1
|
Monteiro JLGC, Sillmann YM, Kambakhsh TM, Bei M, Guastaldi FPS. Molecular mechanisms of temporomandibular joint degeneration in large animal models. Int J Oral Maxillofac Surg 2025:S0901-5027(25)00007-4. [PMID: 39890575 DOI: 10.1016/j.ijom.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
The aim of this scoping review was to summarize the results of large animal models investigating the molecular mechanisms of temporomandibular joint degenerative diseases (TMJ-DD). A search of the PubMed/MEDLINE, Embase, and Cochrane Library databases was performed, up to April 2024, using specific terms related to large animals and TMJ-DD. Identified studies had to be published in English. Two reviewers independently selected articles based on the inclusion criteria, with disagreements resolved by a senior author. Compliance with the ARRIVE guidelines was assessed for all studies, evaluating adherence to reporting standards across 21 checklist items. The search yielded 649 non-duplicate articles, of which 616 were excluded after title and abstract screening . The remaining 33 articles and one additional study identified in a hand-search underwent full-text review . Ultimately, seven studies were included, with three focusing on sheep, two on horses, and two on pigs. This review summarizes the biological markers involved in TMJ-DD and discusses their relevance in developing targeted and minimally invasive strategies to prevent the initiation and/or progression of joint disease.
Collapse
Affiliation(s)
- J L G C Monteiro
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA
| | - Y M Sillmann
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA
| | - T M Kambakhsh
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - M Bei
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - F P S Guastaldi
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Shen YX, Lee PS, Wang CC, Teng MC, Huang JH, Fan HF. Exploring the Cellular Impact of Size-Segregated Cigarette Aerosols: Insights into Indoor Particulate Matter Toxicity and Potential Therapeutic Interventions. Chem Res Toxicol 2024; 37:1171-1186. [PMID: 38870402 PMCID: PMC11256904 DOI: 10.1021/acs.chemrestox.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Exposure to anthropogenic aerosols has been associated with a variety of adverse health effects, increased morbidity, and premature death. Although cigarette smoke poses one of the most significant public health threats, the cellular toxicity of particulate matter contained in cigarette smoke has not been systematically interrogated in a size-segregated manner. In this study, we employed a refined particle size classification to collect cigarette aerosols, enabling a comprehensive assessment and comparison of the impacts exerted by cigarette aerosol extract (CAE) on SH-SY5Y, HEK293T, and A549 cells. Exposure to CAE reduced cell viability in a dose-dependent manner, with organic components having a greater impact and SH-SY5Y cells displaying lower tolerance compared to HEK293T and A549 cells. Moreover, CAE was found to cause increased oxidative stress, mitochondrial dysfunction, and increased levels of apoptosis, pyroptosis, and autophagy, leading to increased cell death. Furthermore, we found that rutin, a phytocompound with antioxidant potential, could reduce intracellular reactive oxygen species and protect against CAE-triggered cell death. These findings underscore the therapeutic potential of antioxidant drugs in mitigating the adverse effects of cigarette aerosol exposure for better public health outcomes.
Collapse
Affiliation(s)
- Yu-Xin Shen
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Pe-Shuen Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Chia C. Wang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Ming-Chu Teng
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Jhih-Hong Huang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| |
Collapse
|
3
|
Ma T, Wu C, Shen Q, Wang Q, Zhou Q. TRIM52 knockdown inhibits proliferation, inflammatory responses and oxidative stress in IL-1β-induced synovial fibroblasts to alleviate temporomandibular joint osteoarthritis. J Cell Mol Med 2024; 28:e18244. [PMID: 38520211 PMCID: PMC10960171 DOI: 10.1111/jcmm.18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
To explore the mechanism of tripartite motif 52 (TRIM52) in the progression of temporomandibular joint osteoarthritis (TMJOA). Gene and protein expression were tested by quantitative real-time polymerase chain reaction and western blot, respectively. The levels of pro-inflammatory cytokines and oxidative stress factors were evaluated using enzyme-linked immunosorbent assay and biochemical kit, respectively. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays were carried out to assess cell proliferation. Immunofluorescence was used to detect the expression of CD68 and Vimentin in primary synovial fibroblasts (SFs). Haematoxylin and eosin staining and Safranin O/Fast green were used to evaluate the pathological damage of synovial and cartilage tissue in rats. TRIM52 was upregulated in the synovial tissue and SFs in patients with TMJOA. Interleukin (IL)-1β treatment upregulated TRIM52 expression in TMJOA SFs and normal SF (NSF), promoting cell proliferation, inflammatory response and oxidative stress in NSF, SFs. Silence of TRIM52 relieved the cell proliferation, inflammatory response and oxidative stress induced by IL-1β in SFs, while overexpression of TRIM52 enhanced IL-1β induction. Meanwhile, IL-1β induction activated toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB pathway, which was augmented by upregulation of TRIM52 in NSF, and was attenuated by TRIM52 knockdown in SFs. Besides, pyrrolidinedithiocarbamic acid ameliorated IL-1β-induced proliferation and inflammatory response by inhibiting TLR4/NF-κB signalling. Meanwhile, TRIM52 knockdown inhibited cell proliferation, oxidative stress and inflammatory response in IL-1β-induced SFs through downregulation of TLR4. TRIM52 promoted cell proliferation, inflammatory response, and oxidative stress in IL-1β-induced SFs. The above functions were mediated by the activation of TLR4/NF- κB signal pathway.
