1
|
Pfeifer JPH, Stievani FDC, Fernandes CJDC, Rosa GDS, Apolonio EVP, Rossi MC, Zambuzzi WF, Alves ALG. Influence of inflammation on the expression of microRNA-140 in extracellular vesicles from 2D and 3D culture models of synovial-membrane-derived stem cells. Front Bioeng Biotechnol 2024; 12:1416694. [PMID: 39170063 PMCID: PMC11335645 DOI: 10.3389/fbioe.2024.1416694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background In osteoarthritis (OA), articular homeostasis is regulated by microRNA-140 that inhibits ADAMTS-5, an enzyme that cleaves aggrecan and stimulates the synthesis of other inflammatory mediators. This study aims to evaluate the expression of microRNA-140 in extracellular vesicles (EVs) derived from equine synovial-membrane-derived mesenchymal stem cells (eqSMMSCs) cultured in monolayer (2D) and three-dimensional (3D) culture models under an in vitro inflammatory environment. Methods Four experimental groups of eqSMMSC cultures were defined for isolation of the EVs. The 2D and 3D control groups were cultured in a conventional cell culture medium, while the 2D-OA and 3D-OA treatment groups were exposed to an OA-like medium containing IL-1β and TNFα. The culture media samples were collected at 24 h, 72 h, and 120 h time points for EV isolation and characterization using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Reverse transcription quantitative polymerase chain reaction was employed to assess the expressions of microRNA-140 in both the cells and EVs. All statistical analyses were conducted at the 5% significance level. Results Encapsulation of the eqSMMSCs protected the cells from the inflammatory media compared to the monolayer cultures. EVs were found in higher concentrations in the 3D-OA cultures. Additionally, higher expressions of microRNA-140 were observed in the cells of the 3D-OA group at 24 and 72 h, whereas microRNA-140 expressions in the EVs were higher in the 3D group at 72 h and in the 2D-OA group at 120 h (p < 0.001). However, the 3D-OA culture showed higher expression of the mRNA Adamts5 in the EVs at 120 h. Conclusion The responses of the eqSMMSCs to inflammatory stimuli involve intracellular expression of microRNA-140 and its subsequent transportation via the EVs, with quicker responses observed in the 3D than 2D cultures. This study sheds light on the behaviors of stem cells in restoring homeostasis in osteoarthritic joints.
Collapse
Affiliation(s)
- João Pedro Hübbe Pfeifer
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| | - Fernanda de Castro Stievani
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| | - Célio J. da Costa Fernandes
- Biophysics and Pharmacology Department, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Brazil
| | - Gustavo dos Santos Rosa
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| | - Emanuel Vitor Pereira Apolonio
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| | - Mariana Correa Rossi
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| | - Willian Fernando Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Brazil
| | - Ana Liz Garcia Alves
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| |
Collapse
|
2
|
Xiong T, Huang S, Wang X, Shi Y, He J, Yuan Y, Wang R, Gu H, Liu L. n-3 polyunsaturated fatty acids alleviate the progression of obesity-related osteoarthritis and protect cartilage through inhibiting the HMGB1-RAGE/TLR4 signaling pathway. Int Immunopharmacol 2024; 128:111498. [PMID: 38218011 DOI: 10.1016/j.intimp.2024.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Osteoarthritis (OA) is a common joint degenerative disease. There is currently no cure for OA. Dietary fatty acids have potential value in the prevention and treatment of OA. n-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory effects, but their anti-OA mechanism remains unclear. High-mobility group box 1 (HMGB1) promotes inflammation and participates the pathogenesis of OA. The purpose of this study was to investigate the protective effect of n-3 PUFAs on cartilage and whether n-3 PUFAs could exert an anti-OA effect through inhibiting HMGB1-RAGE/TLR4 signaling pathway. We established an obesity-related post-traumatic OA mice model and an in vitro study was conducted to explore the regulatory mechanism of n-3 PUFAs on HMGB1 and its signal pathway against OA. We found that diet rich in n-3 PUFAs alleviated OA-like lesions of articular cartilage with the decrease of HMGB1-RAGE/TLR4 signaling protein in mice. In SW1353 cells, DHA significantly reduced the expression of HMGB1-RAGE/TLR4 signaling protein which was up-regulated by IL-1β stimulation. HMGB1 overexpression reversed the inhibitory effect of DHA on HMGB1-RAGE/TLR4 signaling pathway. The activation of SIRT1 may participate the inhibitory effect of DHA on HMGB1-RAGE/TLR4 signaling pathway. In conclusion, n-3 PUFAs could attenuate the progression of obesity-related OA and exert protective effect on cartilage by inhibiting HMGB1-RAGE/TLR4 signaling pathway, which may be associated with the activation of SIRT1. Dietary n-3 PUFAs supplements can be considered as a potential therapeutic substance for OA.
Collapse
Affiliation(s)
- Tao Xiong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, PR China.
| | - Shiqi Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, PR China.
| | - Xinjuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, PR China.
| | - Yu Shi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, PR China.
| | - Jianyi He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, PR China.
| | - Ye Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, PR China.
| | - Ruiqi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, PR China.
