1
|
Jiang Y, Song H, Zhang G, Ling J. The application of medicinal fungi from the subphylum Ascomycota in the treatment of type 2 diabetes. JOURNAL OF FUTURE FOODS 2025; 5:361-371. [DOI: 10.1016/j.jfutfo.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Wang XT, Zhu X, Lian ZH, Liu Q, Yan HH, Qiu Y, Ge XY. AUP1 and UBE2G2 complex targets STING signaling and regulates virus-induced innate immunity. mBio 2025; 16:e0060225. [PMID: 40237449 PMCID: PMC12077101 DOI: 10.1128/mbio.00602-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER) signaling adaptor that is essential for the host immune response triggered by DNA pathogens. Precise regulation of STING is crucial for maintaining a balanced immune response and preventing harmful autoinflammation. Activation of STING requires its translocation from the ER to the Golgi apparatus. However, the mechanisms that maintain STING in its resting state remain largely unclear. Here, we find that deficiency of the ancient ubiquitous protein 1 (AUP1) causes spontaneous activation of STING and enhances the expression of type I interferons (IFNs) under resting conditions. Furthermore, deficiency of UBE2G2, a cofactor of AUP1, also promotes the abnormal activation of STING. AUP1 deficiency significantly enhances STING signaling induced by DNA virus, and AUP1 deficiency exhibits increased resistance to DNA virus infection in vitro and in vivo. Mechanistically, AUP1 may form a complex with UBE2G2 to interact with STING, preventing its exit from the ER membrane. Notably, infection with the RNA virus vesicular stomatitis virus (VSV) promotes the accumulation of lipid droplets (LDs) and AUP1 proteins. Additionally, AUP1 deficiency markedly inhibits the replication of VSV because AUP1 deficiency reduces lipid accumulation and alters the expression of lipid metabolism genes, such as carnitine palmitoyltransferase 1A (CPT1A), monoglyceride lipase (MGLL), and sterol regulatory element-binding transcription factor 1 (SREBF1). This study uncovers the essential roles of AUP1 in the STING signaling pathway and lipid metabolism pathway, highlighting its dual role in regulating virus replication.IMPORTANCEThe stimulator of interferon genes (STING) signaling cascade plays an essential role in coordinating innate immunity against DNA pathogens and autoimmunity. Precise regulation of the innate immune response is essential for maintaining homeostasis. In this study, we demonstrate that ancient ubiquitous protein 1 (AUP1) and UBE2G2 act as negative regulators of the innate immune response by targeting STING. Notably, AUP1 interacts with STING to retain STING in the endoplasmic reticulum (ER), preventing STING translocation and thereby limiting STING signaling in the resting state. In addition, deficiency of AUP1 markedly inhibits the replication of DNA virus and RNA virus. Our findings provide new insights into the regulation of STING signaling and confirm AUP1 has a dual role in regulating virus replication.
