1
|
Tanideh N, Sarikhani M, Emami M, Alipanah M, Mohammadi Y, Mokhtarzadegan M, Jamshidzadeh A, Zare S, Daneshi S, Feiz A, Irajie C, Iraji A. Fabrication of porous collagen-stem cells-dexamethasone scaffold as a novel approach for regeneration of mandibular bone defect. Oral Maxillofac Surg 2025; 29:65. [PMID: 40072639 DOI: 10.1007/s10006-025-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/13/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Bone defects, particularly in the mandible, pose significant clinical challenges due to the limited regenerative capacity. Effective bone tissue engineering requires biomaterials that promote both osteogenesis and angiogenesis. This study developed an optimized collagen-nano hydroxyapatite scaffold loaded with dexamethasone and stem cells to enhance bone regeneration. METHODS The scaffold was fabricated using the freeze-dryer method. Characterization was performed using Fourier Transform Infrared Spectroscopy (FTIR), energy-dispersive X-ray (EDX) analysis, and scanning electron microscopy (SEM). Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) were incorporated into the scaffold, and in vitro and in vivo assessments were conducted. RESULTS FTIR and EDX analyses confirmed the successful incorporation of nano-hydroxyapatite and dexamethasone. SEM revealed an interconnected porous structure with an average pore size of 28.55 µm. The scaffold loaded with WJ-MSCs significantly enhanced osteocyte and osteoblast populations, leading to improved mandibular bone formation. Histopathological evaluations demonstrated superior osteogenesis and angiogenesis. CONCLUSION The developed porous nanohybrid scaffold shows potential as a promising biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobina Sarikhani
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Emami
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Yasaman Mohammadi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Daneshi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Feiz
- Department of Material Science and Engineering, Shiraz University, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Mohammad Mirzapour S, Jalali F. Stem cell therapy for regenerating periodontal bony defects: A narrative review. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2025; 17:1-14. [PMID: 40265031 PMCID: PMC12010474 DOI: 10.34172/japid.025.3749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 04/24/2025]
Abstract
Periodontal bony defects pose a significant challenge in periodontology, necessitating advanced regenerative approaches to restore the lost structures. Stem cell-based therapies have emerged as a promising solution due to their ability to differentiate into various cells, modulating the regenerative microenvironment. This narrative review explores the potential of stem cells derived from multiple sources in treating periodontal bony defects. Additionally, we examine evidence from both animal and human studies, highlighting advancements, clinical outcomes, and limitations. By investigating these findings, this article provides a comprehensive overview of the advantages of stem cell-based therapies compared to other regenerative techniques in addressing periodontal bony defects and discusses the limitations of their translation into routine clinical practice.
Collapse
Affiliation(s)
- Samira Mohammad Mirzapour
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Jalali
- Student Research Committee, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Ivanovski S, Han P, Peters O, Sanz M, Bartold P. The Therapeutic Use of Dental Mesenchymal Stem Cells in Human Clinical Trials. J Dent Res 2024; 103:1173-1184. [PMID: 39370700 PMCID: PMC11562285 DOI: 10.1177/00220345241261900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Mesenchymal stem cells (MSCs), characterized by their undifferentiated and multipotent nature, can be derived from various sources, including bone marrow, adipose, and dental tissues. Among these, dental MSCs (DSCs) exhibit universal MSC characteristics and are attracting considerable attention for regenerating oral and craniofacial tissues. This review provides a contemporary overview of recently published clinical studies using DSCs for various orodental and maxillofacial regenerative applications, including bone, periodontal, and endodontic regeneration. It also explores the utilization of DSCs in treating systemic conditions, exemplified by their application in managing conditions such as COVID-19 and osteoarthritis. The available evidence underscores the potential of DSCs and their secretome as efficacious tools in regenerative medicine for both dental and nondental clinical applications, supporting the continued promise of stem cell-based therapies. It is nevertheless evident that there are a number of important challenges that restrict the widespread utilization of DSCs, namely, difficulty in standardizing autologous preparations, insufficient cell surface marker characterization, high production costs, and regulatory compliance requirements. Further, the unique requirements of dental applications, especially complex structures such as the periodontium, where temporospatial control over the healing process is required, necessitate the combination of stem cells with appropriate scaffolds according to the principles of tissue engineering. There is currently insufficient evidence to support the clinical translation of DSCs into clinical practice, and phase 3 clinical trials with standardized protocols for cell sourcing, propagation, dosing, and delivery are required to move the field forward. In summary, this review provides a contemporary overview of the evolving landscape of stem cell therapy, offering insights into the latest developments and trends as well as the challenges that need to be addressed for the widespread application of DSC-based cell therapies.
