimulating the expression of Ucp1 and Cidea (p < 0.05). Our results reported that succinate has a potential beneficial effect on obesity pathogenesis but cannot efficiently decrease bodyweight.
Collapse
Affiliation(s)
- Tengteng Ji
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yaqiong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
8
|
Tong W, Hannou SA, Wang Y, Astapova I, Sargsyan A, Monn R, Thiriveedi V, Li D, McCann JR, Rawls JF, Roper J, Zhang GF, Herman MA. The intestine is a major contributor to circulating succinate in mice. FASEB J 2022; 36:e22546. [PMID: 36106538 PMCID: PMC9523828 DOI: 10.1096/fj.202200135rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 10/03/2023]
Abstract
The tricarboxylic acid (TCA) cycle is the epicenter of cellular aerobic metabolism. TCA cycle intermediates facilitate energy production and provide anabolic precursors, but also function as intra- and extracellular metabolic signals regulating pleiotropic biological processes. Despite the importance of circulating TCA cycle metabolites as signaling molecules, the source of circulating TCA cycle intermediates remains uncertain. We observe that in mice, the concentration of TCA cycle intermediates in the portal blood exceeds that in tail blood indicating that the gut is a major contributor to circulating TCA cycle metabolites. With a focus on succinate as a representative of a TCA cycle intermediate with signaling activities and using a combination of gut microbiota depletion mouse models and isotopomer tracing, we demonstrate that intestinal microbiota is not a major contributor to circulating succinate. Moreover, we demonstrate that endogenous succinate production is markedly higher than intestinal succinate absorption in normal physiological conditions. Altogether, these results indicate that endogenous succinate production within the intestinal tissue is a major physiological source of circulating succinate. These results provide a foundation for an investigation into the role of the intestine in regulating circulating TCA cycle metabolites and their potential signaling effects on health and disease.
Collapse
Affiliation(s)
- Wenxin Tong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sarah A. Hannou
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - You Wang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Inna Astapova
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| | - Ashot Sargsyan
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Ruby Monn
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | | | - Diana Li
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Jessica R. McCann
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Jatin Roper
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Guo-fang Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Mark A. Herman
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| |
Collapse
|
9
|
Ding Q, Lu C, Hao Q, Zhang Q, Yang Y, Olsen RE, Ringo E, Ran C, Zhang Z, Zhou Z. Dietary Succinate Impacts the Nutritional Metabolism, Protein Succinylation and Gut Microbiota of Zebrafish. Front Nutr 2022; 9:894278. [PMID: 35685883 PMCID: PMC9171437 DOI: 10.3389/fnut.2022.894278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Succinate is widely used in the food and feed industry as an acidulant, flavoring additive, and antimicrobial agent. This study investigated the effects of dietary succinate on growth, energy budget, nutritional metabolism, protein succinylation, and gut microbiota composition of zebrafish. Zebrafish were fed a control-check (0% succinate) or four succinate-supplemented diets (0.05, 0.10, 0.15, and 0.2%) for 4 weeks. The results showed that dietary succinate at the 0.15% additive amount (S0.15) can optimally promote weight gain and feed intake. Whole body protein, fat, and energy deposition increased in the S0.15 group. Fasting plasma glucose level decreased in fish fed the S0.15 diet, along with improved glucose tolerance. Lipid synthesis in the intestine, liver, and muscle increased with S0.15 feeding. Diet with 0.15% succinate inhibited intestinal gluconeogenesis but promoted hepatic gluconeogenesis. Glycogen synthesis increased in the liver and muscle of S0.15-fed fish. Glycolysis was increased in the muscle of S0.15-fed fish. In addition, 0.15% succinate-supplemented diet inhibited protein degradation in the intestine, liver, and muscle. Interestingly, different protein succinylation patterns in the intestine and liver were observed in fish fed the S0.15 diet. Intestinal proteins with increased succinylation levels were enriched in the tricarboxylic acid cycle while proteins with decreased succinylation levels were enriched in pathways related to fatty acid and amino acid degradation. Hepatic proteins with increased succinylation levels were enriched in oxidative phosphorylation while proteins with decreased succinylation levels were enriched in the processes of protein processing and transport in the endoplasmic reticulum. Finally, fish fed the S0.15 diet had a higher abundance of Proteobacteria but a lower abundance of Fusobacteria and Cetobacterium. In conclusion, dietary succinate could promote growth and feed intake, promote lipid anabolism, improve glucose homeostasis, and spare protein. The effects of succinate on nutritional metabolism are associated with alterations in the levels of metabolic intermediates, transcriptional regulation, and protein succinylation levels. However, hepatic fat accumulation and gut microbiota dysbiosis induced by dietary succinate suggest potential risks of succinate application as a feed additive for fish. This study would be beneficial in understanding the application of succinate as an aquatic feed additive.
Collapse
Affiliation(s)
- Qianwen Ding
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chenyao Lu
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringo
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhen Zhang,
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Zhigang Zhou,
| |
Collapse
|
10
|
Zhang T, Shen HH, Qin XY, Li MQ. The metabolic characteristic of decidual immune cells and their unique properties in pregnancy loss. Immunol Rev 2022; 308:168-186. [PMID: 35582842 DOI: 10.1111/imr.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Maternal tolerance to semi- or fully allograft conceptus is a prerequisite for the maintenance of pregnancy. Once this homeostasis is disrupted, it may result in pregnancy loss. As a potential approach to prevent pregnancy loss, targeting decidual immune cells (DICs) at the maternal-fetal interface has been suggested. Although the phenotypic features and functions of DIC have been extensively profiled, the regulatory pathways for this unique immunological adaption have yet to be elucidated. In recent years, a pivotal mechanism has been highlighted in the area of immunometabolism, by which the changes in intracellular metabolic pathways in DIC and interaction with the adjacent metabolites in the microenvironment can alter their phenotypes and function. More inspiringly, the manipulation of metabolic profiling in DIC provides a novel avenue for the prevention and treatment of pregnancy loss. Herein, this review highlights the major metabolic programs (specifically, glycolysis, ATP-adenosine metabolism, lysophosphatidic acid metabolism, and amino acid metabolism) in multiple immune cells (including decidual NK cells, macrophages, and T cells) and their integrations with the metabolic microenvironment in normal pregnancy. Importantly, this perspective may help to provide a potential therapeutic strategy for reducing pregnancy loss via targeting this interplay.
Collapse
Affiliation(s)
- Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China.,Shanghai Medical School, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|