Collapse
Affiliation(s)
- Xin-Tao Wang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xi Zhu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zhong-Hao Lian
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Qian Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Hui-Hui Yan
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
3
|
Wang Y, Liu S, Zhou Q, Feng Y, Xu Q, Luo L, Lv H. Bioinformatics for the Identification of STING-Related Genes in Diabetic Retinopathy. Curr Eye Res 2025; 50:320-333. [PMID: 39704112 DOI: 10.1080/02713683.2024.2430223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Diabetic retinopathy (DR) is the most common complication of diabetes mellitus. Stimulator of interferon genes (STING) plays an important regulatory role in the transcription of several genes. This study aimed to mine and identify hub genes relevant to STING in DR. METHODS The STING-related genes (STING-RGs) were extracted from MSigDB database. Differentially expressed STING-RGs (DE-STING-RGs) were filtered by overlapping differentially expressed genes (DEGs) between DR and NC specimens and STING-RGs. A PPI network was established to mine hub genes. The ability of the hub genes to differentiate between DR and NC specimens was evaluated. Additionally, a ceRNA network was established to investigate the regulatory mechanisms of hub genes. Subsequently, the discrepancies in immune infiltration between DR and NC specimens were further explored. Additionally, we performed drug predictions. Finally, RT-qPCR of peripheral blood samples was used to validate the bioinformatics results. RESULTS A grand total of four genes (IKBKG, STAT6, NFKBIA, and FCGR2A) related to STING were identified for DR. The AUC values of all four hub genes were greater than 0.7, which indicated that the diagnostic value was acceptable. The ceRNA network contained four hub genes, 170 miRNAs, and 135 lncRNAs. In addition, immunoinfiltration analysis demonstrated that the abundance of activated B cells was notably different between the DR and NC specimens. Moreover, 32 drugs were included in the drug-gene network, with twelve drugs targeting STAT6, nine drugs targeting NFKBIA, four drugs targeted IKBKG, and seven drugs targeted FCGR2A. The expression of the four hub genes in blood samples determined by RT-qPCR was consistent with our analysis. CONCLUSION In conclusion, four hub genes (IKBKG, STAT6, NFKBIA, and FCGR2A) related to STING with a diagnostic value for DR were identified by bioinformatics analysis, which might provide new insights into the evaluation and treatment of DR.
Collapse
Affiliation(s)
- Yu Wang
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Siyan Liu
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Qi Zhou
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Yalin Feng
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Qin Xu
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Linbi Luo
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, Affiliatied Hospital of Southwest Medical University, Sichuan Province, Luzhou, China
| |
Collapse
|
4
|
Chen Q, Wang Y, Wang J, Ouyang X, Zhong J, Huang Y, Huang Z, Zheng B, Peng L, Tang X, Li S. Lipotoxicity Induces Cardiomyocyte Ferroptosis via Activating the STING Pathway. Antioxid Redox Signal 2025; 42:184-198. [PMID: 39001814 DOI: 10.1089/ars.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Objective: Lipotoxicity is a well-established contributor to cardiomyocyte death and heart damage, with ferroptosis being identified as a crucial death mode in cardiomyocyte disease. This study aims to explore the potential role and mechanism of ferroptosis in lipotoxicity-induced myocardial injury. Methods: Eight-week high-fat diet (HFD) Sprague-Dawley rat and H9c2 cardiomyocytes treated with palmitic acid (PA) were established for an in vivo and in vitro lipotoxic model. Ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) were used to inhibit ferroptosis. Myocardial-specific stimulator of interferon genes (STING) knockdown rat (Stingmyo-KD) with HFD was further introduced. Rat cardiac structure and function, cell viability, the level of lipid peroxidation, malondialdehyde (MDA), glutathione (GSH), mitochondrial function, ferroptosis-related proteins, and STING pathway-related proteins in H9c2 cells/myocardium were detected. Results: HFD rats with a ferroptosis inhibitor showed improved cardiac structure and function, reduced lipid peroxidation, and restored GSH, which was further confirmed in H9c2 cell. The time-dependent activation of the STING pathway following PA stimulation was observed. Knockdown of the expression of STING could reduce PA-induced cell death, lipid peroxidation, and MDA levels while restoring the GSH. In addition, both HFD Stingmyo-KD rats and HFD rats with systematic inhibition by the STING inhibitor exhibited mitigating lipotoxicity-induced myocardial ferroptosis and reducing myocardial injury. Innovation and Conclusion: These findings suggest that lipotoxicity can induce ferroptosis in cardiomyocytes through the activation of the STING pathway, providing new targets and strategies for the treatment of lipotoxicity cardiomyopathy. Antioxid. Redox Signal. 42, 184-198.
