1
|
Saleh SR, Saleh OM, El-Bessoumy AA, Sheta E, Ghareeb DA, Eweda SM. The Therapeutic Potential of Two Egyptian Plant Extracts for Mitigating Dexamethasone-Induced Osteoporosis in Rats: Nrf2/HO-1 and RANK/RANKL/OPG Signals. Antioxidants (Basel) 2024; 13:66. [PMID: 38247490 PMCID: PMC10812806 DOI: 10.3390/antiox13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The prolonged use of exogenous glucocorticoids, such as dexamethasone (Dex), is the most prevalent secondary cause of osteoporosis, known as glucocorticoid-induced osteoporosis (GIO). The current study examined the preventative and synergistic effect of aqueous chicory extract (ACE) and ethanolic purslane extract (EPE) on GIO compared with Alendronate (ALN). The phytochemical contents, elemental analysis, antioxidant scavenging activity, and ACE and EPE combination index were evaluated. Rats were randomly divided into control, ACE, EPE, and ACE/EPE MIX groups (100 mg/kg orally), Dex group (received 1.5 mg Dex/kg, Sc), and four treated groups received ACE, EPE, ACE/EPE MIX, and ALN with Dex. The bone mineral density and content, bone index, growth, turnover, and oxidative stress were measured. The molecular analysis of RANK/RANKL/OPG and Nrf2/HO-1 pathways were also evaluated. Dex causes osteoporosis by increasing oxidative stress, decreasing antioxidant markers, reducing bone growth markers (OPG and OCN), and increasing bone turnover and resorption markers (NFATc1, RANKL, ACP, ALP, IL-6, and TNF-α). In contrast, ACE, EPE, and ACE/EPE MIX showed a prophylactic effect against Dex-induced osteoporosis by modulating the measured parameters and the histopathological architecture. In conclusion, ACE/EPE MIX exerts a powerful synergistic effect against GIO by a mode of action different from ALN.
Collapse
Affiliation(s)
- Samar R. Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Omnia M. Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Ashraf A. El-Bessoumy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21515, Egypt;
| | - Doaa A. Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Saber M. Eweda
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
2
|
Wnt Signaling in the Development of Bone Metastasis. Cells 2022; 11:cells11233934. [PMID: 36497192 PMCID: PMC9739050 DOI: 10.3390/cells11233934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling occurs through evolutionarily conserved pathways that affect cellular proliferation and fate decisions during development and tissue maintenance. Alterations in these highly regulated pathways, however, play pivotal roles in various malignancies, promoting cancer initiation, growth and metastasis and the development of drug resistance. The ability of cancer cells to metastasize is the primary cause of cancer mortality. Bone is one of the most frequent sites of metastases that generally arise from breast, prostate, lung, melanoma or kidney cancer. Upon their arrival to the bone, cancer cells can enter a long-term dormancy period, from which they can be reactivated, but can rarely be cured. The activation of Wnt signaling during the bone metastasis process was found to enhance proliferation, induce the epithelial-to-mesenchymal transition, promote the modulation of the extracellular matrix, enhance angiogenesis and immune tolerance and metastasize and thrive in the bone. Due to the complexity of Wnt pathways and of the landscape of this mineralized tissue, Wnt function during metastatic progression within bone is not yet fully understood. Therefore, we believe that a better understanding of these pathways and their roles in the development of bone metastasis could improve our understanding of the disease and may constitute fertile ground for potential therapeutics.
