1
|
Rabbani A, Sadeghkhani A, Holland A, Besharat M, Fang H, Babaei M, Barrera O. Structure-property relationships in fibrous meniscal tissue through image-based augmentation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2025; 383:20240225. [PMID: 40078144 PMCID: PMC11904624 DOI: 10.1098/rsta.2024.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 03/14/2025]
Abstract
This study introduces an adaptive three-dimensional (3D) image synthesis technique for creating variational realizations of fibrous meniscal tissue microstructures. The method allows controlled deviation from original geometries by modifying parameters such as porosity, pore size and specific surface area of image patches. The unbiased reconstructed samples matched the morphological and hydraulic properties of original tissues, with relative errors generally below 10%. Additional samples were generated with predefined deviations to increase dataset diversity. Analysis of 1500 synthesized geometries revealed relationships between microstructural features, hydraulic permeability and mechanical properties. Empirical correlations were derived to predict longitudinal and transverse hydraulic permeability as functions of porosity, with R2 values of 0.98 and 0.97, respectively. Finite-element simulations examined mechanical behaviour under compression, showing stress concentrations at fibre cross-links and permeability reductions that varied with porosity and flow direction. These results led to a porosity-dependent model for normalized Young's modulus ([Formula: see text]). The proposed correlations and data augmentation technique aid in investigating structure-property relationships in meniscal tissue, potentially benefiting biomimetic implant design. This approach may help bridge data gaps where obtaining numerous real samples is impractical or unethical.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.
Collapse
Affiliation(s)
- Arash Rabbani
- School of Computer Science, University of Leeds, Leeds, UK
| | | | - Andrew Holland
- School of Civil Engineering, University of Leeds, Leeds, UK
| | | | - Han Fang
- School of Civil Engineering, University of Leeds, Leeds, UK
| | - Masoud Babaei
- Department of Chemical Engineering, University of Manchester, Manchester, UK
| | - Olga Barrera
- School of Engineering, Computing and Mathematics, Oxford Brooks University, Oxford, UK
| |
Collapse
|
2
|
Friis SJ, Hansen TS, Olesen C, Poulsen M, Gregersen H, Vinge Nygaard J. Experimental and numerical study of solid needle insertions into human stomach tissue. J Mech Behav Biomed Mater 2025; 162:106832. [PMID: 39591721 DOI: 10.1016/j.jmbbm.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
PURPOSE Oral drug delivery is the Holy Grail in the field of drug delivery. However, poor bioavailability limits the oral intake of macromolecular drugs. Oral devices may overcome this limitation, but a knowledge gap exists on the device-tissue interaction. This study focuses on needle insertion into the human stomach experimentally and numerically. This will guide early stages of device development. METHODS Needle insertions were done into excised human gastric tissue with sharp and blunt needles at velocities of 0.0001 and 0.1 m/s. Parameters for constitutive models were determined from tensile visco-hyperelastic biomechanical tests. The computational setup modeled four different needle shape indentations at five velocities from 0.0001 to 5 m/s. RESULTS From experiments, peak forces at 0.1 and 0.0001 m/s were 0.995 ± 0.296 N and 1.281 ± 0.670 N (blunt needle) and 0.325 ± 0.235 N and 0.362 ± 0.119 N (sharp needle). The needle geometry significantly influenced peak forces (p < 0.05). A Yeoh-Prony series combination was fitted to the tensile visco-hyperelastic biomechanical data and used for the numerical model with excellent fit (R2 = 0.973). Both needle geometry and insertion velocity influenced the stress contour and displacement magnitudes as well as energy curves. CONCLUSION This study contributes to a better understanding of needle insertion into the stomach wall. The numerical model demonstrated agreement with experimental data providing a good approach to early device iterations. Findings in this study showed that insertion velocity and needle shape affect tissue mechanical outcomes.
Collapse
Affiliation(s)
- Sif Julie Friis
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Camilla Olesen
- Department of Mechanical and Production Engineering, Aarhus University, Aarhus, Denmark
| | - Mette Poulsen
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Hans Gregersen
- California Medical Innovations Institute, San Diego, CA, United States
| | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Ye R, Xiong HH, Liu X, Yang JX, Guo JD, Qiu JW. Study on the correlation between shear wave elastography and MRI grading of meniscal degeneration. J Orthop Surg Res 2024; 19:611. [PMID: 39342292 PMCID: PMC11438272 DOI: 10.1186/s13018-024-05105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Shear Wave Elastography (SWE) offers quantitative insights into the hardness and elasticity characteristics of tissues. The objective of this study is to investigate the correlation between SWE of the menisci and MRI-assessed degenerative changes in the menisci, with the aim of providing novel reference source for improving non-invasive evaluation of meniscal degenerative alterations. METHODS The participants in this study were selected from patients who underwent knee joint MRI scans at our hospital from February 2023 to February 2024. The anterior horns of both the medial and lateral menisci were evaluated using SWE technique. The differences in elastic values of meniscus among different MRI grades were compared. The correlation between elastic values and MRI grades, as well as various parameters, was analyzed. Using MRI Grade 3 as the gold standard, the optimal cutoff value for meniscal tear was determined. The intraclass correlation coefficient (ICC) was employed to evaluate the reliability of repeated measurements performed by the same observer. RESULTS A total of 104 female participants were enrolled in this study, with 152 lateral menisci (LM) and 144 medial menisci (MM) assessed. For the male group, 83 individuals were included, with 147 LM and 145 MM evaluated. The results demonstrated statistically significant differences in the elasticity values of the menisci at the same anatomical sites across different MRI grades (P < 0.001). Within the same grade, the MM had higher elasticity values than the LM, showing a statistically significant difference (P < 0.001). The elasticity values of the menisci were higher in males compared to females. There were statistically significant positive correlations between the elasticity values of the menisci and age, BMI, and MRI grade. The ICC for repeated measurements within the observer demonstrated good reliability (> 0.79). CONCLUSIONS The meniscal elasticity values measured by SWE exhibit a significant positive correlation with the grades of degeneration assessed by MRI. Furthermore, the elasticity values of the meniscus are found to increase with advancing age and elevated BMI.
Collapse
Affiliation(s)
- Ran Ye
- Department of Physical Examination, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China.
| | - Hua-Hua Xiong
- Department of Ultrasound, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Xiao Liu
- Department of Ultrasound, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Jun-Xing Yang
- Department of Orthopedics, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Jian-Dong Guo
- Department of Radiology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Jian-Wen Qiu
- Department of Physical Examination, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| |
Collapse
|
4
|
Welhaven HD, Welfley AH, Pershad P, Satalich J, O'Connell R, Bothner B, Vap AR, June RK. Metabolic phenotypes reflect patient sex and injury status: A cross-sectional analysis of human synovial fluid. Osteoarthritis Cartilage 2024; 32:1074-1083. [PMID: 37716406 PMCID: PMC10940192 DOI: 10.1016/j.joca.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Osteoarthritis is a heterogeneous disease. The objective was to compare differences in underlying cellular mechanisms and endogenous repair pathways between synovial fluid (SF) from male and female participants with different injuries to improve the current understanding of the pathophysiology of downstream post-traumatic osteoarthritis (PTOA). DESIGN SF from n = 33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. SF was extracted and analyzed via liquid chromatography-mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies (ligament, meniscal, and combined ligament and meniscal) and patient sex. Samples were pooled and underwent secondary fragmentation to identify metabolites. RESULTS Different knee injuries uniquely altered SF metabolites and downstream pathways including amino acid, lipid, and inflammatory-associated metabolic pathways. Notably, sexual dimorphic metabolic phenotypes were examined between males and females and within injury pathology. Cervonyl carnitine and other identified metabolites differed in concentrations between sexes. CONCLUSIONS These results suggest that different injuries and patient sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries, sex, and PTOA development may yield data regarding how endogenous repair pathways differ between male and female injury types. Ongoing metabolomic analysis of SF in injured male and female patients can be performed to monitor PTOA development and progression.
Collapse
Affiliation(s)
- Hope D Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, United States
| | - Avery H Welfley
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, United States
| | - Prayag Pershad
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - James Satalich
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert O'Connell
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, United States
| | - Alexander R Vap
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
5
|
Seitz AM, Niehoff A. [Tissue biomechanics: connective tissue characterization : Cluster tissue biomechanics]. ORTHOPADIE (HEIDELBERG, GERMANY) 2024; 53:503-510. [PMID: 38829400 DOI: 10.1007/s00132-024-04517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
The various connective tissues of the body have different functions, which result from their specific structure and composition. The identification of this structure-function relationship is of great importance for various disciplines such as medicine, biology or tissue engineering. Connective tissue consists mainly of an extracellular matrix (ECM) and a limited number of cells. It is extremely adaptable because the activity of the cells remodels the composition and structure of the ECM in order to adapt the mechanical properties (functions) to the new demands (e.g. an increased mechanical stimulus).
Collapse
Affiliation(s)
- Andreas Martin Seitz
- Institut für Unfallchirurgische Forschung und Biomechanik, Zentrum für Traumaforschung Ulm, Universitätsklinikum Ulm, Helmholtzstraße 14, 89081, Ulm, Deutschland.
| | - Anja Niehoff
- Institut für Biomechanik und Orthopädie, Deutsche Sporthochschule Köln, Am Sportpark Müngersdorf 6, 50933, Köln, Deutschland.
- Cologne Center for Musculoskeletal Biomechanics, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Str. 9, 50931, Köln, Deutschland.
| |
Collapse
|
6
|
Orellana F, Grassi A, Hlushchuk R, Wahl P, Nuss KM, Neels A, Zaffagnini S, Parrilli A. Revealing the complexity of meniscus microvasculature through 3D visualization and analysis. Sci Rep 2024; 14:10875. [PMID: 38740845 DOI: 10.1038/s41598-024-61497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Three-dimensional information is essential for a proper understanding of the healing potential of the menisci and their overall role in the knee joint. However, to date, the study of meniscal vascularity has relied primarily on two-dimensional imaging techniques. Here we present a method to elucidate the intricate 3D meniscal vascular network, revealing its spatial arrangement, connectivity and density. A polymerizing contrast agent was injected into the femoral artery of human cadaver legs, and the meniscal microvasculature was examined using micro-computed tomography at different levels of detail and resolution. The 3D vascular network was quantitatively assessed in a zone-base analysis using parameters such as diameter, length, tortuosity, and branching patterns. The results of this study revealed distinct vascular patterns within the meniscus, with the highest vascular volume found in the outer perimeniscal zone. Variations in vascular parameters were found between the different circumferential and radial meniscal zones. Moreover, through state-of-the-art 3D visualization using micro-CT, this study highlighted the importance of spatial resolution in accurately characterizing the vascular network. These findings, both from this study and from future research using this technique, improve our understanding of microvascular distribution, which may lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- Federica Orellana
- Center for X-Ray Analytics, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Fribourg, 1700, Fribourg, Switzerland
| | - Alberto Grassi
- IRCCS-Rizzoli Orthopaedic Institute, 40136, Bologna, Italy
| | - Ruslan Hlushchuk
- Faculty of Medicine, University of Bern, 3012, Bern, Switzerland
| | - Peter Wahl
- Faculty of Medicine, University of Bern, 3012, Bern, Switzerland
- Cantonal Hospital Winterthur, 8401, Winterthur, Switzerland
| | - Katja M Nuss
- Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Antonia Neels
- Center for X-Ray Analytics, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Fribourg, 1700, Fribourg, Switzerland
| | | | - Annapaola Parrilli
- Center for X-Ray Analytics, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
7
|
Schwer J, Ignatius A, Seitz AM. The biomechanical properties of human menisci: A systematic review. Acta Biomater 2024; 175:1-26. [PMID: 38092252 DOI: 10.1016/j.actbio.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/08/2024]
Abstract
Biomechanical characterization of meniscal tissue ex vivo remains a critical need, particularly for the development of suitable meniscus replacements or therapeutic strategies that target the native mechanical properties of the meniscus. To date, a huge variety of test configurations and protocols have been reported, making it extremely difficult to compare the respective outcome parameters, thereby leading to misinterpretation. Therefore, the purpose of this systematic review was to identify test-specific parameters that contribute to uncertainties in the determination of mechanical properties of the human meniscus and its attachments, which derived from common quasi-static and dynamic tests in tension, compression, and shear. Strong evidence was found that the determined biomechanical properties vary significantly depending on the specific test parameters, as indicated by up to tenfold differences in both tensile and compressive properties. Test mode (stress relaxation, creep, cyclic) and configuration (unconfined, confined, in-situ), specimen shape and dimensions, preconditioning regimes, loading rates, post-processing of experimental data, and specimen age and degeneration were identified as the most critical parameters influencing the outcome measures. In conclusion, this work highlights an unmet need for standardization and reporting guidelines to facilitate comparability and may prove beneficial for evaluating the mechanical properties of novel meniscus constructs. STATEMENT OF SIGNIFICANCE: The biomechanical properties of the human meniscus have been studied extensively over the past decades. However, it remains unclear to what extent both test protocol and specimen-related differences are responsible for the enormous variability in material properties. Therefore, this systematic review analyzes the biomechanical properties of the human meniscus in the context of the underlying testing protocol. The most sensitive parameters affecting the determination of mechanical properties were identified and critically discussed. Currently, it is of utmost importance for scientists evaluating potential meniscal scaffolds and biomaterials to have a control group rather than a direct comparison to the literature. Standardization of both test procedures and reporting requirements is needed to improve and accelerate the development of meniscal replacement constructs.
