1
|
Ma F, Zou Q, Zhao X, Liu H, Du H, Xing K, Ding X, Wang C. Multi-omics integration reveals the regulatory mechanisms of APC and CREB5 genes in lipid biosynthesis and fatty acid composition in pigs. Food Chem 2025; 482:143999. [PMID: 40187300 DOI: 10.1016/j.foodchem.2025.143999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
The intramuscular fat (IMF), fatty acid and amino acid compositions of pork are intricately linked to meat quality, flavor profile, and nutritional composition, and have potential implications for human health. Lipid accumulation in pork is initiated by the biosynthesis of fatty acids and regulated by a complex network of genes. In this study, the IMF content and genotyping of large-scale slaughtered Yorkshire pigs were assessed. Transcriptome sequencing of muscles from 17 individuals and fatty and amino acid analyses of muscles from 28 individuals according to IMF content were conducted. Phenotypic analysis showed a high correlation between IMF and most fatty acids, and the composition ratio of different types of fatty acids varied with IMF content. A negative correlation between the n-6/n-3 polyunsaturated fatty acid (PUFA) ratio and increase in IMF content significantly enhanced the levels of essential fatty acids and ameliorated the n-6/n-3 PUFA ratio in pork, thereby elevating its nutritional value to better align with contemporary health standards. A comprehensive analysis that integrated a genome-wide association study, differential gene expression analysis, and weighted gene co-expression network analysis was employed to identify the regulatory mechanisms of lipids. PRLR, SEC11C, ALPK2, CPLX4, APC, and CREB5 were identified as key candidate genes that affect intramuscular lipids and fatty acids. Through molecular and cellular experiments, our results indicated that high APC and CREB5 gene expression significantly promotes lipogenesis in cells, where these genes play an important role in regulatory pathways related to lipid synthesis in animals, which may affect fat deposition and fatty acid composition in pork. Overall, these results lay the foundation for an in-depth analysis of the genetic regulation of pork lipids and nutrition, and also provide molecular regulatory markers for the primary selection of pigs with better meat quality.
Collapse
Affiliation(s)
- Fuping Ma
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Quan Zou
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xitong Zhao
- Beijing Shunxin Agriculture Co., Ltd., Beijing 101300, China
| | - Huatao Liu
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hehe Du
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kai Xing
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangdong Ding
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Chuduan Wang
- State Key Laboratory of Animal Biotech Breeding; National Engineering Laboratory for Animal Breeding; Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zhou N, Song X, Wu C, Liang S, Yang L, Ge C, Xiao Z. Dietary Pleurotus citrinopileatus Polysaccharide Improves Growth Performance and Meat Quality Associated with Alterations of Gut Microbiota in Arbor Acre Broilers. Foods 2024; 13:3426. [PMID: 39517210 PMCID: PMC11545086 DOI: 10.3390/foods13213426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Adding edible fungal polysaccharides to animal diets improves growth performance, meat quality, intestinal health, and immunity without adverse effects. This study aimed to evaluate the impact of Pleurotus citrinopileatus polysaccharide (PCP, including PCP250, PCP500, PCP750, and PCP1000 mg/kg) on the growth performance, meat quality, and microbial composition of Arbor Acre (AA) broilers (total 180) by metabolomics and high-throughput sequencing. The results showed that adding PCP enhanced chicken meat tenderness, redness (a*), and water retention and raised essential amino acids and flavor amino acids (such as umami and sweet amino acids) content. The metabolomics revealed that IMP, creatine, betaine, sarcosine, and taurine were related to improving meat quality in broilers by PCP addition. In addition, amino acid, purine, and lipid metabolism were the main metabolic pathways. Moreover, PCP could regulate muscle metabolism by increasing the relative abundance of Lachnospiraceae and Lactobacillus and the content of short-chain fatty acids (SCFAs). Therefore, PCP may become a promising new dietary supplement in the future, which may improve the yield and quality of broiler chickens.