Collapse
Affiliation(s)
- Tie Ma
- School and Hospital of StomatologyChina Medical UniversityShenyangLiaoningChina
- Department of Oral and Maxillofacial SurgeryLiaoning Provincial Key Laboratory of Oral DiseaseShenyangLiaoningChina
- Department of StomatologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Chuan‐bin Wu
- School and Hospital of StomatologyChina Medical UniversityShenyangLiaoningChina
- Department of Oral and Maxillofacial SurgeryLiaoning Provincial Key Laboratory of Oral DiseaseShenyangLiaoningChina
| | - Qing‐xia Shen
- School and Hospital of StomatologyChina Medical UniversityShenyangLiaoningChina
- Department of Oral and Maxillofacial SurgeryLiaoning Provincial Key Laboratory of Oral DiseaseShenyangLiaoningChina
| | - Qiang Wang
- School and Hospital of StomatologyChina Medical UniversityShenyangLiaoningChina
- Department of Oral and Maxillofacial SurgeryLiaoning Provincial Key Laboratory of Oral DiseaseShenyangLiaoningChina
| | - Qing Zhou
- School and Hospital of StomatologyChina Medical UniversityShenyangLiaoningChina
- Department of Oral and Maxillofacial SurgeryLiaoning Provincial Key Laboratory of Oral DiseaseShenyangLiaoningChina
| |
Collapse
|
4
|
Cui T, Lan Y, Yu F, Lin S, Qiu J. Plumbagin alleviates temporomandibular joint osteoarthritis progression by inhibiting chondrocyte ferroptosis via the MAPK signaling pathways. Aging (Albany NY) 2023; 15:13452-13470. [PMID: 38032278 DOI: 10.18632/aging.205253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
AIMS The acceleration of osteoarthritis (OA) development by chondrocytes undergoing ferroptosis has been observed. Plumbagin (PLB), known for its potent antioxidant and anti-inflammatory properties, has demonstrated promising potential in the treatment of OA. However, it remains unclear whether PLB can impede the progression of temporomandibular joint osteoarthritis (TMJOA) through the regulation of ferroptosis. The study aims to investigate the impact of ferroptosis on TMJOA and assess the ability of PLB to modulate the inhibitory effects of ferroptosis on TMJOA. MATERIALS AND METHODS The study utilized an in vivo rat model of unilateral anterior crossbite (UAC)-induced TMJOA and an in vitro study of chondrocytes exposed to H2O2 to create an OA microenvironment. Various experiments including cell viability assessment, quantitative RT-PCR, western blot analysis, histology, and immunofluorescence were conducted to examine the impact of ferroptosis on TMJOA and evaluate the potential of PLB to mitigate the inhibitory effects of ferroptosis on TMJOA. Additionally, RNA-seq and bioinformatics analysis were performed to investigate the underlying mechanism by which PLB regulates ferroptosis in TMJOA. RESULTS Fer-1 demonstrated its potential in mitigating the advancement of TMJOA through its inhibitory effects on ferroptosis and matrix degradation in chondrocytes, thereby substantiating the role of ferroptosis in the pathogenesis of TMJOA. Furthermore, the observed protective impact of PLB on cartilage implied that PLB can modulate the inhibition of ferroptosis in TMJOA by regulating the MAPK signaling pathways. CONCLUSIONS PLB alleviates TMJOA progression by suppressing chondrocyte ferroptosis via MAPK pathways, indicating PLB to be a potential therapeutic strategy for TMJOA.
Collapse
Affiliation(s)
- Tiehan Cui
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yun Lan
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fei Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Suai Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|