1
|
Matsumura Y, Nakazaki T, Kitamori K, Kure E, Shinohara K, Tsuchido Y, Yukawa S, Noguchi T, Yamamoto M, Nagao M. Development and evaluation of the automated multipurpose molecular testing system PCRpack for high-throughput SARS-CoV-2 testing. Microbiol Spectr 2023; 11:e0271623. [PMID: 37943047 PMCID: PMC10715159 DOI: 10.1128/spectrum.02716-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE Accurate and fast molecular testing is important for the diagnosis and control of COVID-19. During patient surges in the COVID-19 pandemic, laboratories were challenged by a higher demand for molecular testing under skilled staff shortages. We developed an automated multipurpose molecular testing system, named PCRpack, for the rapid, high-throughput testing of infectious pathogens, including SARS-CoV-2. The system is provided in an all-in-one package, including a liquid handling instrument, a laboratory information management system, and other materials needed for testing operation; is highly customizable; and is easily implemented. PCRpack showed robust liquid handling performance, high clinical diagnostic performance, a shorter turn-around time with minimal hands-on time, and a high testing capacity. These features contribute to the rapid implementation of the high-performance and high-throughput molecular testing environment at any phase of the pandemic caused by SARS-CoV-2 or future emerging pathogens.
Collapse
Affiliation(s)
- Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Kanako Kitamori
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Nippon Control System, Yokohama, Japan
| | - Eiki Kure
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Faculty of Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Koh Shinohara
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhiro Tsuchido
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satomi Yukawa
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Taro Noguchi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Jang WS, Jee H, Lee JM, Lim CS, Kim J. Performance Evaluation of a BZ COVID-19 NALF Assay for Rapid Diagnosis of SARS-CoV-2. Diagnostics (Basel) 2023; 13:diagnostics13061118. [PMID: 36980425 PMCID: PMC10047401 DOI: 10.3390/diagnostics13061118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by SARS-CoV-2 infection has been a global pandemic for more than two years, and it is important to quickly and accurately diagnose and isolate patients with SARS-CoV-2 infection. The BZ COVID-19 NALF Assay could sensitively detect SARS-CoV-2 from a nasopharyngeal swab because it adopts both a loop-mediated isothermal amplification and lateral flow immunochromatography technology. In this study, a total of 389 nasopharyngeal swab samples, of which 182 were SARS-CoV-2 PCR positive and 207 were negative samples, were recruited. Compared to the Allplex™ SARS-CoV-2 Assay, the BZ COVID-19 NALF Assay showed 95.05% sensitivity and 99.03% specificity for detecting SARS-CoV-2. The concordance rate between the BZ COVID-19 NALF Assay and Allplex™ SARS-CoV-2 Assay was 97.69%. The turnaround time of the BZ COVID-19 NALF Assay is only about 40~55 min. The BZ COVID-19 NALF Assay is an accurate, easy, and quick molecular diagnostic test compared to the conventional PCR test for detection of SARS-CoV-2. In addition, the BZ COVID-19 NALF Assay is thought to be very useful in small size medical facilities or developing countries where it is difficult to operate a clinical laboratory.
Collapse
Affiliation(s)
- Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Hyunseul Jee
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joon Min Lee
- Departments of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Chae Seung Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Departments of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Jeeyong Kim
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Correspondence: ; Tel.: +82-31-412-5304
| |
Collapse
|
3
|
Irkham I, Ibrahim AU, Nwekwo CW, Al-Turjman F, Hartati YW. Current Technologies for Detection of COVID-19: Biosensors, Artificial Intelligence and Internet of Medical Things (IoMT): Review. SENSORS (BASEL, SWITZERLAND) 2022; 23:426. [PMID: 36617023 PMCID: PMC9824404 DOI: 10.3390/s23010426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Despite the fact that COVID-19 is no longer a global pandemic due to development and integration of different technologies for the diagnosis and treatment of the disease, technological advancement in the field of molecular biology, electronics, computer science, artificial intelligence, Internet of Things, nanotechnology, etc. has led to the development of molecular approaches and computer aided diagnosis for the detection of COVID-19. This study provides a holistic approach on COVID-19 detection based on (1) molecular diagnosis which includes RT-PCR, antigen-antibody, and CRISPR-based biosensors and (2) computer aided detection based on AI-driven models which include deep learning and transfer learning approach. The review also provide comparison between these two emerging technologies and open research issues for the development of smart-IoMT-enabled platforms for the detection of COVID-19.