Collapse
Affiliation(s)
- Qian Chen
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yina Wang
- VIP medical service center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiafu Wang
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaolan Ouyang
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlin Zhong
- Department of Ultrasonography, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao Huang
- Zhongshan School of Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuoshan Huang
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Benrong Zheng
- VIP medical service center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Long Peng
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xixiang Tang
- VIP medical service center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suhua Li
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Shi J, He F, Du X. Emerging role of IRE1α in vascular diseases. J Cell Commun Signal 2024; 18:e12056. [PMID: 39691875 PMCID: PMC11647051 DOI: 10.1002/ccs3.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 12/19/2024] Open
Abstract
A mounting body of evidence suggests that the endoplasmic reticulum stress and the unfolded protein response are involved in the underlying mechanisms responsible for vascular diseases. Inositol-requiring protein 1α (IRE1α), the most ancient branch among the UPR-related signaling pathways, can possess both serine/threonine kinase and endoribonuclease (RNase) activity and can perform physiological and pathological functions. The IRE1α-signaling pathway plays a critical role in the pathology of various vascular diseases. In this review, we provide a general overview of the physiological function of IRE1α and its pathophysiological role in vascular diseases.
Collapse
Affiliation(s)
- Jia Shi
- Department of NephrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Fan He
- Department of NephrologyTongji Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Xiaogang Du
- Department of NephrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
6
|
Liu H, Sheng Q, Dan J, Xie X. Crosstalk and Prospects of TBK1 in Inflammation. Immunol Invest 2024; 53:1205-1233. [PMID: 39194013 DOI: 10.1080/08820139.2024.2392587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND TANK-binding kinase 1 (TBK1) is a pivotal mediator of innate immunity, activated by receptors such as mitochondrial antiviral signaling protein (MAVS), stimulator of interferon genes (STING), and TIR-domain-containing adaptor inducing interferon-β (TRIF). It modulates immune responses by exerting influence on the type I interferons (IFN-Is) signaling and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, Over the past few years, TBK1 multifaceted role in both immune and inflammatory responses is increasingly recognized. METHODS AND RESULTS This review aims to scrutinize how TBK1 operates within the NF-κB pathway and the interferon regulatory transcription factor 3 (IRF3)-dependent IFN-I pathways, highlighting the kinases and other molecules involved in these processes. This analysis reveals the distinctive characteristics of TBK1's involvement in these pathways. Furthermore, it has been observed that the role of TBK1 in exerting anti-inflammatory or pro-inflammatory effects is contingent upon varying pathological conditions, indicating a multifaceted role in immune regulation. DISCUSSION TBK1's evolving role in various diseases and the potential of TBK1 inhibitors as therapeutic agents are explored. Targeting TBK1 may provide new strategies for treating inflammatory disorders and autoimmune diseases associated with IFN-Is, warranting further investigation.
Collapse
Affiliation(s)
- Huan Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Qihuan Sheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoli Xie
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Fan MW, Tian JL, Chen T, Zhang C, Liu XR, Zhao ZJ, Zhang SH, Chen Y. Role of cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes pathway in diabetes and its complications. World J Diabetes 2024; 15:2041-2057. [PMID: 39493568 PMCID: PMC11525733 DOI: 10.4239/wjd.v15.i10.2041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus (DM) is one of the major causes of mortality worldwide, with inflammation being an important factor in its onset and development. This review summarizes the specific mechanisms of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway in mediating inflammatory responses. Furthermore, it comprehensively presents related research progress and the subsequent involvement of this pathway in the pathogenesis of early-stage DM, diabetic gastroenteropathy, diabetic cardiomyopathy, non-alcoholic fatty liver disease, and other complications. Additionally, the role of cGAS-STING in autonomic dysfunction and intestinal dysregulation, which can lead to digestive complications, has been discussed. Altogether, this study provides a comprehensive analysis of the research advances regarding the cGAS-STING pathway-targeted therapeutic agents and the prospects for their application in the precision treatment of DM.