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, 110004, PR China.
| | - Li Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, PR China.
| |
Collapse
|
3
|
Drummond SP, Bartnik E, Kouvatsos N, Scott JL, Dyer DP, Thomson JM, Price AJ, Anand S, Biant LC, Leeuw T, Herrmann M, Milner CM, Day AJ. The recombinant Link module of human TSG-6 suppresses cartilage damage in models of osteoarthritis: A potential disease-modifying OA drug. Osteoarthritis Cartilage 2023; 31:1353-1364. [PMID: 37257556 DOI: 10.1016/j.joca.2023.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE To investigate the role of endogenous TSG-6 in human osteoarthritis (OA) and assess the disease-modifying potential of a TSG-6-based biological treatment in cell, explant and animal models of OA. DESIGN Knee articular cartilages from OA patients were analyzed for TSG-6 protein and mRNA expression using immunohistochemistry and RNAscope, respectively. The inhibitory activities of TSG-6 and its isolated Link module (Link_TSG6) on cytokine-induced degradation of OA cartilage explants were compared. Human mesenchymal stem/stromal cell-derived chondrocyte pellet cultures were used to determine the effects of Link_TSG6 and full-length TSG-6 on IL-1α-, IL-1β-, or TNF-stimulated ADAMTS4, ADAMTS5, and MMP13 mRNA expression. Link_TSG6 was administered i.a. to the rat ACLTpMMx model; cartilage damage and tactile allodynia were assessed. RESULTS TSG-6 is predominantly associated with chondrocytes in regions of cartilage damage where high TSG-6 expression aligns with low MMP13, the major collagenase implicated in OA progression. Link_TSG6 is more potent than full-length TSG-6 at inhibiting cytokine-mediated matrix breakdown in human OA cartilage explants;>50% of donor cartilages, from 59 tested, were responsive to Link_TSG6 treatment. Link_TSG6 also displayed more potent effects in 3D pellet cultures, suppressing ADAMTS4, ADAMTS5, and MMP13 gene expression, which was consistent with reduced aggrecanase and collagenase activities in explant cultures. Link_TSG6 treatment reduced touch-evoked pain behavior and dose-dependently inhibited cartilage damage in a rodent model of surgically-induced OA. CONCLUSIONS Link_TSG6 has enhanced chondroprotective activity compared to the full-length TSG-6 protein and shows potential as a disease modifying OA drug via its inhibition of aggrecanase and collagenase activity.
Collapse
Affiliation(s)
- Sheona P Drummond
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Eckart Bartnik
- Sanofi Aventis Deutschland GmbH, D-65926 Frankfurt, Germany
| | - Nikolaos Kouvatsos
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jenny L Scott
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jennifer M Thomson
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew J Price
- Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sanjay Anand
- Department of Orthopaedics, Stepping Hill Hospital, Stockport, UK
| | - Leela C Biant
- Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Manchester Orthopaedic Centre, Manchester University Hospitals Foundation Trust, Manchester, UK
| | - Thomas Leeuw
- Sanofi Aventis Deutschland GmbH, D-65926 Frankfurt, Germany
| | | | - Caroline M Milner
- Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
4
|
Hu S, Huo L, He J, Jin Y, Deng Y, Liu D. Ginseng glycoprotein and ginsenoside facilitate anti UV damage effects in diabetic rats. Front Pharmacol 2022; 13:1075594. [PMID: 36588701 PMCID: PMC9800513 DOI: 10.3389/fphar.2022.1075594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus combined with ultraviolet (UV) radiation damage not only brings great mental stress to patients, but also seriously impairs their quality of life. A UV-irradiated diabetic rat trauma skin model was established by us to investigate the effects and possible mechanisms of ginsenoside and glycoprotein on skin trauma repair in UV-irradiated diabetic rats. In the study, ginsenosides and ginseng glycoproteins were extracted from different parts of ginseng roots. It found that it's easier to prepare saponins in ginseng bark and proteins in ginseng core in large quantities. Since glycoprotein-like metabolites are relatively novel ginseng extracts, specifically characterized its structures. It was verified that the ginseng glycoproteins are not toxic to HaCaT cells and can significantly increase the survival of HaCaT cells after UV damage at the in vitro cellular level. Experiments in vivo were conducted to evaluate the therapeutic effects of ginsenoside and ginseng glycoprotein in a rat model of diabetes mellitus combined with UV irradiation injury. Histopathological changes on rat skin after treatment with ginsenoside and ginseng glycoprotein were evaluated by hematoxylin and eosin (H&E) staining and aldehyde fuchsine staining. The expression levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), matrix metalloproteinases (MMPs), hydroxyproline (HYP), interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were measured. The results indicate that both ginsenoside and ginseng glycoprotein could improve skin damage and ulcers caused by diabetes combined with UV irradiation and could alleviate a range of skin damage caused by the combination of diabetes and UV irradiation, including peroxidation and collagen fiber loss. Ginsenoside and ginseng glycoproteins can be considered as natural product candidates for the development of new drugs to treat diabetes combined with UV irradiation-induced skin damage.
Collapse
Affiliation(s)
- Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Huo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing He
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Yongzhi Deng, ; Da Liu,
| | - Yongzhi Deng
- Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Yongzhi Deng, ; Da Liu,
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Yongzhi Deng, ; Da Liu,
| |
Collapse
|
5
|
Vincent TL, Alliston T, Kapoor M, Loeser RF, Troeberg L, Little CB. Osteoarthritis Pathophysiology: Therapeutic Target Discovery may Require a Multifaceted Approach. Clin Geriatr Med 2022; 38:193-219. [PMID: 35410676 PMCID: PMC9107912 DOI: 10.1016/j.cger.2021.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular understanding of osteoarthritis (OA) has greatly increased through careful analysis of tissue samples, preclinical models, and large-scale agnostic "-omic" studies. There is broad acceptance that systemic and biomechanical signals affect multiple tissues of the joint, each of which could potentially be targeted to improve patient outcomes. In this review six experts in different aspects of OA pathogenesis provide their independent view on what they believe to be good tractable approaches to OA target discovery. We conclude that molecular discovery has been high but future transformative studies require a multidisciplinary holistic approach to develop therapeutic strategies with high clinical efficacy.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mohit Kapoor
- Department of Surgery and Laboratory Medicine and Pathobiology, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, University of Toronto, Toronto, Canada
| | - Richard F Loeser
- Department of Medicine, Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Linda Troeberg
- University of East Anglia, Norwich Medical School, Norwich NR4 7UQ, UK
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute University of Sydney Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| |
Collapse
|
6
|
Thielen NGM, Neefjes M, Vitters EL, van Beuningen HM, Blom AB, Koenders MI, van Lent PLEM, van de Loo FAJ, Blaney Davidson EN, van Caam APM, van der Kraan PM. Identification of Transcription Factors Responsible for a Transforming Growth Factor-β-Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes. Cells 2022; 11:cells11071232. [PMID: 35406794 PMCID: PMC8998018 DOI: 10.3390/cells11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-β's signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-β. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-β-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-β, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-β-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-β-induced expression of crucial hypertrophy factors in chondrocytes.