Collapse
Affiliation(s)
- Jonas Schwer
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany
| | - Andreas Martin Seitz
- Institute of Orthopedic Research and Biomechanics, Center for Trauma Research Ulm, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
8
|
Ronca A, D'Amora U, Capuana E, Zihlmann C, Stiefel N, Pattappa G, Schewior R, Docheva D, Angele P, Ambrosio L. Development of a highly concentrated collagen ink for the creation of a 3D printed meniscus. Heliyon 2023; 9:e23107. [PMID: 38144315 PMCID: PMC10746456 DOI: 10.1016/j.heliyon.2023.e23107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
The most prevalent extracellular matrix (ECM) protein in the meniscus is collagen, which controls cell activity and aids in preserving the biological and structural integrity of the ECM. To create stable and high-precision 3D printed collagen scaffolds, ink formulations must possess good printability and cytocompatibility. This study aims to overlap the limitation in the 3D printing of pure collagen, and to develop a highly concentrated collagen ink for meniscus fabrication. The extrusion test revealed that 12.5 % collagen ink had the best combination of high collagen concentration and printability. The ink was specifically designed to have load-bearing capacity upon printing and characterized with respect to rheological and extrusion properties. Following printing of structures with different infill, a series of post-processing steps, including salt stabilization, pH shifting, washing, freeze-drying, crosslinking and sterilization were performed, and optimised to maintain the stability of the engineered construct. Mechanical testing highlighted a storage modulus of 70 kPa for the lower porous structure while swelling properties showed swelling ratio between 9 and 11 after 15 min of soaking. Moreover, human avascular and vascular meniscus cells cultured on the scaffolds deposited a meniscus-like matrix containing collagen I, II and glycosaminoglycans after 28 days of culture. Finally, as proof-of-concept, human size 3D printed meniscus scaffold were created.
Collapse
Affiliation(s)
- Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Elisa Capuana
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Carla Zihlmann
- Geistlich Pharma AG (Geistlich), Bahnhofstrasse 40, CH-6110 Wolhusen, Switzerland
| | - Niklaus Stiefel
- Geistlich Pharma AG (Geistlich), Bahnhofstrasse 40, CH-6110 Wolhusen, Switzerland
| | - Girish Pattappa
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Ruth Schewior
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Wurzburg, Germany
| | - Peter Angele
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053 Regensburg, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| |
Collapse
|
9
|
Ye R, Xiong H, Liu X, Yang J, Guo J, Qiu J. Assessment of Knee Menisci in Healthy Adults Using Shear Wave Elastography. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2859-2866. [PMID: 37661827 DOI: 10.1002/jum.16326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES The aim of this study was to explore the application value of shear wave elastography in healthy adults with knee meniscus. METHODS One hundred adult subjects who underwent health checkups at our hospital from December 2022 to February 2023 were selected as research participants. Shear wave elastography was used to evaluate the periphery of the lateral and medial meniscus in both knees. To assess the mean differences in Young's modulus values between male and female groups, a one-way analysis of variance (ANOVA) and independent samples t-test were conducted. In addition, a Pearson correlation coefficient test was used to analyze the correlation between the elastic values of the meniscus and age, height, weight, and body mass index (BMI). RESULTS There were no significant differences in elastic values between the lateral meniscus of the left and right sides or between the medial meniscus of the left and right sides within the same gender group (P > .05). Stiffness values of the medial meniscus were higher in each gender group than those of the lateral meniscus (P < .01). Additionally, males demonstrated higher stiffness values than females (P < .01). As age increased, the Young's modulus of the meniscus increased significantly (r > .75, P < .01). CONCLUSION Shear wave elastography can serve as an adjunctive tool to aid in the assessment of knee meniscal elasticity.
Collapse
Affiliation(s)
- Ran Ye
- Department of Physical Examination, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
- Guaduate School, Guangzhou Medical University, Guangzhou, China
| | - Huahua Xiong
- Department of Ultrasound, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao Liu
- Department of Ultrasound, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junxing Yang
- Department of Orthopedics, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiandong Guo
- Department of Radiology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianwen Qiu
- Department of Physical Examination, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
10
|
Burkey K, Castillo K, Elrod P, Suekuni MT, Aikman E, Gehrke S, Allgeier A, Robinson JL. Modulating pentenoate-functionalized hyaluronic acid hydrogel network properties for meniscal fibrochondrocyte mechanotransduction. J Biomed Mater Res A 2023; 111:1525-1537. [PMID: 37103006 PMCID: PMC10524304 DOI: 10.1002/jbm.a.37551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Knee meniscus tears are one of the most common musculoskeletal injuries. While meniscus replacements using allografts or biomaterial-based scaffolds are available, these treatments rarely result in integrated, functional tissue. Understanding mechanotransducive signaling cues that promote a meniscal cell regenerative phenotype is critical to developing therapies that promote tissue regeneration rather than fibrosis after injury. The purpose of this study was to develop a hyaluronic acid (HA) hydrogel system with tunable crosslinked network properties by modulating the degree of substitution (DoS) of reactive-ene groups to investigate mechanotransducive cues received by meniscal fibrochondrocytes (MFCs) from their microenvironment. A thiol-ene step-growth polymerization crosslinking mechanism was employed using pentenoate-functionalized hyaluronic acid (PHA) and dithiothreitol to achieve tunability of the chemical crosslinks and resulting network properties. Increased crosslink density, reduced swelling, and increased compressive modulus (60-1020 kPa) were observed with increasing DoS. Osmotic deswelling effects were apparent in PBS and DMEM+ compared to water; swelling ratios and compressive moduli were decreased in the ionic buffers. Frequency sweep studies showed storage and loss moduli of hydrogels at 1 Hz approach reported meniscus values and showed increasing viscous response with increasing DoS. The degradation rate increased with decreasing DoS. Lastly, modulating PHA hydrogel surface modulus resulted in control of MFC morphology, suggesting relatively soft hydrogels (E = 60 ± 35 kPa) promote more inner meniscus phenotype compared to rigid hydrogels (E = 610 ± 66 kPa). Overall, these results highlight the use of -ene DoS modulation in PHA hydrogels to tune crosslink density and physical properties to understand mechanotransduction mechanisms required to promote meniscus regeneration.
Collapse
Affiliation(s)
- Kyley Burkey
- Bioengineering Graduate Program, University of Kansas
| | - Kayla Castillo
- Department of Chemical and Petroleum Engineering, University of Kansas
| | - Philip Elrod
- Bioengineering Graduate Program, University of Kansas
| | - Murilo T. Suekuni
- Department of Chemical and Petroleum Engineering, University of Kansas
| | - Elizabeth Aikman
- Department of Chemical and Petroleum Engineering, University of Kansas
| | - Stevin Gehrke
- Bioengineering Graduate Program, University of Kansas
- Department of Chemical and Petroleum Engineering, University of Kansas
| | - Alan Allgeier
- Department of Chemical and Petroleum Engineering, University of Kansas
| | - Jennifer L. Robinson
- Bioengineering Graduate Program, University of Kansas
- Department of Chemical and Petroleum Engineering, University of Kansas
| |
Collapse
|
11
|
Jang S, Lee J, Jeong JG, Oh TI, Lee E. Reconstruction of Fibrocartilage with Fibrous Alignment of Type I Collagen in Scaffold-Free Manner. Tissue Eng Part A 2023; 29:529-540. [PMID: 37382424 DOI: 10.1089/ten.tea.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
For functional reconstruction of fibrocartilage, it is necessary to reproduce the essential mechanical property exhibited by natural fibrocartilage. The distinctive mechanical property of fibrocartilage is originated from the specific histological features of fibrocartilage composed of highly aligned type I collagen (Col I) and an abundant cartilaginous matrix. While the application of tensile stimulation induces highly aligned Col I, our study reveals that it also exerts an antichondrogenic effect on scaffold-free tissues constructed with meniscal chondrocytes (MCs) and induces downregulation of Sox-9 expression and attenuated glycosaminoglycan production. Modulation of mechanotransduction by blocking nuclear translocation of Yes-associated protein (YAP) ameliorated the antichondrogenic effect in the presence of tensile stimulation. Since MCs subjected to mechanical doses either by surface stiffness or tensile stimulation showed reversibility of YAP status even after a long-term exposure to mechanotransduction, fibrocartilage tissue was constructed by sequentially inducing tissue alignment by tensile stimulation followed by inducing cartilaginous matrix production in a tension-released state. The minimal tensile dose to constitute durable tissue alignment was screened by investigating the alignment of cytoskeleton and Col I after culturing the scaffold-free tissue constructs with various tensile doses (10% static tension for 1, 3, 7, and 10 days) followed by maintaining in a released state for 5 days. Fluorescence-conjugated phalloidin binding and immunofluorescence of Col I indicated that the duration of static tension for more than 7 days resulted in durable tissue alignment for at least 5 days in the tension-released state. The tissues subjected to tensile stimulation for 7 days followed by 14 days in a released state in chondrogenic media resulted in abundant cartilaginous matrix as well as uniaxial anisotropic alignment. Our results show that the optimized tensile dose can facilitate the successful reconstruction of fibrocartilage by modulating the characteristics of matrix production by MCs.