Collapse
Affiliation(s)
- Ming-Wei Fan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Jin-Lan Tian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Tan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Can Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Xin-Ru Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Zi-Jian Zhao
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Shu-Hui Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Yan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| |
Collapse
|
8
|
Luo Y, Chang L, Ji Y, Liang T. ER: a critical hub for STING signaling regulation. Trends Cell Biol 2024; 34:865-881. [PMID: 38423853 DOI: 10.1016/j.tcb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
The Stimulator of Interferon Genes (STING) has a crucial role in mediating the immune response against cytosolic double-stranded DNA (dsDNA) and its activation is critically involved in various diseases. STING is synthesized, modified, and resides in the endoplasmic reticulum (ER), and its ER exit is intimately connected with its signaling. The ER, primarily known for its roles in protein folding, lipid synthesis, and calcium storage, has been identified as a pivotal platform for the regulation of a wide range of STING functions. In this review, we discuss the emerging factors that regulate STING in the ER and examine the interplay between STING signaling and ER pathways, highlighting the impacts of such regulations on immune responses and their potential implications in STING-related disorders.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Chang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yewei Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
9
|
Chen D, Chen F, Luo Q, Fan W, Chen C, Liu G. Association between the systemic immune-inflammation index and erectile dysfunction: A cross-sectional study. Immun Inflamm Dis 2024; 12:e1363. [PMID: 39092776 PMCID: PMC11295087 DOI: 10.1002/iid3.1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Erectile dysfunction (ED) is associated with inflammation. The systematic immune-inflammation index (SII), as a new inflammation marker, was applied to predict the risk of diseases. However, no research explores the relationship between SII and ED. Hence, the purpose of this study was to investigate the association between SII and ED. METHODS Related data were obtained from the National Health and Nutrition Examination Survey (NHANES) 2001-2004. Based on self-report, all participants were classified into ED and non-ED group. Weighted multivariate regression analysis the relationship between categorical SII and ED in unadjusted and adjusted models. Restricted cubic spline (RCS) was used to examine the association of continuous SII and ED risk. Furthermore, the association between categorical SII and the risk of ED was evaluated among subgroups of age, body mass index, hypertension, diabetes and cardiovascular disease. Finally, weighted multivariate regression analysis and RCS were performed to assessed the connection between SII and the risk of severe ED. RESULTS Initially, data on 21,161 participants were obtained. After implementing the inclusion and exclusion criteria, 3436 participants were included in analyses. Weighted multivariate regression analysis demonstrated that Q4 group SII was associated with an increased risk of ED (OR = 1.03, 95% confidence intervals: 1.00-1.05, p = .03). RCS showed SII was nonlinearly associated with the risk of ED, and the inflection point of SII was at 485.530. In addition, subgroup analyses demonstrated that participants in the SII > 485.530 group had a higher ED risk than SII ≤ 485.530 group among subgroups of age ≥50, hypertension, and non-diabetes. Weighted multivariate regression analysis and RCS found no relationship of SII and the risk of severe ED. CONCLUSION In US adults, SII > 485.530 was correlated with an increased risk of ED. While, no significant association between SII and severe ED risk. Additional studies are required to support our results.
Collapse
Affiliation(s)
- Di Chen
- The Department of UrologyReproductive Hospital of Guangxi Zhuang Autonomous RegionNanningChina
- Graduate SchoolGuangxi Medical UniversityNanningChina
| | - Fuchang Chen
- The Second Department of UrologyThe First People's Hospital of Qinzhou CityQinzhouChina
| | - Quanhai Luo
- The Department of UrologyReproductive Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Wenji Fan
- The Department of UrologyThe Second People's Hospital of Nanning CityNanningChina
| | - Changsheng Chen
- The Department of UrologyPeople's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Gang Liu
- The Department of UrologyReproductive Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
10
|
Zhang X, Zhang F, Xu X. Single-cell RNA sequencing in exploring the pathogenesis of diabetic retinopathy. Clin Transl Med 2024; 14:e1751. [PMID: 38946005 PMCID: PMC11214886 DOI: 10.1002/ctm2.1751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of irreversible blindness in the working-age populations. Despite decades of research on the pathogenesis of DR for clinical care, a comprehensive understanding of the condition is still lacking due to the intricate cellular diversity and molecular heterogeneity involved. Single-cell RNA sequencing (scRNA-seq) has made the high-throughput molecular profiling of cells across modalities possible which has provided valuable insights into complex biological systems. In this review, we summarise the application of scRNA-seq in investigating the pathogenesis of DR, focusing on four aspects. These include the identification of differentially expressed genes, characterisation of key cell subpopulations and reconstruction of developmental 'trajectories' to unveil their state transition, exploration of complex cell‒cell communication in DR and integration of scRNA-seq with genome-wide association studies to identify cell types that are most closely related to DR risk genetic loci. Finally, we discuss the future challenges and expectations associated with studying DR using scRNA-seq. We anticipate that scRNA-seq will facilitate the discovery of mechanisms and new treatment targets in the clinical care landscape for patients with DR. KEY POINTS: Progress in scRNA-seq for diabetic retinopathy (DR) research includes studies on DR patients, non-human primates, and the prevalent mouse models. scRNA-seq facilitates the identification of differentially expressed genes, pivotal cell subpopulations, and complex cell-cell interactions in DR at single-cell level. Future scRNA-seq applications in DR should target specific patient subsets and integrate with single-cell and spatial multi-omics approaches.