Collapse
Affiliation(s)
- S. Ivanovski
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | - P. Han
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia
| | - O.A. Peters
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | - M. Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, Faculty of Odontology, University Complutense of Madrid, Plaza Ramón y Cajalsn (Ciudad Universitaria), Madrid, Spain
| | - P.M. Bartold
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
- The University of Adelaide, School of Dentistry, Adelaide, SA, Australia
| |
Collapse
|
4
|
Tanideh N, Bordbar A, Bordbar H, Khaghaninejad MS, Daneshi S, Torabi Ardekani S, Iraji A, Zare S, Khodabandeh Z, Sarafraz N, Tanideh R, Zarei M, Irajie C. Evaluation of the Bone Formation Potential of Collagen/ß-TCP/Ginger Extract Scaffold Loaded with Mesenchymal Stem Cells in Rat Animal model: A Stereological Study. J Maxillofac Oral Surg 2024; 23:1331-1342. [PMID: 39376777 PMCID: PMC11455761 DOI: 10.1007/s12663-022-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Abstract
Tissue engineering offers a new horizon for restoring the function of damaged tissues and organs. Here, bone regeneration potential of three-dimensional (3D) scaffold made of collagen/beta-tricalcium phosphate/ginger hydroalcoholic extract (COL-ß-TCP-GIN) loaded with stem cells was evaluated. The scaffolds with different component ratios were fabricated using a freeze dryer to obtain the optimum composition. The scaffolds' chemical, physical, and biological characteristics were evaluated using scanning electron microscope, fourier transform infrared spectroscopy, tensile testing machine, and cytotoxicity assay. The optimum scaffold's bone repairing potential was assessed with loaded synovial membrane mesenchymal stem cells (SM-MSCs) in mandibular bone defect of a rat animal model after two months. The ß-TCP component up to 30% could increase the tensile strength of the freeze-dried scaffold. In comparison, the GIN up to 5% was selected as a sufficient amount to be incorporated with the scaffolds. The morphology of scaffolds showed a suitable porosity for cells to proliferate and migrate. In vitro cytotoxicity results showed that GIN increased the cell viability up to 7 days. Regarding in vivo bone regeneration study, histopathology and stereology assessments showed the mandibular bone formation in COL/β-TCP/GIN scaffolds with SM-MSCs group significantly increased compared to COL/β-TCP/GIN without cells and sham groups. These results demonstrated the effectiveness of COL/β-TCP/GIN scaffold with SM-MSCs to induce bone formation, and this composite can be applied in dental and reconstructive surgery. Supplementary Information The online version contains supplementary material available at 10.1007/s12663-022-01829-9.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Bordbar
- Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bordbar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Khaghaninejad
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Daneshi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Torabi Ardekani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sarafraz
- Department of Periodontology, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Romina Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Zarei
- Department of Polymer and Biomaterials Science, West Pomeranian University of Technology, Szczecin, Poland
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Chen H, Xu J, Dun Z, Yang Y, Wang Y, Shu F, Zhang Z, Liu M. Emulsion electrospun epigallocatechin gallate-loaded silk fibroin/polycaprolactone nanofibrous membranes for enhancing guided bone regeneration. Biomed Mater 2024; 19:055039. [PMID: 39121887 DOI: 10.1088/1748-605x/ad6dc8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Guided bone regeneration (GBR) membranes play an important role in oral bone regeneration. However, enhancing their bone regeneration potential and antibacterial properties is crucial. Herein, silk fibroin (SF)/polycaprolactone (PCL) core-shell nanofibers loaded with epigallocatechin gallate (EGCG) were prepared using emulsion electrospinning. The nanofibrous membranes were characterized via scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, water contact angle (CA) measurement, mechanical properties testing, drug release kinetics, and 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) free radical scavenging assay. Mouse pre-osteoblast MC3T3-E1 cells were used to assess the biological characteristics, cytocompatibility, and osteogenic differentiation potential of the nanofibrous membrane. Additionally, the antibacterial properties againstStaphylococcus aureus (S. aureus)andEscherichia coli (E. coli)were evaluated. The nanofibers prepared by emulsion electrospinning exhibited a stable core-shell structure with a smooth and continuous surface. The tensile strength of the SF/PCL membrane loaded with EGCG was 3.88 ± 0.15 Mpa, the water CA was 50°, and the DPPH clearance rate at 24 h was 81.73% ± 0.07%. The EGCG release rate of membranes prepared by emulsion electrospinning was reduced by 12% within 72 h compared to that of membranes prepared via traditional electrospinning.In vitroexperiments indicate that the core-shell membranes loaded with EGCG demonstrated good cell compatibility and promoted adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. Furthermore, the EGCG-loaded membranes exhibited inhibitory effects onE. coliandS. aureus. These findings indicate that core-shell nanofibrous membranes encapsulated with EGCG prepared using emulsion electrospinning possess good antioxidant, osteogenic, and antibacterial properties, making them potential candidates for research in GBR materials.