Collapse
Affiliation(s)
- Seoyoung Jang
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul, South Korea
- R&D Institute, Akrocell Biosciences, Inc., Seoul, South Korea
| | - Jisoo Lee
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jin Gil Jeong
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Tong In Oh
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, South Korea
- Impedance Imaging Research Center, Kyung Hee University, Seoul, South Korea
| | - EunAh Lee
- Impedance Imaging Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
12
|
Morejon A, Dalbo PL, Best TM, Jackson AR, Travascio F. Tensile energy dissipation and mechanical properties of the knee meniscus: relationship with fiber orientation, tissue layer, and water content. Front Bioeng Biotechnol 2023; 11:1205512. [PMID: 37324417 PMCID: PMC10264653 DOI: 10.3389/fbioe.2023.1205512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The knee meniscus distributes and dampens mechanical loads. It is composed of water (∼70%) and a porous fibrous matrix (∼30%) with a central core that is reinforced by circumferential collagen fibers enclosed by mesh-like superficial tibial and femoral layers. Daily loading activities produce mechanical tensile loads which are transferred through and dissipated by the meniscus. Therefore, the objective of this study was to measure how tensile mechanical properties and extent of energy dissipation vary by tension direction, meniscal layer, and water content. Methods: The central regions of porcine meniscal pairs (n = 8) were cut into tensile samples (4.7 mm length, 2.1 mm width, and 0.356 mm thickness) from core, femoral and tibial components. Core samples were prepared parallel (circumferential) and perpendicular (radial) to the fibers. Tensile testing consisted of frequency sweeps (0.01-1Hz) followed by quasi-static loading to failure. Dynamic testing yielded energy dissipation (ED), complex modulus (E*), and phase shift (δ) while quasi-static tests yielded Young's Modulus (E), ultimate tensile strength (UTS), and strain at UTS (εUTS). To investigate how ED is influenced by the specific mechanical parameters, linear regressions were performed. Correlations between sample water content (φw) and mechanical properties were investigated. A total of 64 samples were evaluated. Results: Dynamic tests showed that increasing loading frequency significantly reduced ED (p < 0.05). Circumferential samples had higher ED, E*, E, and UTS than radial ones (p < 0.001). Stiffness was highly correlated with ED (R2 > 0.75, p < 0.01). No differences were found between superficial and circumferential core layers. ED, E*, E, and UTS trended negatively with φw (p < 0.05). Discussion: Energy dissipation, stiffness, and strength are highly dependent on loading direction. A significant amount of energy dissipation may be associated with time-dependent reorganization of matrix fibers. This is the first study to analyze the tensile dynamic properties and energy dissipation of the meniscus surface layers. Results provide new insights on the mechanics and function of meniscal tissue.
Collapse
Affiliation(s)
- Andy Morejon
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, United States
| | - Pedro L. Dalbo
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, United States
- UHealth Sports Medicine Institute, Coral Gables, FL, United States
| | - Alicia R. Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, United States
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, United States
- Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
13
|
Welhaven HD, Welfley AH, Pershad P, Satalich J, O’Connell R, Bothner B, Vap AR, June RK. Metabolomic Phenotypes Reflect Patient Sex and Injury Status: A Cross-Sectional Analysis of Human Synovial Fluid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527040. [PMID: 36846378 PMCID: PMC9959930 DOI: 10.1101/2023.02.03.527040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Post-traumatic osteoarthritis (PTOA) is caused by knee injuries like anterior cruciate ligament (ACL) injuries. Often, ACL injuries are accompanied by damage to other tissues and structures within the knee including the meniscus. Both are known to cause PTOA but underlying cellular mechanisms driving disease remain unknown. Aside from injury, patient sex is a prevalent risk factor associated with PTOA. Hypothesis Metabolic phenotypes of synovial fluid that differ by knee injury pathology and participant sex will be distinct from each other. Study Design A cross-sectional study. Methods Synovial fluid from n=33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. Synovial fluid was extracted and analyzed via liquid chromatography mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies and participant sex. Additionally, samples were pooled and underwent fragmentation to identify metabolites. Results Metabolite profiles revealed that injury pathology phenotypes were distinct from each other where differences in endogenous repair pathways that are triggered post-injury were detected. Specifically, acute differences in metabolism mapped to amino acid metabolism, lipid-related oxidative metabolism, and inflammatory-associated pathways. Lastly, sexual dimorphic metabolic phenotypes were examined between male and female participants, and within injury pathology. Specifically, Cervonyl Carnitine and other identified metabolites differed in concentration between sexes. Conclusions The results of this study suggest that different injuries (e.g., ligament vs. meniscus), as well as sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries and PTOA development may yield data regarding how endogenous repair pathways differ between injury types. Furthermore, ongoing metabolomic analysis of synovial fluid in injured male and female patients can be performed to monitor PTOA development and progression. Clinical Relevance Extension of this work may potentially lead to the identification of biomarkers as well as drug targets that slow, stop, or reverse PTOA progression based on injury type and patient sex.
Collapse
Affiliation(s)
- Hope D. Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Avery H. Welfley
- Department of Microbiology & Cell Biology, Montana State University, Bozeman MT
| | - Prayag Pershad
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - James Satalich
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Robert O’Connell
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Alexander R. Vap
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| |
Collapse
|
14
|
Friis SJ, Hansen TS, Poulsen M, Gregersen H, Brüel A, Vinge Nygaard J. Biomechanical properties of the stomach: A comprehensive comparative analysis of human and porcine gastric tissue. J Mech Behav Biomed Mater 2023; 138:105614. [PMID: 36527978 DOI: 10.1016/j.jmbbm.2022.105614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stomach-related disorders impose medical challenges and are associated with significant social and economic costs. The field of biomechanics is promising for understanding tissue behavior and for development of medical treatments and surgical interventions. In gastroenterology, animal models are often used when studies on humans are not possible. Often large animal models with similar anatomical characteristics (size and shape) are preferred. However, it is uncertain if stomachs from humans and large animals have similar mechanical properties. The aim of the present study is to characterize and compare hyper- and viscoelastic properties of porcine and human gastric tissue using tension and radial compression tests. METHODS Hyperelastic and viscoelastic properties were quantified from quasi-static ramp tests and stress relaxation tests. Tension in two directions and radial compression experiments were done on intact stomach wall samples as well as on separated mucosa and muscularis layer samples from porcine and human fundus, corpus and antrum. RESULTS AND CONCLUSIONS Similar hyper- and viscoelastic constitutive models can be used to describe porcine and human gastric tissue. In total, 19 constitutive parameters were compared and results showed significant variations between species. For example, for intact circumferential samples from antrum, the stiffness (a) and relaxation (τ1) were greater for human samples than for porcine samples (p < 0.0001). The constitutive parameters were condition-, region- and layer-dependent and no distinct pattern hereof between species was found. This indicates that different parameters must be used to describe the specific situation. The present work provides insight into porcine and human gastric radial compressive and tensile hyper- and viscoelastic properties, strengthening the inter-species relation of the biomechanical properties. Constitutive relations were established that may aid development and translation of diagnostic or therapeutic devices with computational models.
Collapse
Affiliation(s)
- Sif Julie Friis
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Mette Poulsen
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Hans Gregersen
- California Medical Innovations Institute, San Diego, CA, USA
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
15
|
Liu K, Li L, Chen J, Li Y, Wen W, Lu L, Li L, Li H, Liu M, Zhou C, Luo B. Bone ECM-like 3D Printing Scaffold with Liquid Crystalline and Viscoelastic Microenvironment for Bone Regeneration. ACS NANO 2022; 16:21020-21035. [PMID: 36469414 DOI: 10.1021/acsnano.2c08699] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Implanting a 3D printing scaffold is an effective therapeutic strategy for personalized bone repair. As the key factor for the success of bone tissue engineering, the scaffold should provide an appropriate bone regeneration microenvironment and excellent mechanical properties. In fact, the most ideal osteogenic microenvironment is undoubtedly provided by natural bone extracellular matrix (ECM), which exhibits liquid crystalline and viscoelastic characteristics. However, mimicking a bone ECM-like microenvironment in a 3D structure with outstanding mechanical properties is a huge challenge. Herein, we develop a facile approach to fabricate a bionic scaffold perfectly combining bone ECM-like microenvironment and robust mechanical properties. Creatively, 3D printing a poly(l-lactide) (PLLA) scaffold was effectively strengthened via layer-by-layer electrostatic self-assembly of chitin whiskers. More importantly, a kind of chitin whisker/chitosan composite hydrogel with bone ECM-like liquid crystalline state and viscoelasticity was infused into the robust PLLA scaffold to build the bone ECM-like microenvironment in 3D structure, thus highly promoting bone regeneration. Moreover, deferoxamine, an angiogenic factor, was encapsulated in the composite hydrogel and sustainably released, playing a long-term role in angiogenesis and thereby further promoting osteogenesis. This scaffold with bone ECM-like microenvironment and excellent mechanical properties can be considered as an effective implantation for bone repair.
Collapse
Affiliation(s)
- Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Jingsheng Chen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Yizhi Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Lu Lu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Lihua Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Hong Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| |
Collapse
|
16
|
Chen J, Zhu Z, Chen J, Luo Y, Li L, Liu K, Ding S, Li H, Liu M, Zhou C, Luo B. Photocurable liquid crystal hydrogels with different chargeability and tunable viscoelasticity based on chitin whiskers. Carbohydr Polym 2022; 301:120299. [DOI: 10.1016/j.carbpol.2022.120299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022]
|
17
|
Gunes OC, Kara A, Baysan G, Bugra Husemoglu R, Akokay P, Ziylan Albayrak A, Ergur BU, Havitcioglu H. Fabrication of 3D Printed poly(lactic acid) strut and wet-electrospun cellulose nano fiber reinforced chitosan-collagen hydrogel composite scaffolds for meniscus tissue engineering. J Biomater Appl 2022; 37:683-697. [PMID: 35722881 DOI: 10.1177/08853282221109339] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The main goal of the study was to produce chitosan-collagen hydrogel composite scaffolds consisting of 3D printed poly(lactic acid) (PLA) strut and nanofibrous cellulose for meniscus cartilage tissue engineering. For this purpose, first PLA strut containing microchannels was incorporated into cellulose nanofibers and then they were embedded into chitosan-collagen matrix to obtain micro- and nano-sized topographical features for better cellular activities as well as mechanical properties. All the hydrogel composite scaffolds produced by using three different concentrations of genipin (0.1, 0.3, and 0.5%) had an interconnected microporous structure with a swelling ratio of about 400% and water content values between 77 and 83% which is similar to native cartilage extracellular matrix. The compressive strength of all the hydrogel composite scaffolds was found to be similar (∼32 kPa) and suitable for cartilage tissue engineering applications. Besides, the hydrogel composite scaffold comprising 0.3% (w/v) genipin had the highest tan δ value (0.044) at a frequency of 1 Hz which is around the walking frequency of a person. According to the in vitro analysis, this hydrogel composite scaffold did not show any cytotoxic effect on the rabbit mesenchymal stem cells and enabled cells to attach, proliferate and also migrate through the inner area of the scaffold. In conclusion, the produced hydrogel composite scaffold holds great promise for meniscus tissue engineering.