Collapse
|
7
|
Turlo AJ, McDermott BT, Barr ED, Riggs CM, Boyde A, Pinchbeck GL, Clegg PD. Gene expression analysis of subchondral bone, cartilage, and synovium in naturally occurring equine palmar/plantar osteochondral disease. J Orthop Res 2022; 40:595-603. [PMID: 33993513 DOI: 10.1002/jor.25075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a disease of the entire joint but the relationship between pathological events in various joint tissues is poorly understood. We examined concurrent changes in bone, cartilage, and synovium in a naturally occurring equine model of joint degeneration. Joints (n = 64) were grossly assessed for palmar/plantar osteochondral disease (POD) in racehorses that required euthanasia for unrelated reasons and assigned a grade of 0 (n = 34), 1 (n = 17), 2 or 3 (n = 13) using a recognized grading scheme. Synovium, cartilage, and subchondral bone were collected for histological and gene expression analysis. Relations between POD grade, cartilage histological score, and gene expression levels were examined using one-way analysis of variance or Kruskal-Wallis test and Spearman's correlation coefficient with corrections for multiple comparisons. Cartilage histological score increased in joints with POD grade 1 (p = 0.002) and 2 or 3 (p < 0.001) compared to 0. At grade 1, expression of COL1A1, COL2A1, and MMP1 increased and BGN decreased in subchondral bone while expression of BGN and ACAN decreased in cartilage. These changes further progressed at grades 2 and 3. POD grades 2 and 3 were associated with decreased expression of osteoclast inhibitor OPG and increased markers of cartilage degeneration (MMP13, COL1A1). Expression of the vascular endothelial growth factor decreased with POD grade and negatively correlated with cartilage histological score. Synovium showed no histological or transcriptomic changes related to pathology grade. Cartilage degeneration in POD is likely to be secondary to remodeling of the subchondral bone. Limited activation of proinflammatory and catabolic genes and moderate synovial pathology suggests distinct molecular phenotype of POD compared with OA.
Collapse
Affiliation(s)
- Agnieszka J Turlo
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Benjamin T McDermott
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Chris M Riggs
- Department of Veterinary Clinical Services, Hong Kong Jockey Club, Sha Tin Racecourse, New Territories, Hong Kong SAR, China
| | - Alan Boyde
- Dental Physical Sciences, Oral BioEngineering, Queen Mary University of London, Mile End Campus, London, UK
| | - Gina L Pinchbeck
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Peter D Clegg
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Sun X, Mi L, Du G, Sun C, He S. Platelet-rich plasma treatment alleviates osteoarthritis-related pain, inflammation, and apoptosis by upregulating the expression levels of microRNA-375 and microRNA-337. Immunopharmacol Immunotoxicol 2021; 44:87-98. [PMID: 34845965 DOI: 10.1080/08923973.2021.2007263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The present study was designed to determine the molecular mechanism by which platelet-rich plasma (PRP) acts on Osteoarthritis (OA) -related pain, inflammation, and apoptosis in vivo and in vitro. MATERIALS AND METHODS An in vivo OA model was established in rats using anterior cruciate ligament transection, and an in vitro OA model was created by treating chondrocytes with IL-1β. Then, the induced rats and chondrocytes were treated with PRP. Real-time PCR were used to examine the expression of micorRNAs (miRs) and mRNAs of inflammatory cytokines. WB were performed to detect the expression of apoptotic factors and Wnt/β-catenin signals. Structural damage of the cartilage and pain in OA rats were analyzed and represented by Mankin Score, OARSIS score, Tender threshold, and Thermal pain threshold. CCK-8 assay and flow cytometry were used to determine cell viability and apoptosis. RESULTS The expression levels of miR-337 and miR-375 were downregulated in the in vivo and vitro OA models; however, PRP treatment elevated their levels. miR-337 and miR-375 inhibition reversed the effects of PRP of reducing tenderness and thermal pain thresholds in OA rats. Moreover, PRP decreased the mRNA expression levels of MMP-13, Bax, and inflammatory factors, such as IL-1β, IL-18, and TNF-α, as well as increased the expression levels of collagen II and antiapoptotic Bcl-2. The decrease in inflammation and apoptosis was reversed by miR-337 and miR-375 inhibition, respectively. DISCUSSION AND CONCLUSIONS In conclusion, miR-337 and miR-375 are involved in PRP-delayed OA progression by affecting inflammation and apoptosis.