Collapse
Affiliation(s)
- Hong Chen
- Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China
| | - Jiya Xu
- Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China
| | - Zhiyue Dun
- Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China
| | - Yi Yang
- Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China
| | - Yueqiu Wang
- Department of Endodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China
| | - Fei Shu
- Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China
| | - Zhihao Zhang
- Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China
| | - Mei Liu
- Department of Prosthodontics, The Affiliated Stomatological Hosptial of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, People's Republic of China
| |
Collapse
|
6
|
Daneshian Y, Lewallen EA, Badreldin AA, Dietz AB, Stein GS, Cool SM, Ryoo HM, Cho YD, van Wijnen AJ. Fundamentals and Translational Applications of Stem Cells and Biomaterials in Dental, Oral and Craniofacial Regenerative Medicine. Crit Rev Eukaryot Gene Expr 2024; 34:37-60. [PMID: 38912962 DOI: 10.1615/critreveukaryotgeneexpr.2024053036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Regenerative dental medicine continuously expands to improve treatments for prevalent clinical problems in dental and oral medicine. Stem cell based translational opportunities include regenerative therapies for tooth restoration, root canal therapy, and inflammatory processes (e.g., periodontitis). The potential of regenerative approaches relies on the biological properties of dental stem cells. These and other multipotent somatic mesenchymal stem cell (MSC) types can in principle be applied as either autologous or allogeneic sources in dental procedures. Dental stem cells have distinct developmental origins and biological markers that determine their translational utility. Dental regenerative medicine is supported by mechanistic knowledge of the molecular pathways that regulate dental stem cell growth and differentiation. Cell fate determination and lineage progression of dental stem cells is regulated by multiple cell signaling pathways (e.g., WNTs, BMPs) and epigenetic mechanisms, including DNA modifications, histone modifications, and non-coding RNAs (e.g., miRNAs and lncRNAs). This review also considers a broad range of novel approaches in which stem cells are applied in combination with biopolymers, ceramics, and composite materials, as well as small molecules (agonistic or anti-agonistic ligands) and natural compounds. Materials that mimic the microenvironment of the stem cell niche are also presented. Promising concepts in bone and dental tissue engineering continue to drive innovation in dental and non-dental restorative procedures.
Collapse
Affiliation(s)
- Yasaman Daneshian
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | - Amr A Badreldin
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT 05405; University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Simon M Cool
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Hyun-Mo Ryoo
- School of Dentistry, Seoul National University, 28 Yeonkun-dong, Chongro-gu Seoul, 110-749, Republic of Korea
| | - Young Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, 101 Daehak‑no, Jongno‑gu, Seoul 03080, Republic of Korea
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
7
|
Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15:2109. [PMID: 37631323 PMCID: PMC10459416 DOI: 10.3390/pharmaceutics15082109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José María Parmigiani-Cabaña
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), 28040 Madrid, Spain
| |
Collapse
|
8
|
Alarcón-Apablaza J, Prieto R, Rojas M, Fuentes R. Potential of Oral Cavity Stem Cells for Bone Regeneration: A Scoping Review. Cells 2023; 12:1392. [PMID: 37408226 PMCID: PMC10216382 DOI: 10.3390/cells12101392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Bone loss is a common problem that ranges from small defects to large defects after trauma, surgery, or congenital malformations. The oral cavity is a rich source of mesenchymal stromal cells (MSCs). Researchers have documented their isolation and studied their osteogenic potential. Therefore, the objective of this review was to analyze and compare the potential of MSCs from the oral cavity for use in bone regeneration. METHODS A scoping review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The databases reviewed were PubMed, SCOPUS, Scientific Electronic Library Online (SciELO), and Web of Science. Studies using stem cells from the oral cavity to promote bone regeneration were included. RESULTS A total of 726 studies were found, of which 27 were selected. The MSCs used to repair bone defects were (I) dental pulp stem cells of permanent teeth, (II) stem cells derived from inflamed dental pulp, (III) stem cells from exfoliated deciduous teeth, (IV) periodontal ligament stem cells, (V) cultured autogenous periosteal cells, (VI) buccal fat pad-derived cells, and (VII) autologous bone-derived mesenchymal stem cells. Stem cells associate with scaffolds to facilitate insertion into the bone defect and to enhance bone regeneration. The biological risk and morbidity of the MSC-grafted site were minimal. Successful bone formation after MSC grafting has been shown for small defects with stem cells from the periodontal ligament and dental pulp as well as larger defects with stem cells from the periosteum, bone, and buccal fat pad. CONCLUSIONS Stem cells of maxillofacial origin are a promising alternative to treat small and large craniofacial bone defects; however, an additional scaffold complement is required for stem cell delivery.
Collapse
Affiliation(s)
- Josefa Alarcón-Apablaza
- Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Ruth Prieto
- Department of Pediatrics and Pediatric Surgery, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Mariana Rojas
- Comparative Embryology Laboratory, Program of Anatomy and Developmental Biology, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile
| | - Ramón Fuentes
- Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile
- Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
9
|
Yang W, Wang C, Luo W, Apicella A, Ji P, Wang G, Liu B, Fan Y. Effectiveness of biomechanically stable pergola-like additively manufactured scaffold for extraskeletal vertical bone augmentation. Front Bioeng Biotechnol 2023; 11:1112335. [PMID: 37057137 PMCID: PMC10089125 DOI: 10.3389/fbioe.2023.1112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Objective: Extraskeletal vertical bone augmentation in oral implant surgery requires extraosseous regeneration beyond the anatomical contour of the alveolar bone. It is necessary to find a better technical/clinical solution to solve the dilemma of vertical bone augmentation. 3D-printed scaffolds are all oriented to general bone defect repair, but special bone augmentation design still needs improvement.Methods: This study aimed to develop a structural pergola-like scaffold to be loaded with stem cells from the apical papilla (SCAPs), bone morphogenetic protein 9 (BMP9) and vascular endothelial growth factor (VEGF) to verify its bone augmentation ability even under insufficient blood flow supply. Scaffold biomechanical and fluid flow optimization design by finite element analysis (FEA) and computational fluid dynamics (CFD) was performed on pergola-like additive-manufactured scaffolds with various porosity and pore size distributions. The scaffold geometrical configuration showing better biomechanical and fluid dynamics properties was chosen to co-culture for 2 months in subcutaneously into nude mice, with different SCAPs, BMP9, and (or) VEGF combinations. Finally, the samples were removed for Micro-CT and histological analysis.Results: Micro-CT and histological analysis of the explanted scaffolds showed new bone formation in the “Scaffold + SCAPs + BMP9” and the “Scaffold + SCAPs + BMP9 + VEGF” groups where the VEGF addition did not significantly improve osteogenesis. No new bone formation was observed either for the “Blank Scaffold” and the “Scaffold + SCAPs + GFP” group. The results of this study indicate that BMP9 can effectively promote the osteogenic differentiation of SCAPs.Conclusion: The pergola-like scaffold can be used as an effective carrier and support device for new bone regeneration and mineralization in bone tissue engineering, and can play a crucial role in obtaining considerable vertical bone augmentation even under poor blood supply.