Collapse
Affiliation(s)
- Oylum Colpankan Gunes
- Faculty of Engineering, Department of Metallurgical and Materials Engineering, 369678Dokuz Eylul University, Izmir, Turkey
| | - Aylin Kara
- Department of Bioengineering, 52972Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Baysan
- Department of Biomechanics, Institute of Health Science, 37508Dokuz Eylul University, Izmir, Turkey
| | - Resit Bugra Husemoglu
- Department of Biomechanics, Institute of Health Science, 37508Dokuz Eylul University, Izmir, Turkey
| | - Pinar Akokay
- Department of Histology & Embryology, Faculty of Medicine, 64030Dokuz Eylul University, Izmir, Turkey
| | - Aylin Ziylan Albayrak
- Faculty of Engineering, Department of Metallurgical and Materials Engineering, 369678Dokuz Eylul University, Izmir, Turkey
| | - Bekir Ugur Ergur
- Department of Histology & Embryology, Faculty of Medicine, 64030Dokuz Eylul University, Izmir, Turkey
| | - Hasan Havitcioglu
- Department of Biomechanics, Institute of Health Science, 37508Dokuz Eylul University, Izmir, Turkey.,Department of Orthopedics and Traumatology, Faculty of Medicine, 64030DokuzEylul University, Izmir, Turkey
| |
Collapse
|
18
|
Sif Julie F, Torben Strøm H, Mette P, Hans G, Jens Vinge N. Dynamic viscoelastic properties of porcine gastric tissue: Effects of loading frequency, region and direction. J Biomech 2022; 143:111302. [PMID: 36126503 DOI: 10.1016/j.jbiomech.2022.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 12/30/2022]
Abstract
The gastric biomechanics influences digestive function as well as a range of topics of medical and scientific interests such as interaction between the stomach and gastric devices. Hence, the mechanical properties are essential for understanding gastric tissue and function in health and disease, and for the development of diagnostic or therapeutic devices. A key characteristic to be characterized is the time dependent mechanical tissue properties. The aim of this study was to characterize viscoelastic properties of the stomach across a frequency range. Longitudinal and circumferential stomach samples from the porcine fundus, corpus and antrum were pre-stretched 10 % and sinusoidally loaded with 10 % dynamic strain. The viscoelastic properties were assessed from 0.01 - 15 Hz using dynamic mechanical analysis. The storage moduli, loss moduli and tan δ had a significant second-order polynomial trend with increasing frequency. For the loss moduli, significant differences were observed between 0.01 and 15 Hz and between 0.05 and 15 Hz (p = 0.023 to 0.041). Significant differences were not found for storage moduli. Tan δ was frequency-independent, indicating that the two moduli varied proportionally. Fundus had significantly smaller storage moduli for longitudinal samples compared to corpus (p = 0.034) and antrum (p = 0.014) but was not significantly different for circumferential samples. Analysis of direction-dependency showed significant differences between longitudinal and circumferential samples (p = 0.002 to 0.042). The presented work provides insight into tensile viscoelastic properties of gastric tissue, which is useful for developing biomaterials, devices and computational models for device development specification calibrations.
Collapse
Affiliation(s)
- Friis Sif Julie
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Poulsen Mette
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Gregersen Hans
- California Medical Innovations Institute, San Diego, CA, United States
| | - Nygaard Jens Vinge
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
19
|
Loofah-chitosan and poly (-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) based hydrogel scaffolds for meniscus tissue engineering applications. Int J Biol Macromol 2022; 221:1171-1183. [PMID: 36087757 DOI: 10.1016/j.ijbiomac.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
The meniscus is a fibrocartilaginous tissue that is very important for the stability of the knee joint. However, it has a low ability to heal itself, so damage to it will always lead to articular cartilage degeneration. The goal of this study was to make a new type of meniscus scaffold made of chitosan, loofah mat, and PHBV nanofibers, as well as to describe hydrogel composite scaffolds in terms of their shape, chemical composition, mechanical properties, and temperature. Three different concentrations of genipin (0.1, 0.3, and 0.5 %) were used and the optimal crosslinker concentration was 0.3 % for Chitosan/loofah (CL) and Chitosan/loofah/PHBV fiber (CLF). Scaffolds were seeded using undifferentiated MSCs and incubated for 21 days to investigate the chondrogenic potential of hydrogel scaffolds. Cell proliferation analyses were performed using WST-1 assay, GAG content was analyzed, SEM and fluorescence imaging observed morphologies and cell attachment, and histological and immunohistochemical studies were performed. The in vitro analysis showed no cytotoxic effect and enabled cells to attach, proliferate, and migrate inside the scaffold. In conclusion, the hydrogel composite scaffold is a promising material for engineering meniscus tissue.
Collapse
|
20
|
Tang S, Liu K, Chen J, Li Y, Liu M, Lu L, Zhou C, Luo B. Dual-Cross-linked Liquid Crystal Hydrogels with Controllable Viscoelasticity for Regulating Cell Behaviors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21966-21977. [PMID: 35503918 DOI: 10.1021/acsami.2c02689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The liquid crystal properties and viscoelasticity of the natural bone extracellular matrix (ECM) play a decisive role in guiding cell behavior, conducting cell signals, and regulating mineralization. Here, we develop a facile approach for preparing a novel polysaccharide hydrogel with liquid crystal properties and viscoelasticity similar to those of natural bone ECM. First, a series of chitin whisker/chitosan (CHW/CS) hydrogels were prepared by chemical cross-linking with genipin, in which CHW can self-assemble to form cholesteric liquid crystals under ultrasonic treatment and CS chains can enter into the gaps between the helical layers of the CHW cholesteric liquid crystal phase to endow morphological stability and good mechanical properties. Subsequently, the obtained chemically cross-linked liquid crystal hydrogels were immersed into the desired concentration of the NaCl solution to form physical cross-linking. Due to the Hofmeister effect, the as-prepared dual-cross-linked liquid crystal hydrogels showed an enhanced modulus, viscoelasticity similar to that of natural ECM with relatively fast stress relaxation behavior, and fold surface morphology. Compared to both CHW/CS hydrogels without liquid crystal properties and CHW/CS liquid crystal hydrogels without further physical cross-linking, the dual-cross-linked CHW/CS liquid crystal hydrogels are more favorable for the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells. This approach could inspire the design of hydrogels mimicking the liquid crystal properties and viscoelasticity of natural bone ECM for bone repair.
Collapse
Affiliation(s)
- Shengyue Tang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Jingsheng Chen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Yizhi Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Lu Lu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, P. R. China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, P. R. China
| |
Collapse
|
21
|
Morejon A, Mantero AMA, Best TM, Jackson AR, Travascio F. Mechanisms of energy dissipation and relationship with tissue composition in human meniscus. Osteoarthritis Cartilage 2022; 30:605-612. [PMID: 35032627 PMCID: PMC8940718 DOI: 10.1016/j.joca.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The human meniscus is essential in maintaining proper knee joint function. The meniscus absorbs shock, distributes loads, and stabilizes the knee joint to prevent the onset of osteoarthritis. The extent of its shock-absorbing role can be estimated by measuring the energy dissipated by the meniscus during cyclic mechanical loading. METHODS Samples were prepared from the central and horn regions of medial and lateral human menisci from 8 donors (both knees for total of 16 samples). Cyclic compression tests at several compression strains and frequencies yielded the energy dissipated per tissue volume. A GEE regression model was used to investigate the effects of compression, meniscal side and region, and water content on energy dissipation in order to account for repeated measures within samples. RESULTS Energy dissipation by the meniscus increased with compressive strain from ∼0.1 kJ/m3 (at 10% strain) to ∼10 kJ/m3 (at 20% strain) and decreased with loading frequency. Samples from the anterior region provided the largest energy dissipation when compared to central and posterior samples (P < 0.05). Water content for the 16 meniscal tissues was 77.9 (C.I. 72.0-83.8%) of the total tissue mass. A negative correlation was found between energy dissipation and water content (P < 0.05). CONCLUSION The extent of energy dissipated by the meniscus is inversely related to loading frequency and meniscal water content.
Collapse
Affiliation(s)
- Andy Morejon
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL
| | | | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL,Department of Orthopaedic Surgery, University of Miami, Miami, FL,UHealth Sports Medicine Institute, Coral Gables, FL
| | - Alicia R. Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL,Corresponding authors: Dr. Francesco Travascio, Associate Professor College of Engineering, University of Miami, 1251 Memorial Drive, MEB 276 Coral Gables, FL 33146 USA Telephone: +1-(305)-284-2371, Dr. Alicia R. Jackson Associate Professor, College of Engineering, University of Miami, 1251 Memorial Drive, MEA 219 Coral Gables, FL 33146, USA, Telephone: +1-(305)-284-2135,
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL,Department of Orthopaedic Surgery, University of Miami, Miami, FL,Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, FL,Corresponding authors: Dr. Francesco Travascio, Associate Professor College of Engineering, University of Miami, 1251 Memorial Drive, MEB 276 Coral Gables, FL 33146 USA Telephone: +1-(305)-284-2371, Dr. Alicia R. Jackson Associate Professor, College of Engineering, University of Miami, 1251 Memorial Drive, MEA 219 Coral Gables, FL 33146, USA, Telephone: +1-(305)-284-2135,
| |
Collapse
|
22
|
Seitz AM, Schwer J, de Roy L, Warnecke D, Ignatius A, Dürselen L. Knee Joint Menisci Are Shock Absorbers: A Biomechanical In-Vitro Study on Porcine Stifle Joints. Front Bioeng Biotechnol 2022; 10:837554. [PMID: 35372324 PMCID: PMC8968420 DOI: 10.3389/fbioe.2022.837554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this biomechanical in vitro study was to answer the question whether the meniscus acts as a shock absorber in the knee joint or not. The soft tissue of fourteen porcine knee joints was removed, leaving the capsuloligamentous structures intact. The joints were mounted in 45° neutral knee flexion in a previously validated droptower setup. Six joints were exposed to an impact load of 3.54 J, and the resultant loss factor (η) was calculated. Then, the setup was modified to allow sinusoidal loading under dynamic mechanical analysis (DMA) conditions. The remaining eight knee joints were exposed to 10 frequencies ranging from 0.1 to 5 Hz at a static load of 1210 N and a superimposed sinusoidal load of 910 N (2.12 times body weight). Forces (F) and deformation (l) were continuously recorded, and the loss factor (tan δ) was calculated. For both experiments, four meniscus states (intact, medial posterior root avulsion, medial meniscectomy, and total lateral and medial meniscectomy) were investigated. During the droptower experiments, the intact state indicated a loss factor of η = 0.1. Except for the root avulsion state (−15%, p = 0.12), the loss factor decreased (p < 0.046) up to 68% for the total meniscectomy state (p = 0.028) when compared to the intact state. Sinusoidal DMA testing revealed that knees with an intact meniscus had the highest loss factors, ranging from 0.10 to 0.15. Any surgical manipulation lowered the damping ability: Medial meniscectomy resulted in a reduction of 24%, while the resection of both menisci lowered tan δ by 18% compared to the intact state. This biomechanical in vitro study indicates that the shock-absorbing ability of a knee joint is lower when meniscal tissue is resected. In other words, the meniscus contributes to the shock absorption of the knee joint not only during impact loads, but also during sinusoidal loads. The findings may have an impact on the rehabilitation of young, meniscectomized patients who want to return to sports. Consequently, such patients are exposed to critical loads on the articular cartilage, especially when performing sports with recurring impact loads transmitted through the knee joint surfaces.
Collapse
|
23
|
De Rosa M, Filippone G, Best TM, Jackson AR, Travascio F. Mechanical properties of meniscal circumferential fibers using an inverse finite element analysis approach. J Mech Behav Biomed Mater 2022; 126:105073. [PMID: 34999488 PMCID: PMC9162054 DOI: 10.1016/j.jmbbm.2022.105073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 02/03/2023]
Abstract
The extracellular matrix (ECM) of the meniscus is a gel-like water solution of proteoglycans embedding bundles of collagen fibers mainly oriented circumferentially. Collagen fibers significantly contribute to meniscal mechanics, however little is known about their mechanical properties. The objective of this study was to propose a constitutive model for collagen fibers embedded in the ECM of the meniscus and to characterize the tissue's pertinent mechanical properties. It was hypothesized that a linear fiber reinforced viscoelastic constitutive model is suitable to describe meniscal mechanical behavior in shear. It was further hypothesized that the mechanical properties governing the model depend on the tissue's composition. Frequency sweep tests were conducted on eight porcine meniscal specimens. A first cohort of experimental data resulted from tissue specimens where collagen fibers oriented parallel with respect to the shear plane were used. This was done to eliminate the contribution of collagen fibers from the mechanical response and characterize the mechanical properties of the ECM. A second cohort with fibers orthogonally oriented with respect to the shear plane that were used to determine the elastic properties of the collagen fibers via inverse finite element analysis. Our testing protocol revealed that tissue ECM mechanical behavior could be described by a generalized Maxwell model with 3 relaxation times. The inverse finite element analysis suggested that collagen fibers can be modeled as linear elastic elements having an average elastic modulus of 287.5 ± 62.6 MPa. Magnitudes of the mechanical parameters governing the ECM and fibers were negatively related to tissue water content.
