1
|
Che C, Song D, Xue P, Yin X. A Novel Disulfidptosis-Related Risk Signature for Prognostic Prediction in Patients With Ewing Sarcoma. J Orthop Res 2025; 43:790-802. [PMID: 39775930 DOI: 10.1002/jor.26033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Ewing sarcoma (ES) is a malignant bone tumor prevalent among children and adolescents. Disulfidptosis represents a novel form of cell death; however, the mechanism of disulfidptosis in ES remains unclear. Our aim is to explore the disulfidptosis-related prognostic signature in ES. Utilizing transcriptomic and clinical data of ES, disulfidptosis-related hub genes (DRHGs) were identified by differential gene expression analysis and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis. A disulfidptosis-related risk score model (DRRS) was constructed based on these DRHGs. The performance of DRRS was assessed using survival analysis and receiver operating characteristic curve analysis. Immune cell infiltration in different risk subgroups and correlations between DRRS and antitumor reagents were also analyzed. In this study, we developed a disulfidptosis-related prognostic feature based on LRPPRC (leucine rich pentatricopeptide repeat containing), IQGAP1 (IQ motif containing GTPase activating protein 1), NDUFS1 (NADH:ubiquinone oxidoreductase core subunit S1), and TLN1 (talin 1), which may serve as a predictive and independent risk factor for ES. ES patients in the high-risk group exhibited a poorer prognosis, had a higher proportion of myeloid-derived suppressor cells (MDSCs) and M2 type of tumor-associated macrophages, and showed heightened sensitivity to some antitumor agents such as nilotinib and olaparib. This study is the first to construct a disulfidptosis-related prognostic signature that may predict the prognosis and immune response in ES patients, thereby providing a new reference for understanding the mechanisms of ES and guiding immunotherapy.
Collapse
Affiliation(s)
- Chunqing Che
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Delei Song
- Department of West Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Peng Xue
- Department of East Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| | - Xuqing Yin
- Department of East Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China
| |
Collapse
|
2
|
Pang M, Wang S, Shi T, Chen J. Overview of MitoQ on prevention and management of cardiometabolic diseases: a scoping review. Front Cardiovasc Med 2025; 12:1506460. [PMID: 40134978 PMCID: PMC11934253 DOI: 10.3389/fcvm.2025.1506460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Background The exploration of mitochondrial-targeted antioxidants represented a burgeoning field of research with significant implications for cardiometabolic diseases (CMD). The studies reviewed in this scoping analysis collectively highlighted the effect of MitoQ on prevention and management of CMD and underlying mechanisms were discussed, mainly including cardiovascular diseases (CVDs), liver health and others. Methods This scoping review aimed to synthesize current research on the health impacts of MitoQ on CMD, focusing primarily on human-based clinical trials. While the primary focus was on human trials, in vivo and in vitro studies were referenced as supplementary material to provide a broader understanding of MitoQ's mechanisms and potential effects. Results This scoping review had synthesized the findings that collectively contributed to the understanding of mitochondrial-targeted antioxidants and their role in CMD. Conclusion The synthesis of these findings illustrated a broad spectrum of benefits ranging from enhanced insulin secretion to improved lipid profiles and mitochondrial function, yet the path to clinical application required further investigation on appropriate doses and populations.