Collapse
Affiliation(s)
- Wei Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
- *Correspondence: Chao Wang,
| | - Wenping Luo
- Laboratory Animal Center, Southwest University, Chongqing, China
| | - Antonio Apicella
- Advanced Materials Lab, Department of Architecture and Industrial Design, University of Campania, Aversa, Italy
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Gong Wang
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
| | - Bingshan Liu
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
10
|
Zhao J, Zhou YH, Zhao YQ, Gao ZR, Ouyang ZY, Ye Q, Liu Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Dusenge MA, Feng YZ, Guo Y. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther 2023; 14:39. [PMID: 36927449 PMCID: PMC10022059 DOI: 10.1186/s13287-023-03265-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Jaw-bone defects caused by various diseases lead to aesthetic and functional complications, which can seriously affect the life quality of patients. Current treatments cannot fully meet the needs of reconstruction of jaw-bone defects. Thus, the research and application of bone tissue engineering are a "hot topic." As seed cells for engineering of jaw-bone tissue, oral cavity-derived stem cells have been explored and used widely. Models of jaw-bone defect are excellent tools for the study of bone defect repair in vivo. Different types of bone defect repair require different stem cells and bone defect models. This review aimed to better understand the research status of oral and maxillofacial bone regeneration. MAIN TEXT Data were gathered from PubMed searches and references from relevant studies using the search phrases "bone" AND ("PDLSC" OR "DPSC" OR "SCAP" OR "GMSC" OR "SHED" OR "DFSC" OR "ABMSC" OR "TGPC"); ("jaw" OR "alveolar") AND "bone defect." We screened studies that focus on "bone formation of oral cavity-derived stem cells" and "jaw bone defect models," and reviewed the advantages and disadvantages of oral cavity-derived stem cells and preclinical model of jaw-bone defect models. CONCLUSION The type of cell and animal model should be selected according to the specific research purpose and disease type. This review can provide a foundation for the selection of oral cavity-derived stem cells and defect models in tissue engineering of the jaw bone.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ya-Qing Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
11
|
Tahmasebi E, Mohammadi M, Alam M, Abbasi K, Gharibian Bajestani S, Khanmohammad R, Haseli M, Yazdanian M, Esmaeili Fard Barzegar P, Tebyaniyan H. The current regenerative medicine approaches of craniofacial diseases: A narrative review. Front Cell Dev Biol 2023; 11:1112378. [PMID: 36926524 PMCID: PMC10011176 DOI: 10.3389/fcell.2023.1112378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Craniofacial deformities (CFDs) develop following oncological resection, trauma, or congenital disorders. Trauma is one of the top five causes of death globally, with rates varying from country to country. They result in a non-healing composite tissue wound as they degenerate in soft or hard tissues. Approximately one-third of oral diseases are caused by gum disease. Due to the complexity of anatomical structures in the region and the variety of tissue-specific requirements, CFD treatments present many challenges. Many treatment methods for CFDs are available today, such as drugs, regenerative medicine (RM), surgery, and tissue engineering. Functional restoration of a tissue or an organ after trauma or other chronic diseases is the focus of this emerging field of science. The materials and methodologies used in craniofacial reconstruction have significantly improved in the last few years. A facial fracture requires bone preservation as much as possible, so tiny fragments are removed initially. It is possible to replace bone marrow stem cells with oral stem cells for CFDs due to their excellent potential for bone formation. This review article discusses regenerative approaches for different types of craniofacial diseases.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- School of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Gharibian Bajestani
- Student Research Committee, Dentistry Research Center, Research Institute of Dental Sciences, Dental School, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Rojin Khanmohammad
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Haseli
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
12
|
Jin S, Jiang H, Sun Y, Li F, Xia J, Li Y, Zheng J, Qin Y. Osteogenic differentiation of periodontal membrane stem cells in inflammatory environments. Open Life Sci 2022; 17:1240-1248. [PMID: 36213382 PMCID: PMC9490861 DOI: 10.1515/biol-2022-0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is a common disease that is difficult to treat, and if not controlled in time, it causes severe conditions, such as alveolar bone resorption and tooth loosening and loss. Periodontal ligament stem cells constitute a promising cell source for regenerative treatment of periodontitis due to their high osteogenic differentiation capacity. PDLSC osteogenesis plays a central role in periodontal regeneration through successive cytokine-mediated signaling pathways and various biochemical and physicochemical factors. However, this process is inhibited in the inflammatory periodontitis environment due to high concentrations of lipopolysaccharide. Here, we review the mechanisms that influence the osteogenic differentiation of periodontal stem cells in this inflammatory microenvironment.