Collapse
Affiliation(s)
- Xuegang Sun
- Department of Orthopedic Surgery, The Second Hospital of Dalian Medical University, Liaoning, China
| | - Lidong Mi
- Department of Orthopedic Surgery, The Second Hospital of Dalian Medical University, Liaoning, China
| | - Guangyu Du
- Department of Orthopedic Surgery, The Second Hospital of Dalian Medical University, Liaoning, China
| | - Chuanxiu Sun
- Department of Orthopedic Surgery, The Second Hospital of Dalian Medical University, Liaoning, China
| | - Shengwei He
- Department of Orthopedic Surgery, The Second Hospital of Dalian Medical University, Liaoning, China
| |
Collapse
|
9
|
Sauerland K, Wolf A, Schudok M, Steinmeyer J. A novel model of a biomechanically induced osteoarthritis-like cartilage for pharmacological in vitro studies. J Cell Mol Med 2021; 25:11221-11231. [PMID: 34766430 PMCID: PMC8650028 DOI: 10.1111/jcmm.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
Excessive pressure or overload induces and aggravates osteoarthritic changes in articular cartilage, but the underlying biomechanical forces are largely ignored in existing pharmacological in vitro models that are used to investigate drugs against osteoarthritis (OA). Here, we introduce a novel in vitro model to perform pathophysiological and pharmacological investigations, in which cartilage explants are subjected to intermittent cyclic pressure, and characterize its ability to mimic OA‐like tissue reactivity. Mechanical loading time‐dependently increased the biosynthesis, content and retention of fibronectin (Fn), whereas collagen metabolism remained unchanged. This protocol upregulated the production and release of proteoglycans (PGs). The release of PGs from explants was significantly inhibited by a matrix metalloproteinase (MMP) inhibitor, suggesting the involvement of such proteinases in the destruction of the model tissue, similar to what is observed in human OA cartilage. In conclusion, the metabolic alterations in our new biomechanical in vitro model are similar to those of early human OA cartilage, and our pharmacological prevalidation with an MMP‐inhibitor supports its value for further in vitro drug studies.
Collapse
Affiliation(s)
- Katrin Sauerland
- Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Amela Wolf
- Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Manfred Schudok
- R&D, Drug Metabolism & Pharmacokinetics, Sanofi-Aventis Deutschand GmbH, Frankfurt, Germany
| | - Juergen Steinmeyer
- Institute for Pharmacology and Toxicology, University of Bonn, Bonn, Germany.,Laboratory for Experimental Orthopaedics, Department of Orthopaedics, University of Giessen, Giessen, Germany
| |
Collapse
|
10
|
Pemmari A, Leppänen T, Hämäläinen M, Moilanen T, Moilanen E. Chondrocytes from Osteoarthritis Patients Adopt Distinct Phenotypes in Response to Central T H1/T H2/T H17 Cytokines. Int J Mol Sci 2021; 22:ijms22179463. [PMID: 34502384 PMCID: PMC8431052 DOI: 10.3390/ijms22179463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic low-grade inflammation plays a central role in the pathogenesis of osteoarthritis (OA), and several pro- and anti-inflammatory cytokines have been implicated to mediate and regulate this process. Out of these cytokines, particularly IFNγ, IL-1β, IL-4 and IL-17 are associated with different phenotypes of T helper (TH) cells and macrophages, both examples of cells known for great phenotypic and functional heterogeneity. Chondrocytes also display various phenotypic changes during the course of arthritis. We set out to study the hypothesis of whether chondrocytes might adopt polarized phenotypes analogous to TH cells and macrophages. We studied the effects of IFNγ, IL-1β, IL-4 and IL-17 on gene expression in OA chondrocytes with RNA-Seq. Chondrocytes were harvested from the cartilage of OA patients undergoing knee replacement surgery and then cultured with or without the cytokines for 24 h. Total RNA was isolated and sequenced, and GO (Gene Ontology) functional analysis was performed. We also separately investigated genes linked to OA in recent genome wide expression analysis (GWEA) studies. The expression of more than 2800 genes was significantly altered in chondrocytes treated with IL-1β [in the C(IL-1β) phenotype] with a fold change (FC) > 2.5 in either direction. These included a large number of genes associated with inflammation, cartilage degradation and attenuation of metabolic signaling. The profile of genes differentially affected by IFNγ (the C(IFNγ) phenotype) was relatively distinct from that of the C(IL-1β) phenotype and included several genes associated with antigen processing and presentation. The IL-17-induced C(IL-17) phenotype was characterized by the induction of a more limited set of proinflammatory factors compared to C(IL-1β) cells. The C(IL-4) phenotype induced by IL-4 displayed a differential expression of a rather small set of genes compared with control, primarily those associated with TGFβ signaling and the regulation of inflammation. In conclusion, our results show that OA chondrocytes can adopt diverse phenotypes partly analogously to TH cells and macrophages. This phenotypic plasticity may play a role in the pathogenesis of arthritis and open new therapeutic avenues for the development of disease-modifying treatments for (osteo)arthritis.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, University of Tampere and Tampere University Hospital, 33100 Tampere, Finland; (A.P.); (T.L.); (M.H.)
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, University of Tampere and Tampere University Hospital, 33100 Tampere, Finland; (A.P.); (T.L.); (M.H.)
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, University of Tampere and Tampere University Hospital, 33100 Tampere, Finland; (A.P.); (T.L.); (M.H.)
| | - Teemu Moilanen
- Coxa Hospital for Joint Replacement, 33520 Tampere, Finland;
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, University of Tampere and Tampere University Hospital, 33100 Tampere, Finland; (A.P.); (T.L.); (M.H.)
- Correspondence:
| |
Collapse
|
11
|
Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An Evidence-Based Systematic Review of Human Knee Post-Traumatic Osteoarthritis (PTOA): Timeline of Clinical Presentation and Disease Markers, Comparison of Knee Joint PTOA Models and Early Disease Implications. Int J Mol Sci 2021; 22:1996. [PMID: 33671471 PMCID: PMC7922905 DOI: 10.3390/ijms22041996] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the causality of the post-traumatic osteoarthritis (PTOA) disease process of the knee joint is important for diagnosing early disease and developing new and effective preventions or treatments. The aim of this review was to provide detailed clinical data on inflammatory and other biomarkers obtained from patients after acute knee trauma in order to (i) present a timeline of events that occur in the acute, subacute, and chronic post-traumatic phases and in PTOA, and (ii) to identify key factors present in the synovial fluid, serum/plasma and urine, leading to PTOA of the knee in 23-50% of individuals who had acute knee trauma. In this context, we additionally discuss methods of simulating knee trauma and inflammation in in vivo, ex vivo articular cartilage explant and in vitro chondrocyte models, and answer whether these models are representative of the clinical inflammatory stages following knee trauma. Moreover, we compare the pro-inflammatory cytokine concentrations used in such models and demonstrate that, compared to concentrations in the synovial fluid after knee trauma, they are exceedingly high. We then used the Bradford Hill Framework to present evidence that TNF-α and IL-6 cytokines are causal factors, while IL-1β and IL-17 are credible factors in inducing knee PTOA disease progresssion. Lastly, we discuss beneficial infrastructure for future studies to dissect the role of local vs. systemic inflammation in PTOA progression with an emphasis on early disease.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (R.A.); (J.M.H.); (B.R.)