Collapse
Affiliation(s)
- Mingli Pang
- School of Public Affairs, Zhejiang University, Hangzhou, China
- National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Shidi Wang
- Department of Social Medicine and Health Care Management, Fudan University, Shanghai, China
| | - Tianyi Shi
- Faculty of Medical and Health Sciences, School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Jinsong Chen
- School of Public Affairs, Zhejiang University, Hangzhou, China
- National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand
- Faculty of Public Administration, School of Law, Hangzhou City University, Hangzhou, China
| |
Collapse
|
3
|
Abi-Aad SJ, Lovell M, Khalaf RT, Sokol RJ. Pathogenesis and Management of Intestinal Failure-Associated Liver Disease. Semin Liver Dis 2025; 45:66-80. [PMID: 40015320 PMCID: PMC12031023 DOI: 10.1055/a-2545-7370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
Long-term parenteral nutrition (PN) has considerably improved the management of intestinal failure (IF) in children and adults, particularly those with short bowel syndrome; however, it carries a significant risk of hepatotoxicity, specifically, intestinal failure-associated liver disease (IFALD), also known as PN-associated liver disease. This review provides an update on the latest understanding of IFALD pathogenesis, emerging therapies, and ongoing challenges in the management of this complication. A number of factors are associated with the development of IFALD. PN lipid emulsions, phytosterol exposure, bacterial dysbiosis, an altered gut-liver axis, and episodes of sepsis disrupt bile acid homeostasis and promote liver inflammation in the active phase of IFALD, favoring the development of PN-associated cholestasis (PNAC) and the more chronic form of steatohepatitis with fibrosis. Based on the identification of pathophysiological pathways, potential therapies are being studied in preclinical and clinical trials, including lipid emulsion modifications; targeted therapies such as Farnesoid X receptor (FXR) and liver receptor homolog 1 (LRH-1) agonists, tumor necrosis factor inhibitors, glucagon-like peptide-2 analogs; microbiome modulation; and supplementation with choline and antioxidants. In conclusion, the pathogenesis of IFALD is complex, and PN dependence and liver injury remain challenging, particularly in patients with IF who cannot advance to enteral nutrition and be weaned off PN.
Collapse
Affiliation(s)
- Sasha-Jane Abi-Aad
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mark Lovell
- Department of Pathology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Racha T. Khalaf
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ronald J. Sokol
- Department of Pediatrics, Digestive Health Institute, Children's Hospital Colorado, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
4
|
Li X, Zhu D. Role of disulfide death in cancer (Review). Oncol Lett 2025; 29:55. [PMID: 39606569 PMCID: PMC11600708 DOI: 10.3892/ol.2024.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
The research field of regulated cell death is growing extensively. Following the recognition of ferroptosis, other unique and distinct forms of regulated cell death, including cuproptosis and disulfide death, have been identified. Disulfide death occurs due to the abnormal accumulation of disulfides within cells in environments lacking glucose, leading to contraction of the actin cytoskeleton, which ultimately triggers various signaling pathways and cell death. The induction of disulfide death in the treatment of cancer may exhibit significant therapeutic potential. Therefore, in the present review, a comprehensive and critical analysis of the current understanding of the molecular mechanisms and regulatory networks of disulfide death is presented. In addition, the potential physiological functions of disulfide death in tumor suppression and immune surveillance as well as its pathological roles and therapeutic potential are described. The core focus areas for future research into this form of cell death are also explored. Given the current lack of extensive clinical findings and well-defined key concepts, these may be regarded as pivotal points of interest in future studies.