Collapse
Affiliation(s)
- Nannan Zhou
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (N.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoxiao Song
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (N.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changxi Wu
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (N.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shuangmin Liang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (N.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (N.Z.)
| | - Zhichao Xiao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (N.Z.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Nie Y, Song C, Huang H, Mao S, Ding K, Tang H. Chromatin modifiers in human disease: from functional roles to regulatory mechanisms. MOLECULAR BIOMEDICINE 2024; 5:12. [PMID: 38584203 PMCID: PMC10999406 DOI: 10.1186/s43556-024-00175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
The field of transcriptional regulation has revealed the vital role of chromatin modifiers in human diseases from the beginning of functional exploration to the process of participating in many types of disease regulatory mechanisms. Chromatin modifiers are a class of enzymes that can catalyze the chemical conversion of pyrimidine residues or amino acid residues, including histone modifiers, DNA methyltransferases, and chromatin remodeling complexes. Chromatin modifiers assist in the formation of transcriptional regulatory circuits between transcription factors, enhancers, and promoters by regulating chromatin accessibility and the ability of transcription factors to acquire DNA. This is achieved by recruiting associated proteins and RNA polymerases. They modify the physical contact between cis-regulatory factor elements, transcription factors, and chromatin DNA to influence transcriptional regulatory processes. Then, abnormal chromatin perturbations can impair the homeostasis of organs, tissues, and cells, leading to diseases. The review offers a comprehensive elucidation on the function and regulatory mechanism of chromatin modifiers, thereby highlighting their indispensability in the development of diseases. Furthermore, this underscores the potential of chromatin modifiers as biomarkers, which may enable early disease diagnosis. With the aid of this paper, a deeper understanding of the role of chromatin modifiers in the pathogenesis of diseases can be gained, which could help in devising effective diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Yu Y, Zhang B, Jiang X, Cui Y, Luo H, Stergiadis S, Wang B. Exploring the metabolomic landscape: Perilla frutescens as a promising enhancer of production, flavor, and nutrition in Tan lamb meat. Meat Sci 2024; 209:109419. [PMID: 38154372 DOI: 10.1016/j.meatsci.2023.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Addressing health-related concerns linked to the metabolite profile of lamb meat has become paramount, in line with the growing demand for enhanced flavor and taste. We examined the impact of Perilla frutescens seeds on Tan lamb growth, carcass traits, and metabolite profiles. Three diets were employed: a low-concentrate group (LC), a high-concentrate group (HC), and a PFS group (the LC diet supplemented with 3% Perilla frutescens seeds) on a dry matter basis. Forty-five male Tan-lambs (approximately six months) with similar body weights (25.1 kg ± 1.12 SD) were randomly assigned to one of these three groups for 84-day feeding, including an initial 14-day adjustment phase. The supplementation of PFS resulted in increased average daily gain (P < 0.01) and improved carcass quality and meat color (P < 0.05). Additionally, it led to an enhancement in omega-3 polyunsaturated fatty acids (P < 0.05) and a reduction in the omega-6/omega-3 ratio (P < 0.05). Using gas chromatography-mass spectrometry, 369 volatile compounds were identified with enhanced levels of acetaldehyde and 1,2,4-trimethyl-benzene associated with PFS (P < 0.05). Among the 807 compounds identified by ultra-high performance liquid chromatography-mass spectrometry, there were 66 significantly differential compounds (P < 0.05), including 43 hydrophilic metabolites and 23 lipids. PFS supplementation led to significant alterations in 66 metabolites, with three metabolites including 2,5-diisopropyl-3-methylphenol, 3-hydroxydecanoic acid, and lysophosphatidylcholine (15:0) emerging as potential PFS-related biomarkers. The study indicates that PFS supplementation can enhance Tan-lamb growth, feed efficiency, and meat quality, potentially providing lamb meat with improved flavor and nutritional characteristics.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Boyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xianzhe Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yimeng Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Sokratis Stergiadis
- University of Reading, School of Agriculture, Policy and Development, Department of Animal Sciences, Reading RG6 6EU, United Kingdom
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
5
|