| |
Collapse
|
12
|
Cassuto J, Folestad A, Göthlin J, Malchau H, Kärrholm J. Concerted actions by MMPs, ADAMTS and serine proteases during remodeling of the cartilage callus into bone during osseointegration of hip implants. Bone Rep 2020; 13:100715. [PMID: 32995386 PMCID: PMC7509196 DOI: 10.1016/j.bonr.2020.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Although the number of patients undergoing total hip arthroplasty is constantly on the rise, we only have limited knowledge of the molecular mechanisms necessary for successful osseointegration of implants or the reasons why some fail. Understanding the spatiotemporal characteristics of signaling pathways involved in bone healing of implants is therefore of particular importance for our ability to identify factors causing implants to fail. The current study investigated the role of three families of proteases, i.e. MMPs (matrix metalloproteinases), ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) and serine proteases, as well as their endogenous inhibitors during osseointegration of hip implants that have endured two decades of use without clinical or radiological signs of loosening. MATERIALS AND METHODS Twenty-four patients that had undergone primary THA due to one-sided osteoarthritis (OA) were monitored during 18 years (Y) with repeated measurements of plasma biomarkers, clinical variables and radiographs. All implants were clinically and radiographically well-fixed throughout the follow-up. Eighty-one healthy donors divided in three gender and age-matched groups and twenty OA patients awaiting THA, served as controls. Plasma was analyzed for MMP-1, -2, -3, -8, -9, -10, -13, -14, tissue inhibitor of metalloproteinase (TIMP)-1, -2, -3, ADAMTS4, ADAMTS5, the serine proteases neutrophil elastase (NE), proteinase 3 (PR3) and their endogenous inhibitors, secretory leucocyte proteinase inhibitor (SLPI), trappin-2/elafin and serpina1 (α-1 antitrypsin). Cartilage turnover was monitored using two markers of cartilage synthesis, type II procollagen and PIICP (procollagen II C-terminal propeptide), and two markers of cartilage degradation, CTX-II (C-terminal telopeptide fragments of type II collagen) and split products of aggrecan (G1-IGD-G2). RESULTS MMP-1, MMP-9, ADAMTS4, NE and PR3 were above healthy in presurgery OA patients but returned to the level of healthy within 6 weeks (W) after surgery. MMPs and serine proteases were counter-regulated during this phase by TIMP-1, SLPI and trappin-2/elafin. Type II procollagen, PIICP and CTX-II increased to a peak 6 W after surgery with a gradual return to the level of controls within weeks. Significant increases by MMP-8, MMP-9, ADAMTS4, ADAMTS5, NE, PR3 and the protease inhibitors, TIMP-3 and serpina1, were seen 5 Y after hip arthroplasty paralleled by a sharp increase in the levels of the cartilage degradation markers, CTX-II and G1-IGD-G2. All the above mediators were normalized before 18 Y, except MMP-1 and MMP-9 that remained above healthy at 18 Y. MMP-14 increased immediately after surgery and remained elevated until 5 Y postsurgery before returning to the level of controls at 7 Y. CONCLUSION Notwithstanding temporal differences, the molecular processes of bone repair in arthroplasty patients show great spatial similarities with the classical phases of fracture repair as previously shown in animal models. Cartilagenous callus, produced and remodeled early after hip arthroplasty, is replaced with bone 5 Y to7 Y after surgery by the concerted actions of MMP-8, MMP-9, ADAMTS4, ADAMTS5, NE and PR3, thus suggesting that a complex regulatory cross-talk may exist between different families of proteases during this transitional phase of cartilage degradation. Regulation and fine-tuning of cartilage remodeling by MMPs and ADAMTS is controlled by TIMP-3 whereas serine proteases are regulated by serpina1. Increased MMP-1 and MMP-9 beyond 10Y post-THA support a role during coupled bone remodeling.