Collapse
|
3
|
Nam YS, Yang DW, Moon JS, Kang JH, Cho JH, Kim OS, Kim MS, Koh JT, Kim YJ, Kim SH. Sclerostin in Periodontal Ligament: Homeostatic Regulator in Biophysical Force-Induced Tooth Movement. J Clin Periodontol 2022; 49:932-944. [PMID: 35373367 DOI: 10.1111/jcpe.13624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
AIM This study elucidates the role of sclerostin in periodontal ligament (PDL) as a homeostatic regulator in biophysical force-induced tooth movement (BFTM). MATERIALS AND METHODS BFTM was performed in rats, followed by microarray, immunofluorescence, in situ hybridization, and real-time PCR for detection and identification of the molecules. The periodontal space was analyzed via micro-computed tomography. Effects on osteoclastogenesis and bone resorption were evaluated in mouse bone marrow-derived cells. In vitro human PDL cells were subjected to biophysical forces. RESULTS In the absence of BFTM, sclerostin was hardly detected in the periodontium except the PDL and alveolar bone in the furcation region and apex of the molar roots. However, sclerostin was upregulated in the PDL in vivo by adaptable force, which induced typical transfiguration without changes in periodontal space as well as in vitro PDL cells under compression and tension. In contrast, the sclerostin level was unaffected by heavy force, which caused severe degeneration of the PDL and narrowed periodontal space. Sclerostin inhibited osteoclastogenesis and bone resorption, which corroborates the accelerated tooth movement by the heavy force. CONCLUSIONS Sclerostin in PDL may be a key homeostatic molecule in the periodontium and a biological target for the therapeutic modulation of BFTM. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yoo-Sung Nam
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Dong-Wook Yang
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jung-Sun Moon
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jee-Hae Kang
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jin-Hyoung Cho
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ok-Su Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jeong-Tae Koh
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Young-Jun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
4
|
Phoenix dactilyfera L. Pits Extract Restored Bone Homeostasis in Glucocorticoid-Induced Osteoporotic Animal Model through the Antioxidant Effect and Wnt5a Non-Canonical Signaling. Antioxidants (Basel) 2022; 11:antiox11030508. [PMID: 35326158 PMCID: PMC8944842 DOI: 10.3390/antiox11030508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress associated with long-term glucocorticoids administration is a route through which secondary osteoporosis can be developed. The therapeutic potential of Phoenix dactilyfera L. pits is offered by their balanced, valuable and diverse phytochemical composition providing protective potential against oxidative reactions, making it a good candidate to treat glucocorticoid-induced osteoporosis (GIO). This study evaluates the possible anti-osteoporotic effect of date pit extract (DPE) against dexamethasone (DEXA)-induced osteoporosis. Male rats were allocated into three control groups, which received saline, low and high doses of DPE (150 and 300 mg/kg/day), respectively. Osteoporosis-induced groups that received DEXA (1 mg/kg/day) were divided into DEXA only, DPE (2 doses) + DEXA, and ipriflavone + DEXA. Femoral bone minerals density and bone mineral content, bone oxidative stress markers, Wnt signaling, osteoblast and osteoclast differentiation markers, and femur histopathology were evaluated. DPE defeated the oxidative stress, resulting in ameliorative changes in Wnt signaling. DPE significantly reduced the adipogenicity and abolished the osteoclastogenic markers (RANKL/OPG ratio, ACP, TRAP) while enhancing the osteogenic differentiation markers (Runx2, Osx, COL1A1, OCN). In Conclusion DPE restored the balanced proliferation and differentiation of osteoclasts and osteoblasts precursors. DPE can be considered a promising remedy for GIO, especially at a low dose that had more potency.
Collapse
|
5
|
Ye X, Liu X. Wnt16 signaling in bone homeostasis and osteoarthristis. Front Endocrinol (Lausanne) 2022; 13:1095711. [PMID: 36619549 PMCID: PMC9815800 DOI: 10.3389/fendo.2022.1095711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Wnts are secreted cysteine-rich glycoproteins involved in joint development and skeletal homeostasis and have been implicated in the occurrence of osteoarthritis. Over the past decade, Wnt16, a member of the Wnt family, has received widespread attention for its strong association with bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. In recent years, further studies have shed light on the role of Wnt16 a positive regulator of bone mass and protective regulator of osteoarthritis progression. Transduction mechanisms and crosstalk involving Wnt16 signaling have also been illustrated. More importantly, local Wnt16 treatment has been shown to ease osteoarthritis, inhibit bone resorption, and promote new bone formation in bone defect models. Thus, Wnt16 is now a potential therapeutic target for skeletal diseases and osteoarthritis. This paper reviews our current understanding of the mechanisms by which Wnt16 signaling regulates bone homeostasis and osteoarthritis.