Collapse
Affiliation(s)
- Shenghao Jin
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Haitao Jiang
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Yue Sun
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Fang Li
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Jianglan Xia
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Yaxin Li
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Jiwei Zheng
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| | - Ying Qin
- Department of Periodontics, School of Stomatology, Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Xuzhou Medical University , Xuzhou , Jiangsu, 221000 , China
| |
Collapse
|
13
|
Wang Y, Zhang S, Yang H, Cao Y, Yu D, Zhao Y, Cao Y. MicroRNA-196a-5p overexpression in Wharton's jelly umbilical cord stem cells promotes their osteogenic differentiation and new bone formation in bone defects in the rat calvarium. Cell Tissue Res 2022; 390:245-260. [PMID: 35925405 DOI: 10.1007/s00441-022-03673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
The peri-tooth root alveolar loss often does not have sufficient space for repair material transplantation and plasticity. Mesenchymal stem cell (MSC) sheets have an advantage in providing more extracellular matrix (ECM) and may prove to be a new therapeutic consideration for this bone defect repair. The identification of key regulators that stimulate MSCs' osteogenic potential and sheet-derived ECM deposition is the key to promoting its application. In this study, we found that inhibition or overexpression of miR-196a-5p led to a decline or enhancement, respectively, in the alkaline phosphatase (ALP) activity, mineralization, and the levels of osteogenic markers, Osteocalcin (OCN), Dentin Matrix Protein 1 (DMP1), Bone Sialoprotein (BSP), and Dentin Sialophosphoprotein (DSPP) of Wharton's jelly of umbilical cord stem cells (WJCMSCs) in vitro. Moreover, the 5,6-Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) analysis revealed inhibition of the WJCMSCs' proliferative ability upon miR-196a-5p overexpression. Characterization of the sheet formation by picrosirius red and Masson staining indicated that miR-196a-5p overexpression significantly promoted the collagen content in whole WJCMSC sheet-derived ECM. Furthermore, micro-CT and histopathology results indicated that the miR-196a-5p-overexpressed WJCMSC sheets significantly promoted new bone regeneration and rat calvarial bone defect closure 12 weeks following transplantation. The mRNA microarray analysis of miR-196a-5p-overexpressed WJCMSCs revealed 959 differentially expressed genes (DEGs) (34 upregulated and 925 downregulated). Moreover, 241 genes targeted by miR-196a-5p were predicted by using miRNA function websites of which only 19 predicted genes were consistent with the microarray revealed DEGs. Hence, one unrevealed downregulated DEG Serpin Family B Member 2 (SERPINB2) was investigated. And the deletion of SERPINB2 enhanced the ALP activity and mineralization of WJCMSCs in vitro. In conclusion, our study found that miR-196a-5p, as a key regulator, could repress the proliferation tendency, while stimulating osteogenic ability and WJCMSC sheet-derived ECM deposition, thus promoting new bone formation and rat calvarial bone defect closure. Furthermore, SERPINB2 is a key downstream gene involved in the miR-196a-5p-promoted WJCMSC osteogenesis.
Collapse
Affiliation(s)
- Yantong Wang
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China.,Laboratory of Molecular Signaling and Stem Cells TherapyKey Laboratory of Tooth Regeneration and Function ReconstructionDongcheng District, Capital Medical University School of Stomatology, 4 Tiantanxili, BeijingBeijing, 100050, China
| | - Simin Zhang
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells TherapyKey Laboratory of Tooth Regeneration and Function ReconstructionDongcheng District, Capital Medical University School of Stomatology, 4 Tiantanxili, BeijingBeijing, 100050, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells TherapyKey Laboratory of Tooth Regeneration and Function ReconstructionDongcheng District, Capital Medical University School of Stomatology, 4 Tiantanxili, BeijingBeijing, 100050, China
| | - Dianqin Yu
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Yingchu Zhao
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Yu Cao
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China. .,Laboratory of Molecular Signaling and Stem Cells TherapyKey Laboratory of Tooth Regeneration and Function ReconstructionDongcheng District, Capital Medical University School of Stomatology, 4 Tiantanxili, BeijingBeijing, 100050, China.