Sunagawa Y, Tsukabe R, Irokawa Y, Funamoto M, Suzuki Y, Yamada M, Shimizu S, Katanasaka Y, Hamabe-Horiike T, Kawase Y, Naruta R, Shimizu K, Mori K, Hosomi R, Komiyama M, Hasegawa K, Morimoto T. Anserine, a Histidine-Containing Dipeptide, Suppresses Pressure Overload-Induced Systolic Dysfunction by Inhibiting Histone Acetyltransferase Activity of p300 in Mice. Int J Mol Sci 2024; 25:2344. [PMID: 38397020 PMCID: PMC10889817 DOI: 10.3390/ijms25042344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Anserine, an imidazole dipeptide, is present in the muscles of birds and fish and has various bioactivities, such as anti-inflammatory and anti-fatigue effects. However, the effect of anserine on the development of heart failure remains unknown. We cultured primary cardiomyocytes with 0.03 mM to 10 mM anserine and stimulated them with phenylephrine for 48 h. Anserine significantly suppressed the phenylephrine-induced increases in cardiomyocyte hypertrophy, ANF and BNP mRNA levels, and histone H3K9 acetylation. An in vitro histone acetyltransferase (HAT) assay showed that anserine directly suppressed p300-HAT activity with an IC50 of 1.87 mM. Subsequently, 8-week-old male C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were randomly assigned to receive daily oral treatment with anserine-containing material, Marine Active® (60 or 200 mg/kg anserine) or vehicle for 8 weeks. Echocardiography revealed that anserine 200 mg/kg significantly prevented the TAC-induced increase in left ventricular posterior wall thickness and the decrease in left ventricular fractional shortening. Moreover, anserine significantly suppressed the TAC-induced acetylation of histone H3K9. These results indicate that anserine suppresses TAC-induced systolic dysfunction, at least in part, by inhibiting p300-HAT activity. Anserine may be used as a pharmacological agent for human heart failure therapy.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Ryosuke Tsukabe
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Yudai Irokawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuto Suzuki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Miho Yamada
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Ryuya Naruta
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kiyoshi Mori
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
- Department of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan;
| | - Maki Komiyama
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| |
Collapse
|
6
|
Lin LC, Liu ZY, Yang JJ, Zhao JY, Tao H. Lipid metabolism reprogramming in cardiac fibrosis. Trends Endocrinol Metab 2024; 35:164-175. [PMID: 37949734 DOI: 10.1016/j.tem.2023.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Cardiac fibrosis is a critical pathophysiological process that occurs with diverse types of cardiac injury. Lipids are the most important bioenergy substrates for maintaining optimal heart performance and act as second messengers to transduce signals within cardiac cells. However, lipid metabolism reprogramming is a double-edged sword in the regulation of cardiomyocyte homeostasis and heart function. Moreover, lipids can exert diverse effects on cardiac fibrosis through different signaling pathways. In this review, we provide a brief overview of aberrant cardiac lipid metabolism and recent progress in pharmacological research targeting lipid metabolism alterations in cardiac fibrosis.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
7
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wang J, Yu X, Wang T, Cai W, Hua T, Duan J, Zhang X, Zhu Y, Yao L. Metabolic changes of glycerophospholipids during the reparative phase after myocardial infarction injury. Front Cardiovasc Med 2023; 10:1122571. [PMID: 37383698 PMCID: PMC10294426 DOI: 10.3389/fcvm.2023.1122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Myocardial infarction (MI) is a fatal manifestation of coronary heart disease, and its underlying mechanism is still largely unknown. Lipid levels and composition alterations predict the risk of MI complications. Glycerophospholipids (GPLs) are important bioactive lipids and play a crucial role in the development of cardiovascular diseases. However, the metabolic changes in the GPLs profile during post-MI injury remain unknown. Methods In the current study, we constructed a classic MI model by ligating the left anterior descending branch and assessed the alterations in both plasma and myocardial GPLs profiles during the reparative phase post-MI by liquid chromatography-tandem mass spectrometry analysis. Results We found that myocardial GPLs, but not plasma GPLs, were markedly changed after MI injury. Importantly, MI injury is associated with decreased phosphatidylserine (PS) levels. Consistently, the expression of phosphatidylserine synthase 1 (PSS1), which catalyzes the formation of PS from its substrate phosphatidylcholine, was significantly reduced in heart tissues after MI injury. Furthermore, oxygen-glucose deprivation (OGD) inhibited PSS1 expression and reduced PS levels in primary neonatal rat cardiomyocytes, while overexpression of PSS1 restored the inhibition of PSS1 and the reduction in PS levels caused by OGD. Moreover, overexpression of PSS1 abrogated, whereas knockdown of PSS1 aggravated, OGD-induced cardiomyocyte apoptosis. Conclusions Our findings revealed that GPLs metabolism was involved in the reparative phase post-MI, and cardiac decreased PS levels, resulting from inhibition of PSS1, are important contributor to the reparative phase post-MI. PSS1 overexpression represents a promising therapeutic strategy to attenuate MI injury.