Collapse
Affiliation(s)
- Massimiliano De Rosa
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL
| | - Giovanni Filippone
- Department of Materials Engineering, University of Naples Federico II, Naples, Italy
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL,UHealth Sports Medicine Institute, Coral Gables, FL,Department of Orthopaedic Surgery, University of Miami, Miami, FL
| | - Alicia R. Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL,Corresponding authors: Dr. Francesco Travascio, Associate Professor, College of Engineering, University of Miami, 1251 Memorial Drive, MEB 276, Coral Gables, FL 33146, USA, Telephone: +1-(305)-284-2371, , Dr. Alicia R. Jackson, Associate Professor, College of Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146, USA, Telephone: +1-(305)-284-2135,
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL,Department of Orthopaedic Surgery, University of Miami, Miami, FL,Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, FL,Corresponding authors: Dr. Francesco Travascio, Associate Professor, College of Engineering, University of Miami, 1251 Memorial Drive, MEB 276, Coral Gables, FL 33146, USA, Telephone: +1-(305)-284-2371, , Dr. Alicia R. Jackson, Associate Professor, College of Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146, USA, Telephone: +1-(305)-284-2135,
| |
Collapse
|
24
|
Prabhath S, Alappatt K, Shetty A, Sumalatha S. An exploratory study of the histomorphogenesis and zonal vascular changes in the human fetal medial meniscus. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
25
|
Berni M, Marchiori G, Cassiolas G, Grassi A, Zaffagnini S, Fini M, Lopomo NF, Maglio M. Anisotropy and inhomogeneity of permeability and fibrous network response in the pars intermedia of the human lateral meniscus. Acta Biomater 2021; 135:393-402. [PMID: 34411754 DOI: 10.1016/j.actbio.2021.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Within the human tibiofemoral joint, meniscus plays a key role due to its peculiar time-dependent mechanical characteristics, inhomogeneous structure and compositional features. To better understand the pathophysiological mechanisms underlying this essential component, it is mandatory to analyze in depth the relationship between its structure and the function it performs in the joint. Accordingly, the aim of this study was to evaluate the behavior of both solid and fluid phases of human meniscus in response to compressive loads, by integrating mechanical assessment and histological analysis. Cubic specimens were harvested from seven knee lateral menisci, specifically from anterior horn, pars intermedia and posterior horn; unconfined compressive tests were then performed according to three main loading directions (i.e., radial, circumferential and vertical). Fibril modulus, matrix modulus and hydraulic permeability of the tissue were thence estimated through a fibril-network-reinforced biphasic model. Tissue porosity and collagen fibers arrangement were assessed through histology for each region and related to the loading directions adopted during mechanical tests. Regional and strain-dependent constitutive parameters were finally proposed for the human lateral meniscus, suggesting an isotropic behavior of both the horns, and a transversely isotropic response of the pars intermedia. Furthermore, the histological findings supported the evidences highlighted by the compressive tests. Indeed, this study provided novel insights concerning the functional behavior of human menisci by integrating mechanical and histological characterizations and thus highlighting the key role of this component in knee contact mechanics and presenting fundamental information that can be used in the development of tissue-engineered substitutes. STATEMENT OF SIGNIFICANCE: This work presents an integration to the approaches currently used to model the mechanical behavior of the meniscal tissue. This study assessed in detail the regional and directional contributions of both the meniscal solid and fluid phases during compressive response, providing also complementary histological evidence. Within this updated perspective, both knee computational modeling and meniscal tissue engineering can be improved to have an effective impact on the clinical practice.
Collapse
|
26
|
Gecelter RC, Ilyaguyeva Y, Thompson NE. The menisci are not shock absorbers: A biomechanical and comparative perspective. Anat Rec (Hoboken) 2021; 305:1051-1064. [PMID: 34486236 DOI: 10.1002/ar.24752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 01/22/2023]
Abstract
The lateral and medial menisci are fibrocartilaginous structures in the knee that play a crucial role in normal knee biomechanics. However, one commonly cited role of the menisci is that they function as "shock absorbers." Here we provide a critique of this notion, drawing upon a review of comparative anatomical and biomechanical data from humans and other tetrapods. We first review those commonly, and often exclusively, cited studies in support of a shock absorption function and show that evidence for a shock absorptive function is dubious. We then review the evolutionary and comparative evidence to show that (1) the human menisci are unremarkable in morphology compared with most other tetrapods, and (2) "shock" during locomotion is uncommon, with humans standing out as one of the only tetrapods that regularly experiences high levels of shock during locomotion. A shock-absorption function does not explain the origin of menisci, nor are human menisci specialized in any way that would explain a unique shock-absorbing function during human gait. Finally, we show that (3) the material properties of menisci are distinctly poorly suited for energy dissipation and that (4) estimations of meniscal energy absorption based on published data are negligible, both in their absolute amount and in comparison to other well-accepted structures which mitigate shock during locomotion. The menisci are evolutionarily ancient structures crucial for joint congruity, load distribution, and stress reduction, among a number of other functions. However, the menisci are not meaningful shock absorbers, neither in tetrapods broadly, nor in humans.
Collapse
Affiliation(s)
| | - Yaffa Ilyaguyeva
- NYIT College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
27
|
Barthold JE, Martin BM, Sridhar SL, Vernerey F, Schneider SE, Wacquez A, Ferguson V, Calve S, Neu CP. Recellularization and Integration of Dense Extracellular Matrix by Percolation of Tissue Microparticles. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2103355. [PMID: 34840547 PMCID: PMC8612094 DOI: 10.1002/adfm.202103355] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Cells embedded in the extracellular matrix of tissues play a critical role in maintaining homeostasis while promoting integration and regeneration following damage or disease. Emerging engineered biomaterials utilize decellularized extracellular matrix as a tissue-specific support structure; however, many dense, structured biomaterials unfortunately demonstrate limited formability, fail to promote cell migration, and result in limited tissue repair. Here, we developed a reinforced composite material of densely packed acellular extracellular matrix microparticles in a hydrogel, termed tissue clay, that can be molded and crosslinked to mimic native tissue architecture. We utilized hyaluronic acid-based hydrogels, amorphously packed with acellular articular cartilage tissue particulated to ~125-250 microns in diameter and defined a percolation threshold of 0.57 (v/v) beyond which the compressive modulus exceeded 300kPa. Remarkably, primary chondrocytes recellularized particles within 48 hours, a process driven by chemotaxis, exhibited distributed cellularity in large engineered composites, and expressed genes consistent with native cartilage repair. We additionally demonstrated broad utility of tissue clays through recellularization and persistence of muscle, skin, and cartilage composites in a subcutaneous in vivo mouse model. Our findings suggest optimal strategies and material architectures to balance concurrent demands for large-scale mechanical properties while also supporting recellularization and integration of dense musculoskeletal and connective tissues. TABLE OF CONTENTS ENTRY We present a new design framework for regenerative articular cartilage scaffolds using acellular extracellular matrix particles, packed beyond a percolation threshold, and crosslinked within chondroinductive hydrogels. Our results suggest that the architecture and the packing, rather than altering the individual components, creates a composite material that can balance mechanics, porosity to enable migration, and tissue specific biochemical interactions with cells. Moreover, we provide a technique that we show is applicable to other tissue types.
Collapse
Affiliation(s)
- Jeanne E. Barthold
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Brittany M. Martin
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Shankar Lalitha Sridhar
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Franck Vernerey
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | | | - Alexis Wacquez
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Virginia Ferguson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
28
|
Mesenchymal Stem Cells: Current Concepts in the Management of Inflammation in Osteoarthritis. Biomedicines 2021; 9:biomedicines9070785. [PMID: 34356849 PMCID: PMC8301311 DOI: 10.3390/biomedicines9070785] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) has traditionally been known as a “wear and tear” disease, which is mainly characterized by the degradation of articular cartilage and changes in the subchondral bone. Despite the fact that OA is often thought of as a degenerative disease, the catabolic products of the cartilage matrix often promote inflammation by activating immune cells. Current OA treatment focuses on symptomatic treatment, with a primary focus on pain management, which does not promote cartilage regeneration or attenuate joint inflammation. Since articular cartilage have no ability to regenerate, thus regeneration of the tissue is one of the key targets of modern treatments for OA. Cell-based therapies are among the new therapeutic strategies for OA. Mesenchymal stem cells (MSCs) have been extensively researched as potential therapeutic agents in cell-based therapy of OA due to their ability to differentiate into chondrocytes and their immunomodulatory properties that can facilitate cartilage repair and regeneration. In this review, we emphasized current knowledge and future perspectives on the use of MSCs by targeting their regeneration potential and immunomodulatory effects in the treatment of OA.
Collapse
|
29
|
Biomechanical Performance of Menisci under Cyclic Loads. Appl Bionics Biomech 2021. [DOI: 10.1155/2021/5512762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The meniscus, composed of fibrocartilage, is a very important part of the human knee joint that behaves like a buffer. Located in the middle of the femoral condyles and the tibial plateau, it is a necessary structure to maintain normal biomechanical properties of the knee. Whether walking or exercising, the meniscus plays a vital role to protect the articular surface of both the femoral condyles and the tibial plateau by absorbing the conveying shock from body weight. However, modern people often suffer from irreversible degeneration of joint tissue due to exercise-induced harm or aging. Therefore, understanding its dynamic characteristics will help to learn more about the actual state of motion and to avoid unnecessary injury. This study uses reverse engineering equipment, a 3D optical scanner, and a plastic teaching human body model to build the geometry of knee joint meniscus. Then, the finite element method (FEM) is employed to obtain the dynamic characteristics of the meniscus. The results show the natural frequencies, mode shapes, and fatigue life analysis of meniscus, with real human material parameters. The achieved results can be applied to do subsequent knee dynamic simulation analysis, to reduce the knee joint and lower external impacts, and to manufacture artificial meniscus through tissue engineering.