Collapse
Affiliation(s)
- Xinzi Zhang
- National Clinical Research Center for Eye DiseasesDepartment of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Eye Institute of Shanghai Jiao Tong University SchoolShanghaiChina
- Shanghai Key Laboratory of Ocular Fundus DiseasesShanghaiChina
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiChina
| | - Fang Zhang
- National Clinical Research Center for Eye DiseasesDepartment of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Eye Institute of Shanghai Jiao Tong University SchoolShanghaiChina
- Shanghai Key Laboratory of Ocular Fundus DiseasesShanghaiChina
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiChina
| | - Xun Xu
- National Clinical Research Center for Eye DiseasesDepartment of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Eye Institute of Shanghai Jiao Tong University SchoolShanghaiChina
- Shanghai Key Laboratory of Ocular Fundus DiseasesShanghaiChina
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiChina
| |
Collapse
|
11
|
He X, Wen S, Tang X, Wen Z, Zhang R, Li S, Gao R, Wang J, Zhu Y, Fang D, Li T, Peng R, Zhang Z, Wen S, Zhou L, Ai H, Lu Y, Zhang S, Shi G, Chen Y. Glucagon-like peptide-1 receptor agonists rescued diabetic vascular endothelial damage through suppression of aberrant STING signaling. Acta Pharm Sin B 2024; 14:2613-2630. [PMID: 38828140 PMCID: PMC11143538 DOI: 10.1016/j.apsb.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 06/05/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) protect against diabetic cardiovascular diseases and nephropathy. However, their activity in diabetic retinopathy (DR) remains unclear. Our retrospective cohort study involving 1626 T2DM patients revealed superior efficacy of GLP-1 RAs in controlling DR compared to other glucose-lowering medications, suggesting their advantage in DR treatment. By single-cell RNA-sequencing analysis and immunostaining, we observed a high expression of GLP-1R in retinal endothelial cells, which was down-regulated under diabetic conditions. Treatment of GLP-1 RAs significantly restored the receptor expression, resulting in an improvement in retinal degeneration, vascular tortuosity, avascular vessels, and vascular integrity in diabetic mice. GO and GSEA analyses further implicated enhanced mitochondrial gene translation and mitochondrial functions by GLP-1 RAs. Additionally, the treatment attenuated STING signaling activation in retinal endothelial cells, which is typically activated by leaked mitochondrial DNA. Expression of STING mRNA was positively correlated to the levels of angiogenic and inflammatory factors in the endothelial cells of human fibrovascular membranes. Further investigation revealed that the cAMP-responsive element binding protein played a role in the GLP-1R signaling pathway on suppression of STING signaling. This study demonstrates a novel role of GLP-1 RAs in the protection of diabetic retinal vasculature by inhibiting STING-elicited inflammatory signals.
