1
|
Hovd AMK, Nayar S, Smith CG, Kanapathippillai P, Iannizzotto V, Barone F, Fenton KA, Pedersen HL. Podoplanin expressing macrophages and their involvement in tertiary lymphoid structures in mouse models of Sjögren's disease. Front Immunol 2024; 15:1455238. [PMID: 39355243 PMCID: PMC11442383 DOI: 10.3389/fimmu.2024.1455238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are formed in tissues targeted by chronic inflammation processes, such as infection and autoimmunity. In Sjögren's disease, the organization of immune cells into TLS is an important part of disease progression. Here, we investigated the dynamics of tissue resident macrophages in the induction and expansion of salivary gland TLS. We induced Sjögren's disease by cannulation of the submandibular glands of C57BL/6J mice with LucAdV5. In salivary gland tissues from these mice, we analyzed the different macrophage populations prior to cannulation on day 0 and on day 2, 5, 8, 16 and 23 post-infection using multicolored flow cytometry, mRNA gene analysis, and histological evaluation of tissue specific macrophages. The histological localization of macrophages in the LucAdV5 induced inflamed salivary glands was compared to salivary glands of NZBW/F1 lupus prone mice, a spontaneous mouse model of Sjögren's disease. The evaluation of the dynamics and changes in macrophage phenotype revealed that the podoplanin (PDPN) expressing CX3CR1+ macrophage population was increased in the salivary gland tissue during LucAdV5 induced inflammation. This PDPN+ CX3CR1+ macrophage population was, together with PDPN+CD206+ macrophages, observed to be localized in the parenchyma during the acute inflammation phase as well as surrounding the TLS structure in the later stages of inflammation. This suggests a dual role of tissue resident macrophages, contributing to both proinflammatory and anti-inflammatory processes, as well as their possible interactions with other immune cells within the inflamed tissue. These macrophages may be involved with lymphoid neogenesis, which is associated with disease severity and progression. In conclusion, our study substantiates the involvement of proinflammatory and regulatory macrophages in autoimmune pathology and underlines the possible multifaceted functions of macrophages in lymphoid cell organization.
Collapse
Affiliation(s)
- Aud-Malin Karlsson Hovd
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Saba Nayar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte G. Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Premasany Kanapathippillai
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Valentina Iannizzotto
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kristin Andreassen Fenton
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Mieliauskaitė D, Kontenis V, Šiaurys A. Lessons from Animal Models in Sjögren's Syndrome. Int J Mol Sci 2023; 24:12995. [PMID: 37629175 PMCID: PMC10454747 DOI: 10.3390/ijms241612995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a connective tissue disease characterized by a wide spectrum of clinical features, extending from a benign glandular disease to an aggressive systemic disorder and/or lymphoma. The pathogenesis of Sjögren's syndrome (SS) is not completely understood, but it is assumed that pathogenesis of SS is multifactorial. The studies based on the animal models of SS provided significant insight in SS disease pathogenesis and management. The aim of this review is to summarize current studies on animal models with primary SS-like symptoms and discuss the impact of these studies on better understanding pathogenesis and management of Sjögren's syndrome. Databases PubMed, Web of Science, Scopus and Cochrane library were searched for summarizing studies on animal models in SS. Available data demonstrate that animal models are highly important for our understanding of SS disease.
Collapse
Affiliation(s)
- Diana Mieliauskaitė
- State Research Institute Center for Innovative Medicine, Department of Experimental, Preventive and Clinical Medicine, LT-08406 Vilnius, Lithuania;
| | - Vilius Kontenis
- State Research Institute Center for Innovative Medicine, Department of Experimental, Preventive and Clinical Medicine, LT-08406 Vilnius, Lithuania;
| | - Almantas Šiaurys
- State Research Institute Center for Innovative Medicine, Department of Immunology, LT-08406 Vilnius, Lithuania;
| |
Collapse
|
3
|
Chen B, Zhou J, Mao T, Cao T, Hu S, Zhang W, Li X, Qin X, Liu X, Watanabe N, Li J. The Critical Biomarkers Identification of Insulin Signaling Involved in Initiating cAMP Signaling Mediated Salivary Secretion in Sjogren Syndrome: Transcriptome Sequencing in NOD Mice Model. Biol Proced Online 2022; 24:26. [PMID: 36575389 PMCID: PMC9793606 DOI: 10.1186/s12575-022-00189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sjogren's syndrome (SS) is an autoimmune disorder characterized by the destruction of exocrine glands, resulting in dry mouth and eyes. Currently, there is no effective treatment for SS, and the mechanisms associated with inadequate salivary secretion are poorly understood. METHODS In this study, we used NOD mice model to monitor changes in mice's salivary secretion and water consumption. Tissue morphology of the submandibular glands was examined by H&E staining, and Immunohistochemical detected the expression of AQP5 (an essential protein in salivary secretion). Global gene expression profiling was performed on submandibular gland tissue of extracted NOD mice model using RNA-seq. Subsequently, a series of bioinformatics analyses of transcriptome sequencing was performed, including differentially expressed genes (DEGs) identification, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, PPI network construction, hub gene identification, and the validity of diagnostic indicators using the dataset GSE40611. Finally, IFN-γ was used to treat the cells, the submandibular gland tissue of NOD mice model was extracted, and RT-qPCR was applied to verify the expression of hub genes. RESULTS We found that NOD mice model had reduced salivary secretion and increased water consumption. H&E staining suggests acinar destruction and basement membrane changes in glandular tissue. Immunohistochemistry detects a decrease in AQP5 immunostaining within acinar. In transcriptome sequencing, 42 overlapping DEGs were identified, and hub genes (REN, A2M, SNCA, KLK3, TTR, and AZGP1) were identified as initiating targets for insulin signaling. In addition, insulin signaling and cAMP signaling are potential pathways for regulating salivary secretion and constructing a regulatory relationship between target-cAMP signaling-salivary secretion. CONCLUSION The new potential targets and signal axes for regulating salivary secretion provide a strategy for SS therapy in a clinical setting.