Collapse
Affiliation(s)
- Jean Cassuto
- Orthopedic Research Unit, Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Agnetha Folestad
- Department of Orthopedics, CapioLundby Hospital, Göteborg, Sweden
| | - Jan Göthlin
- Department of Radiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Henrik Malchau
- Orthopedic Research Unit, Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Orthopedic Surgery, Harvard Medical School, Boston, USA
| | - Johan Kärrholm
- Orthopedic Research Unit, Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| |
Collapse
|
13
|
Pemmari A, Leppänen T, Hämäläinen M, Moilanen T, Vuolteenaho K, Moilanen E. Widespread regulation of gene expression by glucocorticoids in chondrocytes from patients with osteoarthritis as determined by RNA-Seq. Arthritis Res Ther 2020; 22:271. [PMID: 33203447 PMCID: PMC7670667 DOI: 10.1186/s13075-020-02289-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Intra-articular glucocorticoid (GC) injections are widely used as a symptomatic treatment for osteoarthritis (OA). However, there are also concerns about their potentially harmful effects, and their detailed effects on chondrocyte phenotype remain poorly understood. Methods We studied the effects of dexamethasone on gene expression in OA chondrocytes with RNA-Seq. Chondrocytes were isolated from the cartilage from OA patients undergoing knee replacement surgery and cultured with or without dexamethasone for 24 h. Total RNA was isolated and sequenced, and functional analysis was performed against the Gene Ontology (GO) database. Results for selected genes were confirmed with RT-PCR. We also investigated genes linked to OA in recent genome-wide expression analysis (GWEA) studies. Results Dexamethasone increased the expression of 480 and reduced that of 755 genes with a fold change (FC) 2.0 or greater. Several genes associated with inflammation and cartilage anabolism/catabolism as well as lipid and carbohydrate metabolism were among the most strongly affected genes. In the GO analysis, genes involved in the extracellular matrix organization, cell proliferation and adhesion, inflammation, and collagen synthesis were enriched among the significantly affected genes. In network analysis, NGF, PI3KR1, and VCAM1 were identified as central genes among those most strongly affected by dexamethasone. Conclusions This is the first study investigating the genome-wide effects of GCs on the gene expression in OA chondrocytes. In addition to clear anti-inflammatory and anticatabolic effects, GCs affect lipid and glucose metabolism in chondrocytes, an observation that might be particularly important in the metabolic phenotype of OA.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
14
|
Kim MH, Choi LY, Ahn KS, Um JY, Lee SG, Hahm DH, Yang WM. Gumiganghwal-tang ameliorates cartilage destruction via inhibition of matrix metalloproteinase. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113074. [PMID: 32534115 DOI: 10.1016/j.jep.2020.113074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kyung-Bang Gumiganghwal-tang tablet (GMGHT) is a standardized Korean Medicine that could treat a cold, headache, arthralgia and fever. Although GMGHT has been used for arthritis-related diseases including a sprain, arthralgia, unspecified arthritis and knee arthritis, there is no pre-clinical evidence to treat osteoarthritis (OA). This study determined the drug dosage and the mechanisms of GMGHT for OA. METHODS OA was induced by intra-articular monoiodoacetic acid (MIA) injection in Sprague-Dawley rats. As calculated from the human equivalent dose formula, GMGHT was orally administered at the doses of 9.86, 98.6 and 986 mg/kg for 4 weeks. The arthritis score was performed by a blind test, and histological changes in articular cartilage were indicated by hematoxylin and eosin, Safranin O and toluidine blue staining. SW1353 chondrocytes were stimulated by interleukin (IL)-1β recombinant to analyze the expressions of Type II collagen, matrix metalloproteinases (MMPs) and nuclear factor (NF)-κB. RESULTS Rough and punctate surfaces of the femoral condyle induced by MIA, were recovered by the GMGHT treatment. The arthritis score was significantly improved in the 968 mg/kg of GMGHT-treated cartilage. Loss of chondrocytes and proteoglycan were ameliorated at the deep zone of the subchondral bone plate by the GMGHT administration in OA rats. The expression of Type II collagen was increased, while MMP-1, -3 and -13 levels were decreased in the GMGHT-treated SW1353 chondrocytes. In addition, the GMGHT treatment regulated NF-κB activation along with IL-6, transforming growth factor-β and IL-12 production. CONCLUSIONS GMGHT promoted the recovery of articular cartilage damage by inhibiting MMPs, accompanied with its anti-inflammatory effects in OA. GMGHT might be an alternative therapeutic treatment for OA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Cartilage, Articular/drug effects
- Cartilage, Articular/enzymology
- Cartilage, Articular/pathology
- Cell Line, Tumor
- Chondrocytes/drug effects
- Chondrocytes/enzymology
- Chondrocytes/pathology
- Collagen Type II/metabolism
- Cytokines/metabolism
- Humans
- Inflammation Mediators/metabolism
- Iodoacetic Acid
- Joints/drug effects
- Joints/enzymology
- Joints/pathology
- Male
- Matrix Metalloproteinase 1/metabolism
- Matrix Metalloproteinase 13/metabolism
- Matrix Metalloproteinase 3/metabolism
- Matrix Metalloproteinase Inhibitors/pharmacology
- Matrix Metalloproteinases, Secreted/antagonists & inhibitors
- Matrix Metalloproteinases, Secreted/genetics
- Matrix Metalloproteinases, Secreted/metabolism
- Osteoarthritis/chemically induced
- Osteoarthritis/enzymology
- Osteoarthritis/pathology
- Osteoarthritis/prevention & control
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - La Yoon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Geun Lee
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Dae-Hyun Hahm
- College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Wu CC, Chen YR, Lu DH, Hsu LH, Yang KC, Sumi S. Evaluation of the post-treatment anti-inflammatory capacity of osteoarthritic chondrocytes: An in vitro study using baicalein. Regen Ther 2020; 14:177-183. [PMID: 32128354 PMCID: PMC7042419 DOI: 10.1016/j.reth.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Targeting inflammatory cascades is considered a promising way to prevent knee osteoarthritis (OA) progression. In terms of down-regulating the expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-6, and matrix metalloproteinases (MMPs), pre-treatment with the flavonoid baicalein reportedly protects articular chondrocytes against the cytotoxicity of IL-1β. However, the benefits of post-treatment baicalein on osteoarthritic chondrocytes are not fully elucidated. METHODS In this study, primary human chondrocytes were stimulated with IL-1β prior to baicalein application to evaluate the therapeutic effect of post-treatment. RESULTS Post-treatment baicalein alleviated cell death and partially restored mitochondrial viability, while the senescence-associated secretory phenotype was not improved in IL-1β-stimulated chondrocytes. Post-treatment baicalein down-regulated the expressions of IL-1β, tumor necrosis factor-alpha, MMP-3, MMP-9, and MMP-13 mRNA as well as the protein production in stimulated cells. Even so, the levels of these factors were relative higher than those in un-treated chondrocytes. Moreover, iNOS, IL-6, IL-8, and COL1A1 expressions were consistently high, and IL-10 protein synthesis steadily increased in IL-1β-treated chondrocytes under baicalein treated status. Moreover, Western blot analyses showed that post-treatment baicalein suppressed nuclear factor kappa-light-chain-enhancer of activated B cells and p50 production while downstream cyclooxygenase-2 was still highly expressed. CONCLUSION Baicalein post-treatment to osteoarthritic chondrocytes had a minor benefit to the homeostasis of cartilaginous extracellular matrix.