Collapse
Affiliation(s)
- Xuemin He
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Siying Wen
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xixiang Tang
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- VIP Medical Service Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zheyao Wen
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Rui Zhang
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shasha Li
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Rong Gao
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jin Wang
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Dong Fang
- Department of Fundus, Shenzhen Eye Hospital of Jinan University, Shenzhen 518048, China
| | - Ting Li
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ruiping Peng
- Department of Ophthalmology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shiyi Wen
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Li Zhou
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Department of Clinical Immunology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Heying Ai
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yan Lu
- Department of Clinical Immunology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shaochong Zhang
- Department of Fundus, Shenzhen Eye Hospital of Jinan University, Shenzhen 518048, China
| | - Guojun Shi
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yanming Chen
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
12
|
Sulumer AN, Palabıyık E, Avcı B, Uguz H, Demir Y, Serhat Özaslan M, Aşkın H. Protective effect of bromelain on some metabolic enzyme activities in tyloxapol-induced hyperlipidemic rats. Biotechnol Appl Biochem 2024; 71:17-27. [PMID: 37749825 DOI: 10.1002/bab.2517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Elevation of one or more plasma lipids, such as phospholipids, cholesterol esters, cholesterol, and triglycerides, is known as hyperlipidemia. In humans and experimental animals, bromelain, the primary active ingredient isolated from pineapple stems, has several positive effects, including anti-tumor growth, anticoagulation, and anti-inflammation. Hence, the purpose of this study was to determine the possible protective impact of bromelain on some metabolic enzymes (paraoxonase-1, glutathione S-transferase, glutathione reductase, sorbitol dehydrogenase [SDH], aldose reductase [AR], butyrylcholinesterase [BChE], and acetylcholinesterase [AChE]), activity in the heart, kidney, and liver of rats with tyloxapol-induced hyperlipidemia. Rats were divided into three groups: control group, HL-control group (tyloxapol 400 mg/kg, i.p. administered group), and HL+bromelain (group receiving bromelain 250 mg/kg/o.d. prior to administration of tyloxapol 400 mg/kg, i.p.). BChE, SDH, and AR enzyme activities were significantly increased in all tissues in HL-control compared to the control, whereas the activity of other studied enzymes was significantly decreased. Bromelain had a regulatory effect on all tissues and enzyme activities. In conclusion, these results prove that bromelain is a new mediator that decreases hyperlipidemia.
Collapse
Affiliation(s)
- Ayşe Nurseli Sulumer
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Esra Palabıyık
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Bahri Avcı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Handan Uguz
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Muhammet Serhat Özaslan
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Hakan Aşkın
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
13
|
An Y, Geng K, Wang HY, Wan SR, Ma XM, Long Y, Xu Y, Jiang ZZ. Hyperglycemia-induced STING signaling activation leads to aortic endothelial injury in diabetes. Cell Commun Signal 2023; 21:365. [PMID: 38129863 PMCID: PMC10734150 DOI: 10.1186/s12964-023-01393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023] Open
Abstract
Hyperglycaemia-induced endothelial dysfunction is a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy. STING, which is a newly discovered regulator of innate immunity, has also been reported to play an important role in various metabolic diseases. However, the role of STING in diabetes-induced endothelial cell dysfunction is unknown. In this study, we established a diabetic macroangiopathy mouse model by streptozotocin (STZ) injection combined with high-fat diet (HFD) feeding and a glucotoxicity cell model in high glucose (HG)-treated rat aortic endothelial cells (RAECs). We found that STING expression was specifically increased in the endothelial cells of diabetic arteries, as well as in HG-treated RAECs. Moreover, genetic deletion of STING significantly ameliorated diabetes-induced endothelial cell dysfunction and apoptosis in vivo. Likewise, STING inhibition by C-176 reversed HG-induced migration dysfunction and apoptosis in RAECs, whereas STING activation by DMXAA resulted in migration dysfunction and apoptosis. Mechanistically, hyperglycaemia-induced oxidative stress promoted endothelial mitochondrial dysfunction and mtDNA release, which subsequently activated the cGAS-STING system and the cGAS-STING-dependent IRF3/NF-kB pathway, ultimately resulting in inflammation and apoptosis. In conclusion, our study identified a novel role of STING in diabetes-induced aortic endothelial cell injury and suggested that STING inhibition was a potential new therapeutic strategy for the treatment of diabetic macroangiopathy. Video Abstract.