Collapse
|
30
|
Li H, Yang Z, Fu L, Yuan Z, Gao C, Sui X, Liu S, Peng J, Dai Y, Guo Q. Advanced Polymer-Based Drug Delivery Strategies for Meniscal Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:266-293. [PMID: 32988289 DOI: 10.1089/ten.teb.2020.0156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The meniscus plays a critical role in maintaining knee joint homeostasis. Injuries to the meniscus, especially considering the limited self-healing capacity of the avascular region, continue to be a challenge and are often treated by (partial) meniscectomy, which has been identified to cause osteoarthritis. Currently, meniscus tissue engineering focuses on providing extracellular matrix (ECM)-mimicking scaffolds to direct the inherent meniscal regeneration process, and it has been found that various stimuli are essential. Numerous bioactive factors present benefits in regulating cell fate, tissue development, and healing, but lack an optimal delivery system. More recently, bioengineers have developed various polymer-based drug delivery systems (PDDSs), which are beneficial in terms of the favorable properties of polymers as well as novel delivery strategies. Engineered PDDSs aim to provide not only an ECM-mimicking microenvironment but also the controlled release of bioactive factors with release profiles tailored according to the biological concerns and properties of the factors. In this review, both different polymers and bioactive factors involved in meniscal regeneration are discussed, as well as potential candidate systems, with examples of recent progress. This article aims to summarize drug delivery strategies in meniscal regeneration, with a focus on novel delivery strategies rather than on specific delivery carriers. The current challenges and future prospects for the structural and functional regeneration of the meniscus are also discussed. Impact statement Meniscal injury remains a clinical Gordian knot owing to the limited healing potential of the region, restricted surgical approaches, and risk of inducing osteoarthritis. Existing tissue engineering scaffolds that provide mechanical support and a favorable microenvironment also lack biological cues. Advanced polymer-based delivery strategies consisting of polymers incorporating bioactive factors have emerged as a promising direction. This article primarily reviews the types and applications of biopolymers and bioactive factors in meniscal regeneration. Importantly, various carrier systems and drug delivery strategies are discussed with the hope of inspiring further advancements in this field.
Collapse
Affiliation(s)
- Hao Li
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhen Yang
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Liwei Fu
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhiguo Yuan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China.,Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cangjian Gao
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Yongjing Dai
- Department of Orthopedic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| |
Collapse
|
31
|
Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020; 584:535-546. [PMID: 32848221 DOI: 10.1038/s41586-020-2612-2] [Citation(s) in RCA: 1087] [Impact Index Per Article: 217.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/17/2020] [Indexed: 11/08/2022]
Abstract
Substantial research over the past two decades has established that extracellular matrix (ECM) elasticity, or stiffness, affects fundamental cellular processes, including spreading, growth, proliferation, migration, differentiation and organoid formation. Linearly elastic polyacrylamide hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins are widely used to assess the role of stiffness, and results from such experiments are often assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. However, tissues and ECMs are not linearly elastic materials-they exhibit far more complex mechanical behaviours, including viscoelasticity (a time-dependent response to loading or deformation), as well as mechanical plasticity and nonlinear elasticity. Here we review the complex mechanical behaviours of tissues and ECMs, discuss the effect of ECM viscoelasticity on cells, and describe the potential use of viscoelastic biomaterials in regenerative medicine. Recent work has revealed that matrix viscoelasticity regulates these same fundamental cell processes, and can promote behaviours that are not observed with elastic hydrogels in both two- and three-dimensional culture microenvironments. These findings have provided insights into cell-matrix interactions and how these interactions differentially modulate mechano-sensitive molecular pathways in cells. Moreover, these results suggest design guidelines for the next generation of biomaterials, with the goal of matching tissue and ECM mechanics for in vitro tissue models and applications in regenerative medicine.
Collapse
|
32
|
Constitutive modeling of menisci tissue: a critical review of analytical and numerical approaches. Biomech Model Mechanobiol 2020; 19:1979-1996. [PMID: 32572727 DOI: 10.1007/s10237-020-01352-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Menisci are fibrocartilaginous disks consisting of soft tissue with a complex biomechanical structure. They are critical determinants of the kinematics as well as the stability of the knee joint. Several studies have been carried out to formulate tissue mechanical behavior, leading to the development of a wide spectrum of constitutive laws. In addition to developing analytical tools, extensive numerical studies have been conducted on menisci modeling. This study reviews the developments of the most widely used continuum models of the meniscus mechanical properties in conjunction with emerging analytical and numerical models used to study the meniscus. The review presents relevant approaches and assumptions used to develop the models and includes discussions regarding strengths, weaknesses, and discrepancies involved in the presented models. The study presents a comprehensive coverage of relevant publications included in Compendex, EMBASE, MEDLINE, PubMed, ScienceDirect, Springer, and Scopus databases. This review aims at opening novel avenues for improving menisci modeling within the framework of constitutive modeling through highlighting the needs for further research directed toward determining key factors in gaining insight into the biomechanics of menisci which is crucial for the elaborate design of meniscal replacements.
Collapse
|
33
|
Cengiz IF, Maia FR, da Silva Morais A, Silva-Correia J, Pereira H, Canadas RF, Espregueira-Mendes J, Kwon IK, Reis RL, Oliveira JM. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Biofabrication 2020; 12:025028. [PMID: 32069441 DOI: 10.1088/1758-5090/ab779f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The meniscus has critical functions in the knee joint kinematics and homeostasis. Injuries of the meniscus are frequent, and the lack of a functional meniscus between the femur and tibial plateau can cause articular cartilage degeneration leading to osteoarthritis development and progression. Regeneration of meniscus tissue has outstanding challenges to be addressed. In the current study, novel Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone (PCL) and porous silk fibroin were proposed for meniscus tissue engineering. As confirmed by micro-structural analysis the entrapment of silk fibroin was successful, and all scaffolds had excellent interconnectivity (≥99%). The EiC scaffolds had more favorable micro-structure compared with the PCL cage scaffolds by improving the pore size while keeping the interconnectivity almost the same. When compared with the PCL cage, the entrapment of porous silk fibroin into the PCL cage decreased the high compressive modulus in a favorable matter in the wet state thanks to the silk fibroin's high swelling properties. The in vitro studies with human stem cells or meniscocytes seeded constructs, demonstrated that the EiC scaffolds had superior cell adhesion, metabolic activity, and proliferation compared to the PCL cage scaffolds. Upon subcutaneous implantation of scaffolds in nude mice, all groups were free of adverse incidents, and mildly invaded by inflammatory cells with neovascularization, while the EiC scaffolds showed better tissue infiltration. The results of this work indicated that the EiC scaffolds of PCL and silk fibroin are favorable for meniscus tissue engineering, and the findings are encouraging for further studies using a larger animal model.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kestilä I, Folkesson E, Finnilä MA, Turkiewicz A, Önnerfjord P, Hughes V, Tjörnstrand J, Englund M, Saarakkala S. Three-dimensional microstructure of human meniscus posterior horn in health and osteoarthritis. Osteoarthritis Cartilage 2019; 27:1790-1799. [PMID: 31301431 PMCID: PMC7610688 DOI: 10.1016/j.joca.2019.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To develop and perform ex vivo 3D imaging of meniscus posterior horn microstructure using micro-computed tomography (μCT), and to compare specimens from healthy references against end-stage osteoarthritis (OA) using conventional section-based histology and qualitative μCT. DESIGN We retrieved human medial and lateral menisci from 10 deceased donors without knee OA (healthy references) and medial and lateral menisci from 10 patients having total knee replacement for medial compartment OA. Meniscal posterior horns were dissected and fixed in formalin. One subsection underwent hexamethyldisilazane (HMDS) treatment and μCT imaging. Pauli's histopathological scoring was performed for 3 other subsections. The differences in histopathological scores were estimated using mixed linear regression, resulting in fixed effects estimates for within-knee comparisons and adjusted for age and body mass index for between-subjects comparisons. RESULTS 3D visualization with μCT qualitatively revealed similar microstructural changes in the posterior horns as conventional histology. The mean histopathological score was higher for medial menisci from OA knees vs both medial reference menisci (mean difference [95% CI], 3.9 [2.6,5.3]), and lateral menisci from OA knees (3.9 [2.9,5.0]). The scores were similar between lateral menisci from OA knees and lateral reference menisci (0.8 [-0.6,2.2]), and between medial and lateral reference menisci (0.8 [-0.3,1.9]). CONCLUSIONS HMDS-based μCT protocol allows unique 3D visualization of meniscus microstructures. Posterior horns of medial menisci from medial compartment OA knees had higher histopathological scores than both the lateral posterior horns from the same OA knees and medial reference menisci, suggesting a strong association between meniscus degradation and unicompartmental knee OA.
Collapse
Affiliation(s)
- Iida Kestilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Elin Folkesson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden,Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Rheumatology and Molecular Skeletal Biology, Lund, Sweden
| | - Mikko A. Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Medical Research Center, University of Oulu, Oulu, Finland
| | - Aleksandra Turkiewicz
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| | - Patrik Önnerfjord
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Rheumatology and Molecular Skeletal Biology, Lund, Sweden
| | - Velocity Hughes
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| | - Jon Tjörnstrand
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden,Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden
| | - Martin Englund
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden,Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston, MA, USA
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Medical Research Center, University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
35
|
Niemczyk-Soczynska B, Gradys A, Kolbuk D, Krzton-Maziopa A, Sajkiewicz P. Crosslinking Kinetics of Methylcellulose Aqueous Solution and Its Potential as a Scaffold for Tissue Engineering. Polymers (Basel) 2019; 11:E1772. [PMID: 31661795 PMCID: PMC6918217 DOI: 10.3390/polym11111772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023] Open
Abstract
Thermosensitive, physically crosslinked injectable hydrogels are in the area of interests of various scientific fields. One of the representatives of this materials group is an aqueous solution of methylcellulose. At ambient conditions, methylcellulose (MC) is a sol while on heating up to 37 °C, MC undergoes physical crosslinking and transforms into a gel. Injectability at room temperature, and crosslinkability during subsequent heating to physiological temperature raises hopes, especially for tissue engineering applications. This research work aimed at studying crosslinking kinetics, thermal, viscoelastic, and biological properties of MC aqueous solution in a broad range of MC concentrations. It was evidenced by Differential Scanning Calorimetry (DSC) that crosslinking of MC is a reversible two-stage process, manifested by the appearance of two endothermic effects, related to the destruction of water cages around methoxy groups, followed by crosslinking via the formation of hydrophobic interactions between methoxy groups in the polymeric chains. The DSC results also allowed the determination of MC crosslinking kinetics. Complementary measurements of MC crosslinking kinetics performed by dynamic mechanical analysis (DMA) provided information on the final storage modulus, which was important from the perspective of tissue engineering applications. Cytotoxicity tests were performed using mouse fibroblasts and showed that MC at low concentration did not cause cytotoxicity. All these efforts allowed to assess MC hydrogel relevance for tissue engineering applications.
Collapse
Affiliation(s)
- Beata Niemczyk-Soczynska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland.
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland.
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland.
| | - Anna Krzton-Maziopa
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 St., 00-664 Warsaw, Poland.
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland.
| |
Collapse
|
36
|
Costa JB, Silva-Correia J, Pina S, da Silva Morais A, Vieira S, Pereira H, Espregueira-Mendes J, Reis RL, Oliveira JM. Indirect printing of hierarchical patient-specific scaffolds for meniscus tissue engineering. Biodes Manuf 2019. [DOI: 10.1007/s42242-019-00050-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Seidenstuecker M, Watrinet J, Bernstein A, Suedkamp NP, Latorre SH, Maks A, Mayr HO. Viscoelasticity and histology of the human cartilage in healthy and degenerated conditions of the knee. J Orthop Surg Res 2019; 14:256. [PMID: 31409382 PMCID: PMC6693159 DOI: 10.1186/s13018-019-1308-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are many studies on osteoarthritis, but only a few studies deal with human arthrosis, comparing the mechanical properties of healthy and diseased samples. In most of these studies, only isolated areas of the tibia are examined. There is currently only one study investigating the complete mapping of cartilage tissue but not the difference between instantaneous modulus (IM) in healthy and diseased samples. The aim of this study is to investigate the relationship between the biomechanical and histological changes of articular cartilage in the pathogenesis of osteoarthritis. METHODS The study compared 25 tibiae with medial gonarthrosis and 13 healthy controls. The IM was determined by automated indentation mapping using a Mach-1 V500css testing machine. A grid was projected over the sample and stored so that all measurements could be taken at the same positions (100 ± 29 positions across the tibiae). This grid was then used to perform the thickness measurement using the needle method. Samples were then taken for histological examinations using a hollow milling machine. Then Giemsa and Safranin O staining were performed. In order to determine the degree of arthrosis according to histological criteria, the assessment was made with regard to Osteoarthritis Research Society International (OARSI) and AHO scores. RESULTS A significant difference (p < 0.05) could be observed in the measured IM between the controls with 3.43 ± 0.36 MPa and the samples with 2.09 ± 0.18 MPa. In addition, there was a significant difference in IM in terms of meniscus-covered and meniscus-uncovered areas. The difference in cartilage thickness between 2.25 ± 0.11 mm controls and 2.0 ± 0.07 mm samples was highly significant with p < 0.001. With regard to the OARSI and AHO scores, the samples differed significantly from the controls. The OARSI and AHO scores showed a significant difference between meniscus-covered and meniscus-uncovered areas. CONCLUSIONS The controls showed significantly better viscoelastic behavior than the arthrotic samples in the measured IM. The measured biomechanical values showed a direct correlation between histological changes and altered biomechanics in gonarthrosis.