Collapse
|
6
|
Zhang X, Deng HW, Shen H, Ehrlich M. Prioritization of Osteoporosis-Associated Genome-wide Association Study (GWAS) Single-Nucleotide Polymorphisms (SNPs) Using Epigenomics and Transcriptomics. JBMR Plus 2021; 5:e10481. [PMID: 33977200 PMCID: PMC8101624 DOI: 10.1002/jbm4.10481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/10/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic risk factors for osteoporosis, a prevalent disease associated with aging, have been examined in many genome-wide association studies (GWASs). A major challenge is to prioritize transcription-regulatory GWAS-derived variants that are likely to be functional. Given the critical role of epigenetics in gene regulation, we have used an unusual epigenetics-based and transcription-based approach to identify some of the credible regulatory single-nucleotide polymorphisms (SNPs) relevant to osteoporosis from 38 reported bone mineral density (BMD) GWASs. Using Roadmap databases, we prioritized SNPs based upon their overlap with strong enhancer or promoter chromatin preferentially in osteoblasts relative to 12 heterologous cell culture types. We also required that these SNPs overlap open chromatin (Deoxyribonuclease I [DNaseI]-hypersensitive sites) and DNA sequences predicted to bind to osteoblast-relevant transcription factors in an allele-specific manner. From >50,000 GWAS-derived SNPs, we identified 14 novel and credible regulatory SNPs (Tier-1 SNPs) for osteoporosis risk. Their associated genes, BICC1, LGR4, DAAM2, NPR3, or HMGA2, are involved in osteoblastogenesis or bone homeostasis and regulate cell signaling or enhancer function. Four of these genes are preferentially expressed in osteoblasts. BICC1, LGR4, and DAAM2 play important roles in canonical Wnt signaling, a pathway critical for bone formation and repair. The transcription factors predicted to bind to the Tier-1 SNP-containing DNA sequences also have bone-related functions. We present evidence that some of the Tier-1 SNPs exert their effects on BMD risk indirectly through little-studied long noncoding RNA (lncRNA) genes, which may, in turn, control the nearby bone-related protein-encoding gene. Our study illustrates a method to identify novel BMD-related causal regulatory SNPs for future study and to prioritize candidate regulatory GWAS-derived SNPs, in general. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA.,Tulane Cancer Center and Hayward Genetics Center Tulane University New Orleans LA USA
| |
Collapse
|
7
|
McGowan LM, Kague E, Vorster A, Newham E, Cross S, Hammond CL. Wnt16 Elicits a Protective Effect Against Fractures and Supports Bone Repair in Zebrafish. JBMR Plus 2021; 5:e10461. [PMID: 33778326 PMCID: PMC7990157 DOI: 10.1002/jbm4.10461] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/09/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022] Open
Abstract
Bone homeostasis is a dynamic, multicellular process that is required throughout life to maintain bone integrity, prevent fracture, and respond to skeletal damage. WNT16 has been linked to bone fragility and osteoporosis in human genome wide‐association studies, as well as the functional hematopoiesis of leukocytes in vivo. However, the mechanisms by which WNT16 promotes bone health and repair are not fully understood. In this study, CRISPR‐Cas9 was used to generate mutant zebrafish lacking Wnt16 (wnt16−/−) to study its effect on bone dynamically. The wnt16 mutants displayed variable tissue mineral density (TMD) and were susceptible to spontaneous fractures and the accumulation of bone calluses at an early age. Fractures were induced in the lepidotrichia of the caudal fins of wnt16−/− and WT zebrafish; this model was used to probe the mechanisms by which Wnt16 regulates skeletal and immune cell dynamics in vivo. In WT fins, wnt16 expression increased significantly during the early stages for bone repair. Mineralization of bone during fracture repair was significantly delayed in wnt16 mutants compared with WT zebrafish. Surprisingly, there was no evidence that the recruitment of innate immune cells to fractures or soft callus formation was altered in wnt16 mutants. However, osteoblast recruitment was significantly delayed in wnt16 mutants postfracture, coinciding with precocious activation of the canonical Wnt signaling pathway. In situ hybridization suggests that canonical Wnt‐responsive cells within fractures are osteoblast progenitors, and that osteoblast differentiation during bone repair is coordinated by the dynamic expression of runx2a and wnt16. This study highlights zebrafish as an emerging model for functionally validating osteoporosis–associated genes and investigating fracture repair dynamically in vivo. Using this model, it was found that Wnt16 protects against fracture and supports bone repair, likely by modulating canonical Wnt activity via runx2a to facilitate osteoblast differentiation and bone matrix deposition. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience University of Bristol Bristol UK
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience University of Bristol Bristol UK
| | - Alistair Vorster
- School of Physiology, Pharmacology and Neuroscience University of Bristol Bristol UK
| | - Elis Newham
- School of Physiology, Pharmacology and Neuroscience University of Bristol Bristol UK
| | - Stephen Cross
- Wolfson Bioimaging Facility University of Bristol Bristol UK
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience University of Bristol Bristol UK
| |
Collapse
|
8
|