Collapse
Affiliation(s)
- Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China, 646000
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Kang Geng
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
- Department of Plastic and Burn Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China, 646000
| | - Hong-Ya Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China, 646000
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Sheng-Rong Wan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Xiu-Mei Ma
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China, 646000
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China, 646000.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China, 646000.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China, 646000.
| |
Collapse
|
14
|
Chang W, Li P. Copper and Diabetes: Current Research and Prospect. Mol Nutr Food Res 2023; 67:e2300468. [PMID: 37863813 DOI: 10.1002/mnfr.202300468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Indexed: 10/22/2023]
Abstract
Copper is an essential trace metal for normal cellular functions; a lack of copper is reported to impair the function of important copper-binding enzymes, while excess copper could lead to cell death. Numerous studies have shown an association between dietary copper consumption or plasma copper levels and the incidence of diabetes/diabetes complications. And experimental studies have revealed multiple signaling pathways that are triggered by copper shortages or copper overload in diabetic conditions. Moreover, studies show that treated with copper chelators improve vascular function, maintain copper homeostasis, inhibit cuproptosis, and reduce cell toxicity, thereby alleviating diabetic neuropathy, retinopathy, nephropathy, and cardiomyopathy. However, the mechanisms reported in these studies are inconsistent or even contradictory. This review summarizes the precise and tight regulation of copper homeostasis processes, and discusses the latest progress in the association of diabetes and dietary copper/plasma copper. Further, the study pays close attention to the therapeutic potential of copper chelators and copper in diabetes and its complications, and hopes to provide new insight for the treatment of diabetes.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
15
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
16
|
Ouyang J, Zhou L, Wang Q. Spotlight on iron and ferroptosis: research progress in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1234824. [PMID: 37772084 PMCID: PMC10525335 DOI: 10.3389/fendo.2023.1234824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Iron, as the most abundant metallic element within the human organism, is an indispensable ion for sustaining life and assumes a pivotal role in governing glucose and lipid metabolism, along with orchestrating inflammatory responses. The presence of diabetes mellitus (DM) can induce aberrant iron accumulation within the corporeal system. Consequentially, iron overload precipitates a sequence of important adversities, subsequently setting in motion a domino effect wherein ferroptosis emerges as the utmost pernicious outcome. Ferroptosis, an emerging variant of non-apoptotic regulated cell death, operates independently of caspases and GSDMD. It distinguishes itself from alternative forms of controlled cell death through distinctive morphological and biochemical attributes. Its principal hallmark resides in the pathological accrual of intracellular iron and the concomitant generation of iron-driven lipid peroxides. Diabetic retinopathy (DR), established as the predominant cause of adult blindness, wields profound influence over the well-being and psychosocial strain experienced by afflicted individuals. Presently, an abundance of research endeavors has ascertained the pervasive engagement of iron and ferroptosis in the microangiopathy inherent to DR. Evidently, judicious management of iron overload and ferroptosis in the early stages of DR bears the potential to considerably decelerate disease progression. Within this discourse, we undertake a comprehensive exploration of the regulatory mechanisms governing iron homeostasis and ferroptosis. Furthermore, we expound upon the subsequent detriments induced by their dysregulation. Concurrently, we elucidate the intricate interplay linking iron overload, ferroptosis, and DR. Delving deeper, we engage in a comprehensive deliberation regarding strategies to modulate their influence, thereby effecting prospective interventions in the trajectory of DR's advancement or employing them as therapeutic modalities.