Collapse
Affiliation(s)
- Irkham Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | | | - Chidi Wilson Nwekwo
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Fadi Al-Turjman
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 99138, Turkey
- Artificial Intelligence Engineering Department, AI and Robotics Institute, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| |
Collapse
|
4
|
Nyaruaba R, Mwaliko C, Dobnik D, Neužil P, Amoth P, Mwau M, Yu J, Yang H, Wei H. Digital PCR Applications in the SARS-CoV-2/COVID-19 Era: a Roadmap for Future Outbreaks. Clin Microbiol Rev 2022; 35:e0016821. [PMID: 35258315 PMCID: PMC9491181 DOI: 10.1128/cmr.00168-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Caroline Mwaliko
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pavel Neužil
- Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
5
|
Loibner M, Barach P, Wolfgruber S, Langner C, Stangl V, Rieger J, Föderl-Höbenreich E, Hardt M, Kicker E, Groiss S, Zacharias M, Wurm P, Gorkiewicz G, Regitnig P, Zatloukal K. Resilience and Protection of Health Care and Research Laboratory Workers During the SARS-CoV-2 Pandemic: Analysis and Case Study From an Austrian High Security Laboratory. Front Psychol 2022; 13:901244. [PMID: 35936273 PMCID: PMC9353000 DOI: 10.3389/fpsyg.2022.901244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
The SARS-CoV-2 pandemic has highlighted the interdependency of healthcare systems and research organizations on manufacturers and suppliers of personnel protective equipment (PPE) and the need for well-trained personnel who can react quickly to changing working conditions. Reports on challenges faced by research laboratory workers (RLWs) are rare in contrast to the lived experience of hospital health care workers. We report on experiences gained by RLWs (e.g., molecular scientists, pathologists, autopsy assistants) who significantly contributed to combating the pandemic under particularly challenging conditions due to increased workload, sickness and interrupted PPE supply chains. RLWs perform a broad spectrum of work with SARS-CoV-2 such as autopsies, establishment of virus cultures and infection models, development and verification of diagnostics, performance of virus inactivation assays to investigate various antiviral agents including vaccines and evaluation of decontamination technologies in high containment biological laboratories (HCBL). Performance of autopsies and laboratory work increased substantially during the pandemic and thus led to highly demanding working conditions with working shifts of more than eight hours working in PPE that stressed individual limits and also the ergonomic and safety limits of PPE. We provide detailed insights into the challenges of the stressful daily laboratory routine since the pandemic began, lessons learned, and suggest solutions for better safety based on a case study of a newly established HCBL (i.e., BSL-3 laboratory) designed for autopsies and research laboratory work. Reduced personal risk, increased resilience, and stress resistance can be achieved by improved PPE components, better training, redundant safety measures, inculcating a culture of safety, and excellent teamwork.
Collapse
Affiliation(s)
- Martina Loibner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Paul Barach
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, United States
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Stella Wolfgruber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christine Langner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Verena Stangl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Julia Rieger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Melina Hardt
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Eva Kicker
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Groiss
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Philipp Wurm
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter Regitnig
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Nyaruaba R, Hong W, Li X, Yang H, Wei H. Long-Term Preservation of SARS-CoV-2 RNA in Silk for Downstream RT-PCR Tests. Anal Chem 2022; 94:4522-4530. [PMID: 35235308 PMCID: PMC8903213 DOI: 10.1021/acs.analchem.2c00169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Positive controls made of viral gene components are essential to validate the performance of diagnostic assays for pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, most of them are target-specific, limiting their application spectrum when validating assays beyond their specified targets. The use of an inactivated whole-virus RNA reference standard could be ideal, but RNA is a labile molecule that needs cold chain storage and transportation to preserve its integrity and activity. The cold chain process stretches the already dwindling storage capacities, incurs huge costs, and limits the distribution of reference materials to low-resource settings. To circumvent these issues, we developed an inactivated whole-virus SARS-CoV-2 RNA reference standard and studied its stability in silk fibroin matrices, i.e., silk solution (SS) and silk film (SF). Compared to preservation in nuclease-free water (ddH2O) and SS, SF was more stable and could preserve the SARS-CoV-2 RNA reference standard at room temperature for over 21 weeks (∼6 months) as determined by reverse transcription polymerase chain reaction (RT-PCR). The preserved RNA reference standard in SF was able to assess the limits of detection of four commercial SARS-CoV-2 RT-PCR assays. In addition, SF is compatible with RT-PCR reactions and can be used to preserve a reaction-ready primer and probe mix for RT-PCR at ambient temperatures without affecting their activity. Taken together, these results offer extensive flexibility and a simpler mechanism of preserving RNA reference materials for a long time at ambient temperatures of ≥25 °C, with the possibility of eliminating cold chains during storage and transportation.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- CAS
Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety
Mega-Science, Wuhan Institute of Virology,
Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa
Joint Research Center, 6200-00200 Nairobi, Kenya
| | - Wei Hong
- CAS
Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety
Mega-Science, Wuhan Institute of Virology,
Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Li
- CAS
Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety
Mega-Science, Wuhan Institute of Virology,
Chinese Academy of Sciences, Wuhan 430071, China
| | - Hang Yang
- CAS
Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety
Mega-Science, Wuhan Institute of Virology,
Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongping Wei
- CAS
Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety
Mega-Science, Wuhan Institute of Virology,
Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Phan T, Mays A, McCullough M, Wells A. Evaluation of the Cepheid Xpert Xpress SARS-CoV-2 test for bronchoalveolar lavage. JOURNAL OF CLINICAL VIROLOGY PLUS 2022; 2:100067. [PMID: 35262037 PMCID: PMC8856763 DOI: 10.1016/j.jcvp.2022.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashley Mays
- Clinical Microbiology Laboratory, UPMC Hospital System, Pittsburgh, PA 15261, USA
| | - Melissa McCullough
- Clinical Microbiology Laboratory, UPMC Hospital System, Pittsburgh, PA 15261, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|