| |
Collapse
|
14
|
Shaikh MS, Shahzad Z, Tash EA, Janjua OS, Khan MI, Zafar MS. Human Umbilical Cord Mesenchymal Stem Cells: Current Literature and Role in Periodontal Regeneration. Cells 2022; 11:cells11071168. [PMID: 35406732 PMCID: PMC8997495 DOI: 10.3390/cells11071168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Periodontal disease can cause irreversible damage to tooth-supporting tissues such as the root cementum, periodontal ligament, and alveolar bone, eventually leading to tooth loss. While standard periodontal treatments are usually helpful in reducing disease progression, they cannot repair or replace lost periodontal tissue. Periodontal regeneration has been demonstrated to be beneficial in treating intraosseous and furcation defects to varied degrees. Cell-based treatment for periodontal regeneration will become more efficient and predictable as tissue engineering and progenitor cell biology advance, surpassing the limitations of present therapeutic techniques. Stem cells are undifferentiated cells with the ability to self-renew and differentiate into several cell types when stimulated. Mesenchymal stem cells (MSCs) have been tested for periodontal regeneration in vitro and in humans, with promising results. Human umbilical cord mesenchymal stem cells (UC-MSCs) possess a great regenerative and therapeutic potential. Their added benefits comprise ease of collection, endless source of stem cells, less immunorejection, and affordability. Further, their collection does not include the concerns associated with human embryonic stem cells. The purpose of this review is to address the most recent findings about periodontal regenerative mechanisms, different stem cells accessible for periodontal regeneration, and UC-MSCs and their involvement in periodontal regeneration.
Collapse
Affiliation(s)
- Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Zara Shahzad
- Lahore Medical and Dental College, University of Health Sciences, Lahore 53400, Pakistan;
| | - Esraa Abdulgader Tash
- Department of Oral and Clinical Basic Science, College of Dentistry, Taibah University, Al Madinah Al Munawarah 41311, Saudi Arabia;
| | - Omer Sefvan Janjua
- Department of Maxillofacial Surgery, PMC Dental Institute, Faisalabad Medical University, Faisalabad 38000, Pakistan;
| | | | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah Al Munawarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
- Correspondence: ; Tel.: +966-507544691
| |
Collapse
|
15
|
Pharmacological Approaches and Regeneration of Bone Defects with Dental Pulp Stem Cells. Stem Cells Int 2021; 2021:4593322. [PMID: 34630573 PMCID: PMC8494572 DOI: 10.1155/2021/4593322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Bone defects in the craniomaxillofacial skeleton vary from small periodontal defects to extensive bone loss, which are difficult to restore and can lead to extensive damage of the surrounding structures, deformities, and limited functions. Plenty of surgical regenerative procedures have been developed to reconstruct or prevent alveolar defects, based on guided bone regeneration involving the use of autogenous bone grafts or bone substituents. However, these techniques have limitations in the restoration of morphological and functional reconstruction, thus stopping disease progression but not regenerating lost tissue. Most promising candidates for regenerative therapy of maxillofacial bone defects represent postnatal stem cells, because of their replication potential in the undifferentiated state and their ability to differentiate as well. There is an increased need for using various orofacial sources of stem cells with comparable properties to mesenchymal stem cells because they are more easily available with minimally invasive procedures. In addition to the source of MSCs, another aspect affects the regeneration outcomes. Thermal, mechanical, and chemical stimuli after surgical procedures have the ability to generate pain, usually managed with pharmacological agents, mostly nonsteroidal anti-inflammatory drugs (NSAIDs). Some studies revealed that NSAIDs have no significant cytotoxic effect on bone marrow stem cells from mice, while other studies showed regulation of osteogenic and chondrogenic marker genes in MSC cells by NSAIDs and paracetamol, but no effect was observed in connection with diclofenac use. Therefore, there is a need to focus on such pharmacotherapy, capable of affecting the characteristics and properties of implanted MSCs.
Collapse
|
16
|
Zhao H, Liu J, Bao Z, Xu Y, Wang Z. Global Research Trends in Dental Stem Cells: A Bibliometric and Visualized Study. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:733-744. [PMID: 34309423 DOI: 10.1089/ten.teb.2021.0080] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dental stem cells (DSCs) are mesenchymal stem-cell-like populations with self-renewal and multidifferentiation potential. These cells have been studied in regenerative medicine and tissue engineering. Despite rapid progress in the past two decades, there has been no bibliometric analysis of DSC research. Here, we performed a comparative study using bibliometric methods for DSCs. A total of 5498 articles were included. Our results showed that the United States was the leader in international cooperation and numbers of citations, and was the largest contributor. The Journal of Endodontics published the largest number of papers. The author with the greatest contribution was Shi Songtao. The keywords were mainly related to the fields of tissue engineering and regenerative medicine. Relative research interest and the number of publications increased yearly worldwide. The hotspots of DSC research were transiting from basic research to clinical regenerative medicine.