Collapse
Affiliation(s)
- Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.
| | - Julius Watrinet
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Anke Bernstein
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Norbert P Suedkamp
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Sergio H Latorre
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Anastasija Maks
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Hermann O Mayr
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,Schoen Clinic Munich Harlaching, Teaching Hospital of Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
38
|
Pereira H, Fatih Cengiz I, Gomes S, Espregueira-Mendes J, Ripoll PL, Monllau JC, Reis RL, Oliveira JM. Meniscal allograft transplants and new scaffolding techniques. EFORT Open Rev 2019; 4:279-295. [PMID: 31210969 PMCID: PMC6549113 DOI: 10.1302/2058-5241.4.180103] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Clinical management of meniscal injuries has changed radically in recent years. We have moved from the model of systematic tissue removal (meniscectomy) to understanding the need to preserve the tissue.Based on the increased knowledge of the basic science of meniscal functions and their role in joint homeostasis, meniscus preservation and/or repair, whenever indicated and possible, are currently the guidelines for management.However, when repair is no longer possible or when facing the fact of the previous partial, subtotal or total loss of the meniscus, meniscus replacement has proved its clinical value. Nevertheless, meniscectomy remains amongst the most frequent orthopaedic procedures.Meniscus replacement is currently possible by means of meniscal allograft transplantation (MAT) which provides replacement of the whole meniscus with or without bone plugs/slots. Partial replacement has been achieved by means of meniscal scaffolds (mainly collagen or polyurethane-based). Despite the favourable clinical outcomes, it is still debatable whether MAT is capable of preventing progression to osteoarthritis. Moreover, current scaffolds have shown some fundamental limitations, such as the fact that the newly formed tissue may be different from the native fibrocartilage of the meniscus.Regenerative tissue engineering strategies have been used in an attempt to provide a new generation of meniscal implants, either for partial or total replacement. The goal is to provide biomaterials (acellular or cell-seeded constructs) which provide the biomechanical properties but also the biological features to replace the loss of native tissue. Moreover, these approaches include possibilities for patient-specific implants of correct size and shape, as well as advanced strategies combining cells, bioactive agents, hydrogels or gene therapy.Herein, the clinical evidence and tips concerning MAT, currently available meniscus scaffolds and future perspectives are discussed. Cite this article: EFORT Open Rev 2019;4 DOI: 10.1302/2058-5241.4.180103.
Collapse
Affiliation(s)
- Hélder Pereira
- Orthopedic Department of Póvoa de Varzim - Vila do Conde Hospital Centre, Vila do Conde, Portugal
- Ripoll y De Prado Sports Clinic, Murcia-Madrid, FIFA Medical Centre of Excellence, Madrid, Spain
- International Centre of Sports Traumatology of the Ave, Vila do Conde, Portugal
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ibrahim Fatih Cengiz
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sérgio Gomes
- International Centre of Sports Traumatology of the Ave, Vila do Conde, Portugal
| | - João Espregueira-Mendes
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Porto, Portugal
- Orthopedic Department, University of Minho, Braga, Portugal
| | - Pedro L. Ripoll
- Ripoll y De Prado Sports Clinic, Murcia-Madrid, FIFA Medical Centre of Excellence, Madrid, Spain
| | - Joan C. Monllau
- Orthopaedic Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rui L. Reis
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, Portugal
| | - J. Miguel Oliveira
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopaedic Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, Portugal
| |
Collapse
|
39
|
Regional dependency of bovine meniscus biomechanics on the internal structure and glycosaminoglycan content. J Mech Behav Biomed Mater 2019; 94:186-192. [DOI: 10.1016/j.jmbbm.2019.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
|
40
|
Cengiz IF, Pereira H, Espregueira-Mendes J, Kwon IK, Reis RL, Oliveira JM. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:63. [PMID: 31127379 DOI: 10.1007/s10856-019-6265-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
The menisci have crucial roles in the knee, chondroprotection being the primary. Meniscus repair or substitution is favored in the clinical management of the meniscus lesions with given indications. The outstanding challenges with the meniscal scaffolds include the required biomechanical behavior and features. Suturability is one of the prerequisites for both implantation and implant survival. Therefore, we proposed herein a novel highly interconnected suturable porous scaffolds from regenerated silk fibroin that is reinforced with 3D-printed polycaprolactone (PCL) mesh in the middle, on the transverse plane to enhance the suture-holding capacity. Results showed that the reinforcement of the silk fibroin scaffolds with the PCL mesh increased the suture retention strength up to 400%, with a decrease in the mean porosity and an increase in crystallinity from 51.9 to 55.6%. The wet compression modulus values were significantly different for silk fibroin, and silk fibroin + PCL mesh by being 0.16 ± 0.02, and 0.40 ± 0.06 MPa, respectively. Both scaffolds had excellent interconnectivity (>99%), and a high water uptake feature (>500%). The tissue's infiltration and formation of new blood vessels were assessed by means of performing an in vivo subcutaneous implantation of the silk fibroin + PCL mesh scaffolds that were seeded with primary human meniscocytes or stem cells. Regarding suturability and in vivo biocompatibility, the findings of this study indicate that the silk fibroin + PCL mesh scaffolds are suitable for further studies to be carried out for meniscus tissue engineering applications such as the studies involving orthotopic meniscal models and fabrication of patient-specific implants.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Helder Pereira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Ripoll y De Prado Sports Clinic: Murcia-Madrid FIFA Medical Centre of Excellence, Madrid, Spain
- Orthopedic Department Centro Hospitalar Póvoa de Varzim, Vila do Conde, Portugal
| | - João Espregueira-Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Orthopedic Department, University of Minho, Braga, Portugal
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, 02477, Seoul, Republic of Korea
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017, Barco,Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017, Barco,Guimarães, Portugal
| |
Collapse
|
41
|
Gopinathan J, Pillai MM, Shanthakumari S, Gnanapoongothai S, Dinakar Rai BK, Santosh Sahanand K, Selvakumar R, Bhattacharyya A. Carbon nanofiber amalgamated 3D poly-ε-caprolactone scaffold functionalized porous-nanoarchitectures for human meniscal tissue engineering: In vitro and in vivo biocompatibility studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2247-2258. [DOI: 10.1016/j.nano.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
|
42
|
Cengiz IF, Oliveira JM, Reis RL. Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater Res 2018; 22:26. [PMID: 30275969 PMCID: PMC6158835 DOI: 10.1186/s40824-018-0136-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. MAIN BODY This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. CONCLUSION Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
43
|
Carvalho CR, Wrobel S, Meyer C, Brandenberger C, Cengiz IF, López-Cebral R, Silva-Correia J, Ronchi G, Reis RL, Grothe C, Oliveira JM, Haastert-Talini K. Gellan Gum-based luminal fillers for peripheral nerve regeneration: an in vivo study in the rat sciatic nerve repair model. Biomater Sci 2018; 6:1059-1075. [PMID: 29464240 DOI: 10.1039/c7bm01101f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peripheral nerve injuries (PNI) resulting in a gap to be bridged between the transected nerve ends are commonly reconstructed with autologous nerve tissue, but there is a need for valuable alternatives. This experimental work considers the innovative use of the biomaterial Gellan Gum (GG) as a luminal filler for nerve guidance channels made from chitosan with a 5% degree of acetylation. The engineered constructs should remodel the structural support given to regenerating axons by the so-called bands of Büngner. Four different GG formulations were produced by combining varying amounts of High-Acyl GG (HA-GG) and Methacrylated GG (MA-GG). The effective porosity of the freeze-dried networks was analysed by SEM and micro-CT 3D reconstructions, while the degradation and swelling abilities were characterized in vitro for up to 30 days. The metabolic activity and viability of immortalized Schwann cells seeded onto the freeze-dried networks were also evaluated. Finally, the developed hydrogel formulations were freeze-dried within the chitosan nerve guides and implanted in a 10 mm rat sciatic nerve defect. Functional and histomorphological analyses after 3, 6, and 12 weeks in vivo revealed that although it did not result in improved nerve regeneration, the NGC25:75 formulations could provide a basis for further development of GG scaffolds as luminal fillers for hollow nerve guidance channels.
Collapse
Affiliation(s)
- C R Carvalho
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial de Gandra, 4805-017 Barco, Guimarães, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shen S, Chen M, Gao S, Guo W, Wang Z, Li H, Li X, Zhang B, Xian H, Zhang X, Liu S, Hao L, Zhuo N, Guo Q. [Study on the preparation of polycaprolactone/type Ⅰcollagen tissue engineered meniscus scaffold by three-dimensional printing and its physiochemical properties]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1205-1210. [PMID: 30129332 DOI: 10.7507/1002-1892.201803074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To manufacture a polycaprolactone (PCL)/type Ⅰ collagen (COL Ⅰ) tissue engineered meniscus scaffold (hereinafter referred to as PCL/COL Ⅰ meniscus scaffold) by three-dimensional (3D) printing with low temperature deposition technique and to study its physicochemical properties. Methods First, the 15% PCL/4% COLⅠ composite solution and 15% PCL simple solution were prepared. Then, 15% PCL/4% COL Ⅰmeniscus scaffold and 15% PCL meniscal scaffold were prepared by using 3D printing with low temperature deposition techniques. The morphology and microstructure of the scaffolds were observed by gross observation and scanning electron microscope. The compression modulus and tensile modulus of the scaffolds were measured by biomechanical test. The components of the scaffolds were analyzed by Fourier transform infrared spectroscopy (FTIR). The contact angle of the scaffold surface was measured. The meniscus cells of rabbits were cultured with the two scaffold extracts and scaffolds, respectively. After cultured, the cell proliferations were detected by cell counting kit 8 (CCK-8), and the normal cultured cells were used as controls. Cell adhesion and growth of scaffold-cell complex were observed by scanning electron microscope. Results According to the gross and scanning electron microscope observations, two scaffolds had orientated 3D microstructures and pores, but the surface of the PCL/COLⅠ meniscus scaffold was rougher than the PCL meniscus scaffold. Biomechanical analysis showed that the tensile modulus and compression modulus of the PCL/COL Ⅰ meniscus scaffold were not significantly different from those of the PCL meniscus scaffold ( P>0.05). FTIR analysis results showed that COL Ⅰ and PCL were successful mixed in PCL/ COL Ⅰ meniscus scaffolds. The contact angle of PCL/COLⅠ meniscus scaffold [(83.19±7.49)°] was significantly lower than that of PCL meniscus scaffold [(111.13±5.70)°] ( t=6.638, P=0.000). The results of the CCK-8 assay indicated that with time, the number of cells cultured in two scaffold extracts showed an increasing trend, and there was no significant difference when compared with the control group ( P>0.05). Scanning electron microscope observation showed that the cells attached on the PCL/ COL Ⅰ meniscus scaffold more than that on the PCL scaffold. Conclusion PCL/COLⅠmeniscus scaffolds are prepared by 3D printing with low temperature deposition technique, which has excellent physicochemical properties without cytotoxicity. PCL/COLⅠmeniscus scaffold is expected to be used as the material for meniscus tissue engineering.