Collapse
Affiliation(s)
- Xue Li
- Oncology Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Danxia Zhu
- Oncology Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
5
|
Tang Y, Lu X, Lin K, Li J, Yuan M, Lin K. m6A methylation of RNF43 inhibits the progression of endometriosis through regulating oxidative phosphorylation via NDUFS1. J Cell Physiol 2024; 239:e31367. [PMID: 38988031 DOI: 10.1002/jcp.31367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Oxidative phosphorylation is becoming increasingly important in the induction and development of endometriosis. Recently, it has been reported that ring finger protein 43 (RNF43) is involved in the process of oxidative phosphorylation, but the mechanism remains unclear. Our investigation is to delve into the roles of RNF43 in endometriosis and elucidate the related mechanisms. We found RNF43 was downregulated in ectopic endometrial tissue and primary ectopic endometrial stromal cells (ECESCs). Knockdown of RNF43 enhanced cell viability and migration by activating oxidative phosphorylation in eutopic endometrial stromal cells (EUESCs), while overexpression of RNF43 led to the opposite results. Moreover, RNF43 reinforced the ubiquitination and degradation of NADH dehydrogenase Fe-S protein 1 (NDUFS1) by interacting with it. Likewise to RNF43 overexpression, NDUFS1 silencing inhibited cell viability, migration, and oxidative phosphorylation in ECESCs. NDUFS1 was a downstream target of RNF43, mediating its biological role in endometriosis. Interestingly, the expression and stability of RNF43 mRNA were regulated by the Methyltransferase-like 3 (METTL3)/IGF2BP2 m6A modification axis. The results of rat experiments showed decreased RNF43 expression and increased NDUFS1 expression in endometriosis rats, which was enhanced by METTL3 inhibition. Those observations indicated that m6A methylation-mediated RNF43 negatively affects viability and migration of endometrial stromal cells through regulating oxidative phosphorylation via NDUFS1. The discovery of METTL3/RNF43/NDUFS1 axis suggested promising therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Yuxia Tang
- The Second Affiliated School of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingfei Lu
- The Second Affiliated School of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kexin Lin
- Zhejiang University ZJU-Uoe institute, Haining, China
| | - Jiayi Li
- The Second Affiliated School of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Yuan
- Hangzhou Normal University Division of Health Sciences, Hangzhou, China
| | - Kaiqing Lin
- Department of Gynecology and Obstetrics, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Zhao Q, Zhang R, Wang Y, Li T, Xue J, Chen Z. FOXQ1, deubiquitinated by USP10, alleviates sepsis-induced acute kidney injury by targeting the CREB5/NF-κB signaling axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167331. [PMID: 38960057 DOI: 10.1016/j.bbadis.2024.167331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is a severe and frequent complication that occurs during sepsis. This study aimed to understand the role of FOXQ1 in S-AKI and its potential upstream and downstream regulatory mechanisms. A cecal ligation and puncture induced S-AKI mouse model in vivo and an LPS-induced HK-2 cell model in vitro were used. FOXQ1 was significantly upregulated in CLP mice and downregulated in the LPS-induced HK-2 cells. Upregulation of FOXQ1 improved kidney injury and dysfunction in CLP mice. Overexpression of FOXQ1 remarkably suppressed the apoptosis and inflammatory response via down-regulating oxidative stress indicators and pro-inflammatory factors (IL-1β, IL-6, and TNF-α), both in vivo and in vitro. From online analysis, the CREB5/NF-κB axis was identified as the downstream target of FOXQ1. FOXQ1 transcriptionally activated CREB5, upregulating its expression. Overexpression of FOXQ1 suppressed the phosphorylation level and nucleus transport of p65. Rescue experiments showed that CREB5 mediates the protective role of FOXQ1 on S-AKI. Furthermore, FOXQ1 was identified as a substrate of USP10, a deubiquitinating enzyme. Ectopic expression of USP10 reduced the ubiquitination of FOXQ1, promoting its protein stability. USP10 upregulation alleviated LPS-induced cell apoptosis and inflammatory response, while suppression of FOXQ1 augmented these trends. Collectively, our results suggest that FOXQ1, deubiquitinated by USP10, plays a protective role in S-AKI induced inflammation and apoptosis by targeting CREB5/NF-κB axis.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ran Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Dong L, Luo L, Wang Z, Lian S, Wang M, Wu X, Fan J, Zeng Y, Li S, Lv S, Yang Y, Chen R, Shen E, Yang W, Li C, Wang K. Targeted degradation of NDUFS1 by agrimol B promotes mitochondrial ROS accumulation and cytotoxic autophagy arrest in hepatocellular carcinoma. Free Radic Biol Med 2024; 220:111-124. [PMID: 38697493 DOI: 10.1016/j.freeradbiomed.2024.04.