Collapse
Affiliation(s)
- Hong Zhao
- Stomatological Hospital of China Medical University, 576019, Periodontic, Shenyang, China;
| | - Jingbo Liu
- Stomatological Hospital of China Medical University, 576019, Periodontic, Shenyang, China;
| | - Zhifan Bao
- Stomatological Hospital of China Medical University, 576019, Paediatric Dentistry, Shenyang, China;
| | - Yingxin Xu
- The First Hospital of China Medical University, 159407, Information Center, Shenyang, Liaoning, China;
| | - Zhongqing Wang
- The First Hospital of China Medical University, 159407, Department of Information Center, Shenyang, liaoning, China;
| |
Collapse
|
17
|
Characteristics, Classification, and Application of Stem Cells Derived from Human Teeth. Stem Cells Int 2021; 2021:8886854. [PMID: 34194509 PMCID: PMC8184333 DOI: 10.1155/2021/8886854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Since mesenchymal stem cells derived from human teeth are characterized as having the properties of excellent proliferation, multilineage differentiation, and immune regulation. Dental stem cells exhibit fibroblast-like microscopic appearance and express mesenchymal markers, embryonic markers, and vascular markers but do not express hematopoietic markers. Dental stem cells are a mixed population with different sensitive markers, characteristics, and therapeutic effects. Single or combined surface markers are not only helpful for understanding the subpopulation of mixed stem cell populations according to cell function but also for improving the stable treatment effect of dental stem cells. Focusing on the discovery and characterization of stem cells isolated from human teeth over the past 20 years, this review outlines the effect of marker sorting on cell proliferation and differentiation ability and the assessment of the clinical application potential. Classified dental stem cells from markers and functional molecules can solve the problem of heterogeneity and ensure the efficacy of cell therapy strategies including dentistry, neurologic diseases, bone repair, and tissue engineering.
Collapse
|
18
|
Ohshima H, Mishima K, Amizuka N. Oral biosciences: The annual review 2020. J Oral Biosci 2021; 63:1-7. [PMID: 33582294 DOI: 10.1016/j.job.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to the advancement and dissemination of fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review featured the review articles in the fields of "Microbiology," "Palate," "Stem Cells," "Mucosal Diseases," "Bone Cell Biology," "MicroRNAs," "TRPV1 Cation Channels," and "Interleukins" in addition to the review article by prize-winners of the "Rising Members Award" ("DKK3 expression and function in head and neck squamous cell carcinoma and other cancers"), presented by the Japanese Association for Oral Biology. CONCLUSION These reviews in the Journal of Oral Biosciences have inspired the readers of the journal to broaden their knowledge regarding the various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
19
|
Berbéri A, Fayyad-Kazan M, Ayoub S, Bou Assaf R, Sabbagh J, Ghassibe-Sabbagh M, Badran B. Osteogenic potential of dental and oral derived stem cells in bone tissue engineering among animal models: An update. Tissue Cell 2021; 71:101515. [PMID: 33657504 DOI: 10.1016/j.tice.2021.101515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022]
Abstract
Small bone defects can heal spontaneously through the bone modeling process due to their physiological environmental conditions. The bone modeling cycle preserves the reliability of the skeleton through the well-adjusted activities of its fundamental cell. Stem cells are a source of pluripotent cells with a capacity to differentiate into any tissue in the existence of a suitable medium. The concept of bone engineering is based on stem cells that can differentiate into bone cells. Mesenchymal stromal cells have been evaluated in bone tissue engineering due to their capacity to differentiate in osteoblasts. They can be isolated from bone marrow and from several adults oral and dental tissues such as permanent or deciduous teeth dental pulp, periodontal ligament, apical dental papilla, dental follicle precursor cells usually isolated from the follicle surrounding the third molar, gingival tissue, periosteum-derived cells, dental alveolar socket, and maxillary sinus Schneiderian membrane-derived cells. Therefore, a suitable animal model is a crucial step, as preclinical trials, to study the outcomes of mesenchymal cells on the healing of bone defects. We will discuss, through this paper, the use of mesenchymal stem cells obtained from several oral tissues mixed with different types of scaffolds tested in different animal models for bone tissue engineering. We will explore and link the comparisons between human and animal models and emphasized the factors that we need to take into consideration when choosing animals. The pig is considered as the animal of choice when testing large size and multiple defects for bone tissue engineering.
Collapse
Affiliation(s)
- Antoine Berbéri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon; Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| | - Sara Ayoub
- Department of Prosthodontics, Faculty of Dentistry, Lebanese University, Beirut, Lebanon.
| | - Rita Bou Assaf
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Beirut, Lebanon.
| | - Joseph Sabbagh
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| |
Collapse
|
20
|
Torres P, Hernández N, Mateluna C, Silva P, Reyes M, Solano L, Venegas S, Criollo A, Nazmi K, Bikker FJ, Bolscher JGM, Garrido M, Cáceres M, Torres VA. Histatin-1 is a novel osteogenic factor that promotes bone cell adhesion, migration, and differentiation. J Tissue Eng Regen Med 2021; 15:336-346. [PMID: 33480156 DOI: 10.1002/term.3177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Histatin-1 is a salivary antimicrobial peptide involved in the maintenance of enamel and oral mucosal homeostasis. Moreover, Histatin-1 has been shown to promote re-epithelialization in soft tissues, by stimulating cell adhesion and migration in oral and dermal keratinocytes, gingival and skin fibroblasts, endothelial cells and corneal epithelial cells. The broad-spectrum activity of Histatin-1 suggests that it behaves as a universal wound healing promoter, although this is far from being clear yet. Here, we report that Histatin-1 is a novel osteogenic factor that promotes bone cell adhesion, migration, and differentiation. Specifically, Histatin-1 promoted cell adhesion, spreading, and migration of SAOS-2 cells and MC3T3-E1 preosteoblasts in vitro, when placed on a fibronectin matrix. Besides, Histatin-1 induced the expression of osteogenic genes, including osteocalcin, osteopontin, and Runx2, and increased both activity and protein levels of alkaline phosphatase. Furthermore, Histatin-1 promoted mineralization in vitro, as it augmented the formation of calcium deposits in both SAOS-2 and MC3T3-E1 cells. Mechanistically, although Histatin-1 failed to activate ERK1/2, FAK, and Akt, which are signaling proteins associated with osteogenic differentiation or cell migration, it triggered nuclear relocalization of β-catenin. Strikingly, the effects of Histatin-1 were recapitulated in cells that are nonosteogenically committed, since it promoted surface adhesion, migration, and the acquisition of osteogenic markers in primary mesenchymal cells derived from the apical papilla and dental pulp. Collectively, these observations indicate that Histatin-1 is a novel osteogenic factor that promotes bone cell differentiation, surface adhesion and migration, as crucial events required for bone tissue regeneration.