Collapse
|
9
|
Liu W, Yuan Q, Cao S, Wang G, Liu X, Xia Y, Bian Y, Xu F, Chen Y. Review: Acetylation Mechanisms andTargeted Therapies in Cardiac Fibrosis. Pharmacol Res 2023; 193:106815. [PMID: 37290541 DOI: 10.1016/j.phrs.2023.106815] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Cardiac fibrosis is a common pathophysiological remodeling process that occurs in a variety of cardiovascular diseases and greatly influences heart structure and function, progressively leading to the development of heart failure. However, to date, few effective therapies for cardiac fibrosis exist. Abnormal proliferation, differentiation, and migration of cardiac fibroblasts are responsible for the excessive deposition of extracellular matrix in the myocardium. Acetylation, a widespread and reversible protein post-translational modification, plays an important role in the development of cardiac fibrosis by adding acetyl groups to lysine residues. Many acetyltransferases and deacetylases regulate the dynamic alterations of acetylation in cardiac fibrosis, regulating a range of pathogenic conditions including oxidative stress, mitochondrial dysfunction, and energy metabolism disturbance. In this review, we demonstrate the critical roles that acetylation modifications caused by different types of pathological injury play in cardiac fibrosis. Furthermore, we propose therapeutic acetylation-targeting strategies for the prevention and treatment of patients with cardiac fibrosis.
Collapse
Affiliation(s)
- Weikang Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Guoying Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangguo Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yanan Xia
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan Bian
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
10
|
Deng Y, Wang R, Li X, Tan X, Zhang Y, Gooneratne R, Li J. Fish Oil Ameliorates Vibrio parahaemolyticus Infection in Mice by Restoring Colonic Microbiota, Metabolic Profiles, and Immune Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6920-6934. [PMID: 37126589 DOI: 10.1021/acs.jafc.2c08559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of fish oil (FO) on colonic function, immunity, and microbiota was investigated in Vibrio parahaemolyticus (Vp)-infected C57BL/6J mice. Mice intragastrically presupplemented with FO (4.0 mg) significantly reduced Vp infection as evidenced by stabilizing body weight and reducing disease activity index score and immune organ ratios. FO minimized colonic pathological damage, strengthened the mucosal barrier, and sustained epithelial permeability by increasing epithelial crypt depth, goblet cell numbers, and tight junctions and inhibiting colonic collagen accumulation and fibrosis protein expression. Mechanistically, FO enhanced immunity by decreasing colonic CD3+ T cells, increasing CD4+ T cells, downregulating the TLR4 pathway, reducing interleukin-17 (IL-17) and tumor necrosis factor-α, and increasing immune cytokine IL-4 and interferon-γ levels. Additionally, FO maintained colonic microbiota eubiosis by improving microbial diversity and boosting Clostridium, Akkermansia, and Roseburia growth and their derived propionic acid and butyric acid levels. Collectively, FO alleviated Vp infection by enriching beneficial colonic microbiota and metabolites and restoring immune homeostasis.
Collapse
Affiliation(s)
- Yijia Deng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Rundong Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Xiqian Tan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - Jianrong Li
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
11
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
Funamoto M, Imanishi M, Tsuchiya K, Ikeda Y. Roles of histone acetylation sites in cardiac hypertrophy and heart failure. Front Cardiovasc Med 2023; 10:1133611. [PMID: 37008337 PMCID: PMC10050342 DOI: 10.3389/fcvm.2023.1133611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Heart failure results from various physiological and pathological stimuli that lead to cardiac hypertrophy. This pathological process is common in several cardiovascular diseases and ultimately leads to heart failure. The development of cardiac hypertrophy and heart failure involves reprogramming of gene expression, a process that is highly dependent on epigenetic regulation. Histone acetylation is dynamically regulated by cardiac stress. Histone acetyltransferases play an important role in epigenetic remodeling in cardiac hypertrophy and heart failure. The regulation of histone acetyltransferases serves as a bridge between signal transduction and downstream gene reprogramming. Investigating the changes in histone acetyltransferases and histone modification sites in cardiac hypertrophy and heart failure will provide new therapeutic strategies to treat these diseases. This review summarizes the association of histone acetylation sites and histone acetylases with cardiac hypertrophy and heart failure, with emphasis on histone acetylation sites.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Correspondence: Masafumi Funamoto Yasumasa Ikeda
| | - Masaki Imanishi
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Correspondence: Masafumi Funamoto Yasumasa Ikeda
| |
Collapse
|
13
|