Collapse
Affiliation(s)
- Chang-Chin Wu
- Department of Orthopedics, En Chu Kong Hospital, New Taipei City, 23702, Taiwan
- Department of Orthopedics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
- Departments of Biomedical Engineering, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
| | - Yi-Ru Chen
- Department of Orthopedics, En Chu Kong Hospital, New Taipei City, 23702, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Dai-Hua Lu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Li-Ho Hsu
- Department of Orthopedics, En Chu Kong Hospital, New Taipei City, 23702, Taiwan
- Department of Orthopedics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10002, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Shoichiro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
16
|
Sinkeviciute D, Aspberg A, He Y, Bay-Jensen AC, Önnerfjord P. Characterization of the interleukin-17 effect on articular cartilage in a translational model: an explorative study. BMC Rheumatol 2020; 4:30. [PMID: 32426694 PMCID: PMC7216541 DOI: 10.1186/s41927-020-00122-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/06/2020] [Indexed: 12/29/2022] Open
Abstract
Background Osteoarthritis (OA) is a progressive, chronic disease characterized by articular cartilage destruction. The pro-inflammatory cytokine IL-17 levels have been reported elevated in serum and synovial fluid of OA patients and correlated with increased cartilage defects and bone remodeling. The aim of this study was to characterize an IL-17-mediated articular cartilage degradation ex-vivo model and to investigate IL-17 effect on cartilage extracellular matrix protein turnover. Methods Full-depth bovine femoral condyle articular cartilage explants were cultured in serum-free medium for three weeks in the absence, or presence of cytokines: IL-17A (100 ng/ml or 25 ng/ml), or 10 ng OSM combined with 20 ng/ml TNFα (O + T). RNA isolation and PCR analysis were performed on tissue lysates to confirm IL-17 receptor expression. GAG and ECM-turnover biomarker release into conditioned media was assessed with dimethyl methylene blue and ELISA assays, respectively. Gelatin zymography was used for matrix metalloproteinase (MMP) 2 and MMP9 activity assessment in conditioned media, and shotgun LC-MS/MS for identification and label-free quantification of proteins and protein fragments in conditioned media. Western blotting was used to validate MS results. Results IL-17RA mRNA was expressed in bovine full-depth articular cartilage and the treatment with IL-17A did not interfere with metabolic activity of the model. IL-17A induced cartilage breakdown; conditioned media GAG levels were 3.6-fold-elevated compared to untreated. IL-17A [100 ng/ml] induced ADAMTS-mediated aggrecan degradation fragment release (14-fold increase compared to untreated) and MMP-mediated type II collagen fragment release (6-fold-change compared to untreated). MS data analysis revealed 16 differentially expressed proteins in IL-17A conditioned media compared to untreated, and CHI3L1 upregulation in conditioned media in response to IL-17 was confirmed by Western blotting. Conclusions We showed that IL-17A has cartilage modulating potential. It induces collagen and aggrecan degradation indicating an upregulation of MMPs. This was confirmed by zymography and mass spectrometry data. We also showed that the expression of other cytokines is induced by IL-17A, which provide further insight to the pathways that are active in response to IL-17A. This exploratory study confirms that IL-17A may play a role in cartilage pathology and that the applied model may be a good tool to further investigate it.
Collapse
Affiliation(s)
- Dovile Sinkeviciute
- 1Nordic Bioscience, Biomarkers & Research, Herlev, Denmark.,2Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders Aspberg
- 2Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Yi He
- 1Nordic Bioscience, Biomarkers & Research, Herlev, Denmark
| | | | - Patrik Önnerfjord
- 2Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Tsuchiya S, Ohashi Y, Ishizuka S, Ishiguro N, O’Rourke DP, Knudson CB, Knudson W. Suppression of murine osteoarthritis by 4-methylumbelliferone. J Orthop Res 2020; 38:1122-1131. [PMID: 31774188 PMCID: PMC7162708 DOI: 10.1002/jor.24541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/24/2019] [Indexed: 02/04/2023]
Abstract
Using in vitro models, we previously reported that 4-methylumbelliferone (4-MU) blocked many of the pro-catabolic features of activated chondrocytes. 4-MU also blocked safranin O loss from human cartilage explants exposed to interleukin 1β (IL1β) in vitro. However, the mechanism for this chondroprotective effect was independent of the action of 4-MU as a hyaluronan (HA) inhibitor. Interestingly, overexpression of HA synthase 2 (HAS2) also blocked the same pro-catabolic features of activated chondrocytes as 4-MU via a mechanism independent of extracellular HA accumulation. Data suggest that altering UDP-sugars may be behind these changes in chondrocyte metabolism. However, all of our previous experiments with 4-MU or HAS2 overexpression were performed in vitro. The purpose of this study was to confirm whether 4-MU was effective at limiting the effects of osteoarthritis (OA) on articular cartilage in vivo. The progression of OA was evaluated after destabilization of the medial meniscus (DMM) surgery on C57BL/6 mice in the presence or absence of 4-MU-containing chow. Mice fed 4-MU after DMM surgery exhibited significant suppression of OA starting from an early stage in vivo. Mice fed 4-MU exhibited lower OARSI scores after DMM; reduced osteophyte formation and reduced MMP3 and MMP13 immunostaining. 4-MU also exerted pronounced chondroprotective effects on murine joint cartilage exposed to IL1β in vitro and, blocked IL1β-enhanced lactate production in cartilage explants. Therefore, 4-MU is effective at significantly reducing the loss of proteoglycan and reducing MMP production both in vitro and in vivo as well as cartilage damage and osteophyte formation in vivo after DMM. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. 38:1122-1131, 2020.