Collapse
Affiliation(s)
- Junlin Ouyang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Wang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Luo L, An Y, Geng K, Wan S, Zhang F, Tan X, Jiang Z, Xu Y. High glucose-induced endothelial STING activation inhibits diabetic wound healing through impairment of angiogenesis. Biochem Biophys Res Commun 2023; 668:82-89. [PMID: 37245293 DOI: 10.1016/j.bbrc.2023.05.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Chronic hyperglycemia-induced impairment of angiogenesis is important in diabetic foot ulcer (DFU). Additionally, the stimulator of interferon gene (STING), which is a key protein in innate immunity, mediates palmitic acid-induced lipotoxicity in metabolic diseases through oxidative stress-induced STING activation. However, the role of STING in DFU is unknown. In this study, we established a DFU mouse model with streptozotocin (STZ) injection and found that the expression of STING was significantly increased in the vascular endothelial cells of wound tissues from diabetic patients and in the STZ-induced diabetic mouse model. We further established high glucose (HG)-induced endothelial dysfunction with rat vascular endothelial cells and found that the expression of STING was also increased by high-glucose treatment. Moreover, the STING inhibitor, C176, promoted diabetic wound healing, whereas the STING activator, DMXAA, inhibited diabetic wound healing. Consistently, STING inhibition reversed the HG-induced reduction of CD31 and vascular endothelial growth factor (VEGF), inhibited apoptosis, and promoted migration of endothelial cells. Notably, DMXAA treatment alone was sufficient to induce endothelial cell dysfunction as a high-glucose treatment. Mechanistically, STING mediated HG-induced vascular endothelial cell dysfunction by activating the interferon regulatory factor 3/nuclear factor kappa B pathway. In conclusion, our study reveals an endothelial STING activation-mediated molecular mechanism in the pathogenesis of DFU and identifies STING as a novel potential therapeutic target for DFU.
Collapse
Affiliation(s)
- Lifang Luo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, 646000, China; Sichuan Clinical Research Center for Nephropathy, Sichuan, 646000, China
| | - Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, 646000, China; Sichuan Clinical Research Center for Nephropathy, Sichuan, 646000, China
| | - Kang Geng
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, 646000, China; Sichuan Clinical Research Center for Nephropathy, Sichuan, 646000, China
| | - Shengrong Wan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, 646000, China; Sichuan Clinical Research Center for Nephropathy, Sichuan, 646000, China
| | - Fanjie Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, 646000, China; Sichuan Clinical Research Center for Nephropathy, Sichuan, 646000, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, 646000, China; Sichuan Clinical Research Center for Nephropathy, Sichuan, 646000, China
| | - Zongzhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, 646000, China; Sichuan Clinical Research Center for Nephropathy, Sichuan, 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, 646000, China; Sichuan Clinical Research Center for Nephropathy, Sichuan, 646000, China.
| |
Collapse
|
18
|
Association between Systemic Immunity-Inflammation Index and Hyperlipidemia: A Population-Based Study from the NHANES (2015-2020). Nutrients 2023; 15:nu15051177. [PMID: 36904176 PMCID: PMC10004774 DOI: 10.3390/nu15051177] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
The systemic immunity-inflammation index (SII) is a novel inflammatory marker, and aberrant blood lipid levels are linked to inflammation. This study aimed to look at the probable link between SII and hyperlipidemia. The current cross-sectional investigation was carried out among people with complete SII and hyperlipidemia data from the 2015-2020 National Health and Nutrition Examination Survey (NHANES). SII was computed by dividing the platelet count × the neutrophil count/the lymphocyte count. The National Cholesterol Education Program standards were used to define hyperlipidemia. The nonlinear association between SII and hyperlipidemia was described using fitted smoothing curves and threshold effect analyses. A total of 6117 US adults were included in our study. A substantial positive correlation between SII and hyperlipidemia was found [1.03 (1.01, 1.05)] in a multivariate linear regression analysis. Age, sex, body mass index, smoking status, hypertension, and diabetes were not significantly correlated with this positive connection, according to subgroup analysis and interaction testing (p for interaction > 0.05). Additionally, we discovered a non-linear association between SII and hyperlipidemia with an inflection point of 479.15 using a two-segment linear regression model. Our findings suggest a significant association between SII levels and hyperlipidemia. More large-scale prospective studies are needed to investigate the role of SII in hyperlipidemia.
Collapse
|