Properties of Polyunsaturated Fatty Acids in Primary and Secondary Prevention of Cardiovascular Diseases in the View of Patients (Silesia, Poland). NURSING REPORTS 2022; 12:980-992. [PMID: 36548167 PMCID: PMC9786799 DOI: 10.3390/nursrep12040094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cardiovascular diseases are a major cause of morbidity and mortality in Europe. Lifestyle plays an important role in the primary and secondary prevention of cardiovascular diseases, apart from pharmacotherapy and diagnostics. Numerous studies confirm that the type and quality of fat consumed in the diet have a huge impact on the risk of cardiovascular diseases. Reducing the risk of cardiovascular disease can be helped by minimizing the proportion of saturated fatty acids in the diet and replacing them with polyunsaturated fatty acids. These acids and, above all, their long-chain forms have a positive effect on health. AIM This study aims to assess the awareness of the properties of polyunsaturated fatty acids in the primary and secondary prevention of cardiovascular diseases in the opinions of patients of the Cardiology Department of the Racibórz Medical Center. MATERIAL AND METHODS The analysis included 302 patients (113 women and 189 men) hospitalized in the Cardiology Department. The research method was the authors' questionnaire consisting of the patients' record and thirty closed questions. To answer the research questions posed and test the hypotheses, statistical analyses were carried out using the IBM SPSS Statistics version 25 package. RESULTS Among the respondents, the least frequently used healthy eating habit was the infrequent eating of fried foods. A total of 18.2% of respondents had such a habit. The most commonly used healthy eating habit was checking the fat content in products, which was performed by 67.2% of respondents. Among the respondents, 58.3% said that butter and margarine increase serum cholesterol. CONCLUSIONS The analysis of the data shows that the place of residence, education, sex, and reason for hospitalization of the respondents did not affect the frequency of healthy eating habits. In addition, the subjects had a low amount of healthy eating habits.
Collapse
|
14
|
Zhang S, Li X, Yan X, Julian McClements D, Ma C, Liu X, Liu F. Ultrasound-assisted preparation of lactoferrin-EGCG conjugates and their application in forming and stabilizing algae oil emulsions. ULTRASONICS SONOCHEMISTRY 2022; 89:106110. [PMID: 35961190 PMCID: PMC9382344 DOI: 10.1016/j.ultsonch.2022.106110] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 05/09/2023]
Abstract
The aim of this study was to prepare lactoferrin-epigallocatechin-3-gallate (LF-EGCG) conjugates and to determine their ability to protect emulsified algal oil against aggregation and oxidation. LF-EGCG conjugates were formed using an ultrasound-assisted alkaline treatment. The ultrasonic treatment significantly improved the grafting efficiency of LF and EGCG and shortened the reaction time from 24 h to 40 min. Fourier transform infrared spectroscopy and circular dichroism spectroscopy analyses showed that the covalent/non-covalent complexes could be formed between LF and EGCG, with the CO and CN groups playing an important role. The formation of the conjugates reduced the α-helix content and increased the random coil content of the LF. Moreover, the antioxidant activity of LF was significantly enhanced after conjugation with EGCG. LF-EGCG conjugates as emulsifiers were better at inhibiting oil droplet aggregation and oxidation than LF alone. This study demonstrates that ultrasound-assisted formation of protein-polyphenol conjugates can enhance the functional properties of the proteins, thereby extending their application as functional ingredients in nutritionally fortified foods.
Collapse
Affiliation(s)
- Sairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xueqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Dubois-Deruy E, El Masri Y, Turkieh A, Amouyel P, Pinet F, Annicotte JS. Cardiac Acetylation in Metabolic Diseases. Biomedicines 2022; 10:biomedicines10081834. [PMID: 36009379 PMCID: PMC9405459 DOI: 10.3390/biomedicines10081834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Lysine acetylation is a highly conserved mechanism that affects several biological processes such as cell growth, metabolism, enzymatic activity, subcellular localization of proteins, gene transcription or chromatin structure. This post-translational modification, mainly regulated by lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) enzymes, can occur on histone or non-histone proteins. Several studies have demonstrated that dysregulated acetylation is involved in cardiac dysfunction, associated with metabolic disorder or heart failure. Since the prevalence of obesity, type 2 diabetes or heart failure rises and represents a major cause of cardiovascular morbidity and mortality worldwide, cardiac acetylation may constitute a crucial pathway that could contribute to disease development. In this review, we summarize the mechanisms involved in the regulation of cardiac acetylation and its roles in physiological conditions. In addition, we highlight the effects of cardiac acetylation in physiopathology, with a focus on obesity, type 2 diabetes and heart failure. This review sheds light on the major role of acetylation in cardiovascular diseases and emphasizes KATs and KDACs as potential therapeutic targets for heart failure.
Collapse
|