Becker D, Weikard R, Schulze C, Wohlsein P, Kühn C. A 50-kb deletion disrupting the RSPO2 gene is associated with tetradysmelia in Holstein Friesian cattle. Genet Sel Evol 2020; 52:68. [PMID: 33176673 PMCID: PMC7661195 DOI: 10.1186/s12711-020-00586-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background Tetradysmelia is a rare genetic disorder that is characterized by an extremely severe reduction of all limb parts distal of the scapula and pelvic girdle. We studied a Holstein Friesian backcross family with 24 offspring, among which six calves displayed autosomal recessive tetradysmelia. In order to identify the genetic basis of the disorder, we genotyped three affected calves, five dams and nine unaffected siblings using a Bovine Illumina 50 k BeadChip and sequenced the whole genome of the sire. Results Pathological examination of four tetradysmelia cases revealed a uniform and severe dysmelia of all limbs. Applying a homozygosity mapping approach, we identified a homozygous region of 10.54 Mb on chromosome 14 (Bos taurus BTA14). Only calves that were diagnosed with tetradysmelia shared a distinct homozygous haplotype for this region. We sequenced the whole genome of the cases’ sire and searched for heterozygous single nucleotide polymorphisms (SNPs) and small variants on BTA14 that were uniquely present in the sire and absent from 3102 control whole-genome sequences of the 1000 Bull Genomes Project, but none were identified in the 10.54-Mb candidate region on BTA14. Therefore, we subsequently performed a more comprehensive analysis by also considering structural variants and detected a 50-kb deletion in the targeted chromosomal region that was in the heterozygous state in the cases’ sire. Using PCR, we confirmed that this detected deletion segregated perfectly within the family with tetradysmelia. The deletion spanned three exons of the bovine R-spondin 2 (RSPO2) gene, which encode three domains of the respective protein. R-spondin 2 is a secreted ligand of leucine-rich repeats containing G protein-coupled receptors that enhance Wnt signalling and is involved in a broad range of developmental processes during embryogenesis. Conclusions We identified a 50-kb deletion on BTA14 that disrupts the coding sequence of the RSPO2 gene and is associated with bovine tetradysmelia. To our knowledge, this is the first reported candidate causal mutation for tetradysmelia in a large animal model. Since signalling pathways involved in limb development are conserved across species, the observed inherited defect may serve as a model to further elucidate fundamental pathways of limb development.
Collapse
Affiliation(s)
- Doreen Becker
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Rosemarie Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Christoph Schulze
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Landeslabor Berlin-Brandenburg, Frankfurt (Oder), Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Christa Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany. .,Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany.
| |
Collapse
|
9
|
Schupbach D, Comeau-Gauthier M, Harvey E, Merle G. Wnt modulation in bone healing. Bone 2020; 138:115491. [PMID: 32569871 DOI: 10.1016/j.bone.2020.115491] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Genetic studies have been instrumental in the field of orthopaedics for finding tools to improve the standard management of fractures and delayed unions. The Wnt signaling pathway that is crucial for development and maintenance of many organs also has a very promising pathway for enhancement of bone regeneration. The Wnt pathway has been shown to have a direct effect on stem cells during bone regeneration, making Wnt a potential target to stimulate bone repair after trauma. A more complete view of how Wnt influences animal bone regeneration has slowly come to light. This review article provides an overview of studies done investigating the modulation of the canonical Wnt pathway in animal bone regeneration models. This not only includes a summary of the recent work done elucidating the roles of Wnt and β-catenin in fracture healing, but also the results of thirty transgenic studies, and thirty-eight pharmacological studies. Finally, we discuss the discontinuation of sclerostin clinical trials, ongoing clinical trials with lithium, the results of Dkk antibody clinical trials, the shift into combination therapies and the future opportunities to enhance bone repair and regeneration through the modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Drew Schupbach
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Marianne Comeau-Gauthier
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Edward Harvey
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada.
| | - Geraldine Merle
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Department of Chemical Engineering, Polytechnique Montreal, 2500, chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
10
|
Ohshima H, Amizuka N. Oral biosciences: The annual review 2018. J Oral Biosci 2019; 61:1-4. [PMID: 30929795 DOI: 10.1016/j.job.2019.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to the advancement and dissemination of fundamental knowledge regarding every aspect of oral biosciences. HIGHLIGHT This editorial review features summaries of review articles in the fields of "Bone Biology," "Epigenomics," "Periodontium," and "Amelogenesis" in addition to review articles by winners of the Lion Dental Research Award ("Role of non-canonical Wnt signaling pathways in bone resorption," "Mechanisms of orofacial sensory processing in the rat insular cortex," and "Analysis of the mechanism in salivary gland development using gene database") and the Rising Members Award ("Synergistic findings from microbiological and evolutional analyses of virulence factors among pathogenic streptococcal species" and "Free fatty acids may be involved in the pathogenesis of oral-related and cardiovascular diseases"), presented by the Japanese Association for Oral Biology. CONCLUSION These reviews published in the Journal of Oral Biosciences have inspired the readers of the Journal to broaden their knowledge of various aspects in the oral biosciences. This editorial review summarizes these exciting articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|