Collapse
Affiliation(s)
- Bo Chen
- grid.410737.60000 0000 8653 1072Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140 Guangdong China
| | - Jiannan Zhou
- grid.410737.60000 0000 8653 1072Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140 Guangdong China
| | - Tianjiao Mao
- grid.410737.60000 0000 8653 1072Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140 Guangdong China
| | - Tingting Cao
- grid.410737.60000 0000 8653 1072Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140 Guangdong China
| | - Shilin Hu
- grid.410737.60000 0000 8653 1072Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140 Guangdong China
| | - Wenqi Zhang
- grid.410737.60000 0000 8653 1072School of Basic Medicine, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Xueyang Li
- grid.410737.60000 0000 8653 1072Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140 Guangdong China
| | - Xiuni Qin
- Guangzhou Concord Cancer Center, Guangzhou, Guangdong China
| | - Xintong Liu
- grid.509461.f0000 0004 1757 8255Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198 Japan ,grid.509461.f0000 0004 1757 8255Bio-Active Compounds Discovery Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198 Japan
| | - Nobumoto Watanabe
- grid.509461.f0000 0004 1757 8255Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198 Japan ,grid.509461.f0000 0004 1757 8255Bio-Active Compounds Discovery Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198 Japan
| | - Jiang Li
- grid.410737.60000 0000 8653 1072Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, #195 Dongfeng West Road, Guangzhou, 510140 Guangdong China
| |
Collapse
|
4
|
Lindgren ES, Cil O, Verkman AS, Pasricha ND. Ocular Surface Ion Transport and Dry Eye Disease. CURRENT OPHTHALMOLOGY REPORTS 2022; 10:188-197. [PMID: 38213468 PMCID: PMC10783585 DOI: 10.1007/s40135-022-00295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 10/24/2022]
Abstract
Purpose of Review To review the role of ocular surface epithelial (corneal and conjunctival) ion transporters in the pathogenesis and treatment of dry eye disease (DED). Recent Findings Currently, anti-inflammatory agents are the mainstay of DED treatment, though there are several agents in development that target ion transport proteins on the ocular surface, acting by pro-secretory or anti-absorptive mechanisms to increase the tear fluid Film volume. Activation or inhibition of selected ion transporters can alter tear fluid osmolality, driving water transport onto the ocular surface via osmosis. Several ion transporters have been proposed as potential therapeutic targets for DED, including the cystic fibrosis transmembrane conductance regulator (CFTR), calcium-activated chloride channels (CaCCs), and the epithelial sodium channel (ENaC). Summary Ocular surface epithelial cell ion transporters are promising targets for pro-secretory and anti-absorptive therapies of DED.
Collapse
Affiliation(s)
- Ethan S. Lindgren
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Neel D. Pasricha
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Jayaraman S, Jayaraman A. Impact of histone modifier-induced protection against autoimmune encephalomyelitis on multiple sclerosis treatment. Front Neurol 2022; 13:980758. [PMID: 36313502 PMCID: PMC9614082 DOI: 10.3389/fneur.2022.980758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis is a progressive demyelinating central nervous system disorder with unknown etiology. The condition has heterogeneous presentations, including relapsing-remitting multiple sclerosis and secondary and primary progressive multiple sclerosis. The genetic and epigenetic mechanisms underlying these various forms of multiple sclerosis remain elusive. Many disease-modifying therapies approved for multiple sclerosis are broad-spectrum immunomodulatory drugs that reduce relapses but do not halt the disease progression or neuroaxonal damage. Some are also associated with many severe side effects, including fatalities. Improvements in disease-modifying treatments especially for primary progressive multiple sclerosis remain an unmet need. Several experimental animal models are available to decipher the mechanisms involved in multiple sclerosis. These models help us decipher the advantages and limitations of novel disease-modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Sundararajan Jayaraman
- Department of Surgery, University of Illinois College of Medicine, Peoria, IL, United States
| | | |
Collapse
|