Collapse
Affiliation(s)
- Pedro Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Nadia Hernández
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Carlos Mateluna
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Montserrat Reyes
- Department of Oral Pathology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis Solano
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Sebastián Venegas
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, VU University & University of Amsterdam, Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, VU University & University of Amsterdam, Amsterdam, The Netherlands
| | - Jan G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, VU University & University of Amsterdam, Amsterdam, The Netherlands
| | - Mauricio Garrido
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Institute of Biomedical Sciences, Program of Cellular and Molecular Biology, Faculty of Medicine, Universidad de Chile, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Pieles O, Reck A, Morsczeck C. High endogenous expression of parathyroid hormone-related protein (PTHrP) supports osteogenic differentiation in human dental follicle cells. Histochem Cell Biol 2020; 154:397-403. [PMID: 32710187 PMCID: PMC8616871 DOI: 10.1007/s00418-020-01904-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 01/09/2023]
Abstract
Dental follicle cells (DFCs) are progenitor cells for mineralizing cells such as alveolar osteoblasts, but little is known about the mechanisms of the differentiation. Interestingly, different cell lines sometimes have different potentials to differentiate into mineralizing cells. In this study, we compared two different DFC lines, with one cell line (DFC_B) showing a high alkaline phosphatase (ALP) activity in long-term cultures with standard medium and a reliable mineralizing potential. However, the other cell line DFC_A shows low ALP activity in standard medium and almost no mineralization. Known osteogenic markers such as RUNX2 were similarly expressed in both cell lines. However, the proosteogenic signaling pathway of the bone morphogenetic protein (BMP) is induced in DFC_B, and the parathyroid hormone-related protein (PTHrP), which is involved in tooth root development, was also expressed more strongly. Previous studies have shown that the secreted PTHrP negatively regulate the transition from pre-osteoblastic progenitors to osteoblasts, but we showed that an inhibition of PTHrP gene expression reduced the ALP activity and the BMP-signaling pathway. In addition, endogenously expressed PTHrP is located in the cell nucleus. In contrast, supplementation of PTHrP or an inhibitor for the PTHrP receptor did not affect the ALP activity of DFC_B. In conclusion, our data suggest that a high endogenous expression of PTHrP in DFCs supports the induction of osteogenic differentiation via an intracrine mode.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
22
|
circRNA Expression Profile in Dental Pulp Stem Cells during Odontogenic Differentiation. Stem Cells Int 2020; 2020:5405931. [PMID: 32952566 PMCID: PMC7482017 DOI: 10.1155/2020/5405931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/25/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Odontogenic differentiation of human dental pulp stem cells (hDPSCs) is a key step of pulp regeneration. Recent studies showed that circular RNAs (circRNAs) have many biological functions and that competing endogenous RNA (ceRNA) is their most common mechanism of action. However, the role of circRNAs in hDPSCs during odontogenesis is still unclear. Methods Isolated hDPSCs were cultured in essential and odontogenic medium. Total RNA was extracted after 14 days of culture, and then, microarray analysis was performed to measure the differential expressions of circRNAs. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was then performed to validate the microarray results. Based on microarray data from this study and available in the database, a ceRNA network was constructed to investigate the potential function of circRNAs during odontogenesis. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the potential correlation between signaling pathways and circRNAs. In addition, qRT-PCR and Western blot analysis were used to explore the function of hsa_circRNA_104101. Results We found 43 upregulated circRNAs and 144 downregulated circRNAs during the odontogenic differentiation process (fold change > 1.5 and <-1.5, respectively; P < 0.05). qRT-PCR results were in agreement with the microarray results. Bioinformatic analysis revealed that the Wnt signaling pathway and the TGF-β signaling pathway, as well as the other pathways associated with odontogenic differentiation, were correlated to the differentially expressed circRNAs. hsa_circRNA_104101 was proved to promote the odontogenic differentiation of hDPSCs. Conclusion This study reported 187 circRNAs that were differentially expressed in hDPSCs during odontogenic differentiation. Bioinformatic analysis of the expression data suggested that circRNA-miRNA-mRNA networks might act as a crucial mechanism for hDPSC odontogenic differentiation, providing a theoretical foundation for the study of pulp regeneration regulation by circRNAs.
Collapse
|