Collapse
Affiliation(s)
- Shi Shen
- Department of Orthopedics and Joint Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Mingxue Chen
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Shuang Gao
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Weimin Guo
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Zhenyong Wang
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Haojiang Li
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Xu Li
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Bin Zhang
- Department of Orthopedics and Joint Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Hai Xian
- Department of Orthopedics and Joint Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000, P.R.China;Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Xueliang Zhang
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Shuyun Liu
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Libo Hao
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853, P.R.China
| | - Naiqiang Zhuo
- Department of Orthopedics and Joint Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou Sichuan, 646000,
| | - Quanyi Guo
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, 100853,
| |
Collapse
|
45
|
Danso EK, Julkunen P, Korhonen RK. Poisson's ratio of bovine meniscus determined combining unconfined and confined compression. J Biomech 2018; 77:233-237. [PMID: 30055840 DOI: 10.1016/j.jbiomech.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022]
Abstract
Poisson's ratio has not been experimentally measured earlier for meniscus in compression. It is however an important intrinsic material property needed in biomechanical analysis and computational models. In this study, equilibrium Poisson's ratio of bovine meniscus (n = 6) was determined experimentally by combining stress-relaxation measurements in unconfined and confined compression geometries. The average Young's modulus, aggregate modulus and Poisson's ratio were 0.182 ± 0.086 MPa, 0.252 ± 0.089 MPa and 0.316 ± 0.040, respectively. These moduli are consistent with previously determined values, but the Poisson's ratio is higher than determined earlier for meniscus in compression through biomechanical modelling analysis. This new experimentally determined Poisson's ratio value could be used in the analysis of biomechanical data as well as in computational finite element analysis when the Poisson's ratio is needed as an input for the analysis.
Collapse
Affiliation(s)
- E K Danso
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland.
| | - P Julkunen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, FI-70029, KYS, Kuopio, Finland
| | - R K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
46
|
Warnecke D, Stein S, Haffner-Luntzer M, de Roy L, Skaer N, Walker R, Kessler O, Ignatius A, Dürselen L. Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair. J Mech Behav Biomed Mater 2018; 86:314-324. [PMID: 30006280 PMCID: PMC6079190 DOI: 10.1016/j.jmbbm.2018.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 11/20/2022]
Abstract
Meniscal injury is typically treated surgically via partial meniscectomy, which has been shown to cause cartilage degeneration in the long-term. Consequently, research has focused on meniscal prevention and replacement. However, none of the materials or implants developed for meniscal replacement have yet achieved widespread acceptance or demonstrated conclusive chondroprotective efficacy. A redesigned silk fibroin scaffold, which already displayed promising results regarding biocompatibility and cartilage protection in a previous study, was characterised in terms of its biomechanical, structural and biological functionality to serve as a potential material for permanent partial meniscal replacement. Therefore, different quasi-static but also dynamic compression tests were performed. However, the determined compressive stiffness (0.56 ± 0.31 MPa and 0.30 ± 0.12 MPa in relaxation and creep configuration, respectively) was higher in comparison to the native meniscal tissue, which could potentially disturb permanent integration into the host tissue. Nevertheless, µ-CT analysis met the postulated requirements for partial meniscal replacement materials in terms of the microstructural parameters, like mean pore size (215.6 ± 10.9 µm) and total porosity (80.1 ± 4.3%). Additionally, the biocompatibility was reconfirmed during cell culture experiments. The current study provides comprehensive mechanical and biological data for the characterisation of this potential replacement material. Although some further optimisation of the silk fibroin scaffold may be advantageous, the silk fibroin scaffold showed sufficient biomechanical competence to support loads already in the early postoperative phase.
Collapse
Affiliation(s)
- Daniela Warnecke
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany.
| | - Svenja Stein
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany
| | - Luisa de Roy
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany
| | | | | | - Oliver Kessler
- Centre of Orthopaedics and Sports, Zurich, Switzerland; University Medical Centre, Clinic for Orthopaedic Surgery, Magdeburg, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany
| |
Collapse
|
47
|
Pillai MM, Gopinathan J, Selvakumar R, Bhattacharyya A. Human Knee Meniscus Regeneration Strategies: a Review on Recent Advances. Curr Osteoporos Rep 2018; 16:224-235. [PMID: 29663192 DOI: 10.1007/s11914-018-0436-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Lack of vascularity in the human knee meniscus often leads to surgical removal (total or partial meniscectomy) in the case of severe meniscal damage. However, complete recovery is in question after such removal as the meniscus plays an important role in knee stability. Thus, meniscus tissue regeneration strategies are of intense research interest in recent years. RECENT FINDINGS The structural complexity and inhomogeneity of the meniscus have been addressed with processing technologies for precisely controlled three dimensional (3D) complex porous scaffold architectures, the use of biomolecules and nanomaterials. The regeneration and replacement of the total meniscus have been studied by the orthopedic and scientific communities via successful pre-clinical trials towards mimicking the biomechanical properties of the human knee meniscus. Researchers have attempted different regeneration strategies which contribute to in vitro regeneration and are capable of repairing meniscal tears to some extent. This review discusses the present state of the art of these meniscus tissue engineering aspects.
Collapse
Affiliation(s)
- Mamatha M Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - J Gopinathan
- Advanced Textile and Polymer Research Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - R Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Amitava Bhattacharyya
- Nanoscience and Technology Lab, Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore, 641004, India.
| |
Collapse
|
48
|
Ribitsch I, Peham C, Ade N, Dürr J, Handschuh S, Schramel JP, Vogl C, Walles H, Egerbacher M, Jenner F. Structure-Function relationships of equine menisci. PLoS One 2018. [PMID: 29522550 PMCID: PMC5844599 DOI: 10.1371/journal.pone.0194052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Meniscal pathologies are among the most common injuries of the femorotibial joint in both human and equine patients. Pathological forces and ensuing injuries of the cranial horn of the equine medial meniscus are considered analogous to those observed in the human posterior medial horn. Biomechanical properties of human menisci are site- and depth- specific. However, the influence of equine meniscus topography and composition on its biomechanical properties is yet unknown. A better understanding of equine meniscus composition and biomechanics could advance not only veterinary therapies for meniscus degeneration or injuries, but also further substantiate the horse as suitable translational animal model for (human) meniscus tissue engineering. Therefore, the aim of this study was to investigate the composition and structure of the equine knee meniscus in a site- and age-specific manner and their relationship with potential site-specific biomechanical properties. The meniscus architecture was investigated histologically. Biomechanical testing included evaluation of the shore hardness (SH), stiffness and energy loss of the menisci. The SH was found to be subjected to both age and site-specific changes, with an overall higher SH of the tibial meniscus surface and increase in SH with age. Stiffness and energy loss showed neither site nor age related significant differences. The macroscopic and histologic similarities between equine and human menisci described in this study, support continued research in this field.
Collapse
Affiliation(s)
- Iris Ribitsch
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Vienna, Austria
- * E-mail:
| | - Christian Peham
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Nicole Ade
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Vienna, Austria
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Zurich, Switzerland
| | - Julia Dürr
- Department of Pathobiology, Unit of Histology and Embryology, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Stephan Handschuh
- Vetcore Facility for Research, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Johannes Peter Schramel
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Claus Vogl
- Department of Biomedical Sciences, Unit of Molecular Genetics, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg and Translational Center Wuerzburg, Wuerzburg, Baveria, Germany
| | - Monika Egerbacher
- Department of Pathobiology, Unit of Histology and Embryology, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Florien Jenner
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Vienna, Austria
| |
Collapse
|
49
|
Costa JB, Silva-Correia J, Oliveira JM, Reis RL. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants. Adv Healthc Mater 2017; 6. [PMID: 29106065 DOI: 10.1002/adhm.201701021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/10/2017] [Indexed: 12/21/2022]
Abstract
The pursuit for the "perfect" biomimetic and personalized implant for musculoskeletal tissue regeneration remains a big challenge. 3D printing technology that makes use of a novel and promising biomaterials can be part of the solution. In this study, a fast setting enzymatic-crosslinked silk fibroin (SF) bioink for 3D bioprinting is developed. Their properties are fine-tuned and different structures with good resolution, reproducibility, and reliability can be fabricated. Many potential applications exist for the SF bioinks including 3D bioprinted scaffolds and patient-specific implants exhibiting unique characteristics such as good mechanical properties, memory-shape feature, suitable degradation, and tunable pore architecture and morphology.
Collapse
Affiliation(s)
- João B. Costa
- 3B's Research Group-Biomaterials; Biodegradables and Biomimetics; University of Minho; 4805-017 Barco Guimarães Portugal
- ICVS/3B's- PT Government Associated Laboratory; Universidade do Minho; Largo do Paço 4704-553 Braga Portugal
| | - Joana Silva-Correia
- 3B's Research Group-Biomaterials; Biodegradables and Biomimetics; University of Minho; 4805-017 Barco Guimarães Portugal
- ICVS/3B's- PT Government Associated Laboratory; Universidade do Minho; Largo do Paço 4704-553 Braga Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group-Biomaterials; Biodegradables and Biomimetics; University of Minho; 4805-017 Barco Guimarães Portugal
- ICVS/3B's- PT Government Associated Laboratory; Universidade do Minho; Largo do Paço 4704-553 Braga Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho; Avepark 4805-017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group-Biomaterials; Biodegradables and Biomimetics; University of Minho; 4805-017 Barco Guimarães Portugal
- ICVS/3B's- PT Government Associated Laboratory; Universidade do Minho; Largo do Paço 4704-553 Braga Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho; Avepark 4805-017 Barco Guimarães Portugal
| |
Collapse
|
50
|
Cengiz IF, Oliveira JM, Reis RL. Micro-computed tomography characterization of tissue engineering scaffolds: effects of pixel size and rotation step. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:129. [PMID: 28721665 DOI: 10.1007/s10856-017-5942-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/27/2017] [Indexed: 05/27/2023]
Abstract
Quantitative assessment of micro-structure of materials is of key importance in many fields including tissue engineering, biology, and dentistry. Micro-computed tomography (µ-CT) is an intensively used non-destructive technique. However, the acquisition parameters such as pixel size and rotation step may have significant effects on the obtained results. In this study, a set of tissue engineering scaffolds including examples of natural and synthetic polymers, and ceramics were analyzed. We comprehensively compared the quantitative results of µ-CT characterization using 15 acquisition scenarios that differ in the combination of the pixel size and rotation step. The results showed that the acquisition parameters could statistically significantly affect the quantified mean porosity, mean pore size, and mean wall thickness of the scaffolds. The effects are also practically important since the differences can be as high as 24% regarding the mean porosity in average, and 19.5 h and 166 GB regarding the characterization time and data storage per sample with a relatively small volume. This study showed in a quantitative manner the effects of such a wide range of acquisition scenarios on the final data, as well as the characterization time and data storage per sample. Herein, a clear picture of the effects of the pixel size and rotation step on the results is provided which can notably be useful to refine the practice of µ-CT characterization of scaffolds and economize the related resources.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joaquim Miguel Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|