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Hepatocellular carcinoma (HCC) is a global public health problem with increased morbidity and mortality. Agrimol B, a natural polyphenol, has been proved to be a potential anticancer drug. Our recent report showed a favorable anticancer effect of agrimol B in HCC, however, the mechanism of action remains unclear. Here, we found agrimol B inhibits the growth and proliferation of HCC cells in vitro as well as in an HCC patient-derived xenograft (PDX) model. Notably, agrimol B drives autophagy initiation and blocks autophagosome-lysosome fusion, resulting in autophagosome accumulation and autophagy arrest in HCC cells. Mechanistically, agrimol B downregulates the protein level of NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1) through caspase 3-mediated degradation, leading to mitochondrial reactive oxygen species (mROS) accumulation and autophagy arrest. NDUFS1 overexpression partially restores mROS overproduction, autophagosome accumulation, and growth inhibition induced by agrimol B, suggesting a cytotoxic role of agrimol B-induced autophagy arrest in HCC cells. Notably, agrimol B significantly enhances the sensitivity of HCC cells to sorafenib in vitro and in vivo. In conclusion, our study uncovers the anticancer mechanism of agrimol B in HCC involving the regulation of oxidative stress and autophagy, and suggests agrimol B as a potential therapeutic drug for HCC treatment.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, PR China
| | - Zihao Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Shan Lian
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Mao Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xingyun Wu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jiawu Fan
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Sijia Li
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Sinan Lv
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yurong Yang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Rong Chen
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Enhao Shen
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, the Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610041, PR China.
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
8
|
Ma B, Raza SHA, Pant SD, Gao Z, Zhang F, Wang Z, Hou S, Alkhateeb MA, Al Abdulmonem W, Alharbi YM, Aljohani ASM, Gui L. The impact of different levels of wheat diets on hepatic oxidative stress, immune response, and lipid metabolism in Tibetan sheep (Ovis aries). BMC Vet Res 2024; 20:26. [PMID: 38233918 PMCID: PMC10795223 DOI: 10.1186/s12917-023-03874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Compared with corn, wheat contains higher crude protein, amino acids concentration. However, wheat contains a mass of anti-nutritional factors, resulting in increased of the digesta viscosity and impaired the intestinal function in ruminant. OBJECTIVE This study aimed to investigate the effects of substitution of different amounts of wheat for corn on hepatic metabolism in the Tibetan lamb. METHODS Ninety Tibetan lambs (Body weight = 12.37 ± 0.92 kg) were randomly assigned to three groups: 0% wheat diet (Control), 10% wheat diet (Low group), and 15% wheat diet (High group). The feeding trial lasted for 130 d, including a 10 d adaption period. Hepatic gene expression profiling was performed via RNA sequencing after the conclusion of the feeding trials. RESULTS Results showed that greater level of glutathione peroxidase levels in L group compared with those of the C and H groups (P < 0.05). The immune indexes, including interleukin-1β (IL-1β), immunoglobulin A (IgA), and IgM were also elevated in L group compared with the other groups (P < 0.05). Compared with H group, the hepatocytes were arranged radially, and hepatic plates anastomosed with each other to form a labyrinth-like structure in L group. Transcriptomic analysis showed 872 differentially expressed genes (DEG) between H and L group, of which 755 were down-regulated and 117 were up-regulated. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, 32 pathways were significantly enriched (Q-value < 0.05), such as the cAMP signaling pathway, Th1 and Th2 cell differentiation, leukocyte transendothelial migration, platelet activation and adipocytokine signaling pathway. Additionally, the expression of comment DEGs were verified via quantitative reverse-transcription polymerase chain reaction. CONCLUSION In summary, our findings suggest that wheat can be supplemented up to 10% in Tibetan sheep, contributing to improve the hepatic oxidative stress, immune response and lipid metabolism through regulating the expression of related genes.
Collapse
Affiliation(s)
- Boyan Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Mariam Abdulaziz Alkhateeb
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, 51452, Buraidah, Saudi Arabia
| | - Yousef Mesfer Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China.
| |
Collapse
|