1
|
Sawane K, Takahashi I, Ishikuro M, Takumi H, Orui M, Noda A, Shinoda G, Ohseto H, Onuma T, Ueno F, Murakami K, Higuchi N, Furuyashiki T, Nakamura T, Koshiba S, Ohneda K, Kumada K, Ogishima S, Hozawa A, Sugawara J, Kuriyama S, Obara T. Exploring the association between human breast milk lipids and early adiposity rebound in children: A case-control study. Nutrition 2025; 135:112739. [PMID: 40220431 DOI: 10.1016/j.nut.2025.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 04/14/2025]
Abstract
OBJECTIVES Adiposity rebound (AR) corresponds to the start of the second rise in the body mass index curve during infant growth. Early AR (before age 5) confers increased risk of adiposity and metabolic disorders but is less likely to occur in breastfed infants. Although lipids in breast milk are important in child growth, information is limited regarding which lipids are involved in AR. The object of this study was to explore the association between breast milk lipids and AR status in children. METHODS We designed a case-control study of 184 mother-child pairs (AR cases: n = 93; controls: n = 91) included from the Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. Breast milk was collected 1 month postpartum and comprehensive lipid analysis was performed. Partial least square-discriminant analysis was used to explore candidate lipids, and multivariable logistic regression analysis was used to evaluate associations with the AR status of children. RESULTS We detected 667 lipid molecules in 12 lipid classes in breast milk. Partial least square-discriminant analysis revealed the association of fatty acid-hydroxy fatty acid (FAHFA) and cholesterol ester (ChE) with AR status. Multivariable logistic regression analysis showed that in pairs with exclusive breastfeeding at 1 month postpartum, FAHFA (odds ratio 1.57 [95% confidence interval, 1.06-2.32]) was positively associated with early AR, and ChE (odds ratio 0.55 [95% confidence interval, 0.36-0.86]) was negatively associated. CONCLUSIONS Breast milk lipids (FAHFA, ChE) associated with the AR status of children, indicating the potential to regulate a child's adiposity and possible metabolic disorders in adulthood.
Collapse
Affiliation(s)
| | - Ippei Takahashi
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mami Ishikuro
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | | | - Masatsugu Orui
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Aoi Noda
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Genki Shinoda
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hisashi Ohseto
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomomi Onuma
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumihiko Ueno
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Murakami
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | | | | | - Tomohiro Nakamura
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Faculty of Data Science, Kyoto Women's University, Kyoto, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Kinuko Ohneda
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuki Kumada
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Soichi Ogishima
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Division of Epidemiology, School of Public Health, Graduate School of Medicine, Tohoku University, Sendai, Japan; Division of Personalized Prevention and Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Shinichi Kuriyama
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Division of Disaster Public Health, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Taku Obara
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan.
| |
Collapse
|
2
|
Merheb C, Gerbal-Chaloin S, Casas F, Diab-Assaf M, Daujat-Chavanieu M, Feillet-Coudray C. Omega-3 Fatty Acids, Furan Fatty Acids, and Hydroxy Fatty Acid Esters: Dietary Bioactive Lipids with Potential Benefits for MAFLD and Liver Health. Nutrients 2025; 17:1031. [PMID: 40292496 PMCID: PMC11945187 DOI: 10.3390/nu17061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common form of chronic liver disease, for which only resmetirom has recently received FDA approval. Prevention is crucial, as it can help manage and potentially reverse the progression of MAFLD to more severe stages. Omega-3 fatty acids, which are a type of polyunsaturated fatty acid (PUFA), have numerous beneficial effects in health and disease, including liver disease. Other bioactive lipids, such as furanic fatty acids (FuFA) and hydroxy fatty acid esters (FAHFA), have also demonstrated several benefits on relevant markers of liver dysfunction in animal and cell models. However, the effects of FAHFAs on hepatic steatosis are inconsistent, and studies on the impact of FuFAs in MAFLD are scarce. Further and more extensive research is required to better understand their role in liver health. The aim of this narrative review is to provide a brief overview of the potential effects of omega-3 fatty acids and other bioactive lipids, such as FuFAs and FAHFAs, on liver disease, with a focus on MAFLD.
Collapse
Affiliation(s)
- Camil Merheb
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), F-34000 Montpellier, France; (C.M.); (S.G.-C.)
| | - Sabine Gerbal-Chaloin
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), F-34000 Montpellier, France; (C.M.); (S.G.-C.)
| | - François Casas
- Dynamique du Muscle et Métabolisme (DMEM), University Montpellier, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), F-34295 Montpellier, France; (F.C.); (C.F.-C.)
| | - Mona Diab-Assaf
- Tumorigenesis Molecular and Anticancer Pharmacology, Faculty of Sciences-II, Lebanese University, Beyrouth 1500, Lebanon;
| | - Martine Daujat-Chavanieu
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Montpellier, F-34000 Montpellier, France
| | - Christine Feillet-Coudray
- Dynamique du Muscle et Métabolisme (DMEM), University Montpellier, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), F-34295 Montpellier, France; (F.C.); (C.F.-C.)
| |
Collapse
|
3
|
Li L, Wang P, Jiao X, Qin S, Liu Z, Ye Y, Song Y, Hou H. Fatty acid esters of hydroxy fatty acids: A potential treatment for obesity-related diseases. Obes Rev 2024; 25:e13735. [PMID: 38462545 DOI: 10.1111/obr.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/31/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Obesity, a burgeoning worldwide health system challenge, is associated with multiple chronic diseases, including diabetes and chronic inflammation. Fatty acid esters of hydroxy fatty acids (FAHFAs) are newly identified lipids with mitigating and anti-inflammatory effects in diabetes. Increasing work has shown that FAHFAs exert antioxidant activity and enhance autophagy in neuronal cells and cardiomyocytes. We systematically summarized the biological activities of FAHFAs, including their regulatory effects on diabetes and inflammation, antioxidant activity, and autophagy augmentation. Notably, the structure-activity relationships and potential biosynthesis of FAHFAs are thoroughly discussed. FAHFAs also showed potential roles as diagnostic biomarkers. FAHFAs are a class of resources with promising applications in the biomedical field that require in-depth research and hotspot development, as their structure has not been fully resolved and their biological activity has not been fully revealed.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Qingdao, China
| | - Ping Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Qingdao, China
| | - Xudong Jiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhengyi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | | | - Hu Hou
- Ocean University of China, Qingdao, China
| |
Collapse
|