Collapse
Affiliation(s)
- Saho Tsuchiya
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshifumi Ohashi
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Ishizuka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dorcas P. O’Rourke
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Cheryl B. Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834,Address all correspondence and reprint requests to: Warren Knudson, Ph.D., Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mailstop 620, Greenville, NC 27834-4354. Telephone (252) 744-2852; Fax (252) 744-2850;
| |
Collapse
|
18
|
Wimmer MA, Pacione C, Yuh C, Chan YM, Kunze J, Laurent MP, Chubinskaya S. Articulation of an alumina-zirconia composite ceramic against living cartilage – An in vitro wear test. J Mech Behav Biomed Mater 2020; 103:103531. [DOI: 10.1016/j.jmbbm.2019.103531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022]
|
19
|
Zhou Y, Lu H, Deng L, Lin CH, Pennington Klein K, Wu M. HMGB2 is associated with pressure loading in chondrocytes of temporomandibular joint: In vitro and in vivo study. Cytokine 2020; 126:154875. [DOI: 10.1016/j.cyto.2019.154875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/14/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023]
|
20
|
Paré F, Tardif G, Fahmi H, Ouhaddi Y, Pelletier JP, Martel-Pelletier J. In vivo protective effect of adipsin-deficiency on spontaneous knee osteoarthritis in aging mice. Aging (Albany NY) 2020; 12:2880-2896. [PMID: 32012117 PMCID: PMC7041762 DOI: 10.18632/aging.102784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
The adipokine adipsin is an emerging mediator of human osteoarthritis (OA) progression. Here, we investigated its in vivo role in the development of spontaneous OA in aging mice. We compared articular knee joint morphology, histology in knee cartilage, synovial membrane, subchondral bone, meniscus, and anterior cruciate ligament (ACL); and chondrogenesis in the ACL from adipsin-deficient (Df-/-) and wild-type (Df+/+) 20-week- and 20-month-old mice. Serum levels of a panel of adipokines, inflammatory factors, and metalloproteases known to be implicated in OA were investigated. Data first revealed that the early manifestation of OA appeared in the ACL of 20-week-old mice, progressing to severe alterations in the 20 month-old wild-type mice. Further results demonstrated that adipsin-deficiency protected the articular tissues from spontaneous OA progression and triggered significantly higher serum levels of the adipokines adiponectin and FGF-21 while lowering levels of the inflammatory factor interleukin 6 (IL-6) in both young and old mice. This work further underlines the clinical relevance of adipsin as a novel therapeutic approach of human OA. Moreover, this study shows the potential beneficial effect of the adipokine FGF-21 against OA, and provides support for this factor to be a new biomarker and/or target of primary OA therapeutic avenues.
Collapse
Affiliation(s)
- Frédéric Paré
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Ginette Tardif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Yassine Ouhaddi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|
21
|
Allas L, Rochoux Q, Leclercq S, Boumédiene K, Baugé C. Development of a simple osteoarthritis model useful to predict in vitro the anti-hypertrophic action of drugs. J Transl Med 2020; 100:64-71. [PMID: 31409892 DOI: 10.1038/s41374-019-0303-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/18/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is characterized by cartilage degradation, inflammation, and hypertrophy. Therapies are mainly symptomatic and aim to manage pain. Consequently, medical community is waiting for new treatments able to reduce OA process. This study aims to develop an in vitro simple OA model useful to predict drug ability to reduce cartilage hypertrophy. Human primary OA chondrocytes were incubated with transforming growth factor beta 1 (TGF-β1). Hypertrophy was evaluated by Runx2, type X collagen, MMP13, and VEGF expression. Cartilage anabolism was investigated by Sox9, aggrecan, type II collagen, and glycosaminoglycan expression. In chondrocytes, TGF-β1 increased expression of hypertrophic genes and activated canonical WNT pathway, while it decreased dramatically cartilage anabolism, suggesting that this treatment could mimic some OA features in vitro. Additionally, EZH2 inhibition, that has been previously reported to decrease cartilage hypertrophy and reduce OA development in vivo, attenuated COL10A1 and MMP13 upregulation and SOX9 downregulation induced by TGF-β1 treatment. Similarly, pterosin B (an inhibitor of Sik3), and DMOG (a hypoxia-inducible factor prolyl hydroxylase which mimicks hypoxia), repressed the expression of hypertrophy markers in TGF-β stimulated chondrocytes. In conclusion, we established an innovative OA model in vitro. This cheap and simple model will be useful to quickly screen new drugs with potential anti-arthritic effects, in complementary to current inflammatory models, and should permit to accelerate development of efficient treatments against OA able to reduce cartilage hypertrophy.
Collapse
Affiliation(s)
- Lyess Allas
- Normandie Université, UNICAEN, EA7451, BioConnecT, Caen, France
| | - Quitterie Rochoux
- Normandie Université, UNICAEN, EA7451, BioConnecT, Caen, France.,CHU, Service de Rhumatologie, Caen, France
| | - Sylvain Leclercq
- Normandie Université, UNICAEN, EA7451, BioConnecT, Caen, France.,Clinique Saint-Martin, Service de Chirurgie Orthopédique, Caen, France
| | | | - Catherine Baugé
- Normandie Université, UNICAEN, EA7451, BioConnecT, Caen, France.
| |
Collapse
|
22
|
Ishizuka S, Tsuchiya S, Ohashi Y, Terabe K, Askew EB, Ishizuka N, Knudson CB, Knudson W. Hyaluronan synthase 2 (HAS2) overexpression diminishes the procatabolic activity of chondrocytes by a mechanism independent of extracellular hyaluronan. J Biol Chem 2019; 294:13562-13579. [PMID: 31270213 DOI: 10.1074/jbc.ra119.008567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/25/2019] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease of the joints caused in part by a change in the phenotype of resident chondrocytes within affected joints. This altered phenotype, often termed proinflammatory or procatabolic, features enhanced production of endoproteinases and matrix metallo-proteinases (MMPs) as well as secretion of endogenous inflammatory mediators. Degradation and reduced retention of the proteoglycan aggrecan is an early event in OA. Enhanced turnover of hyaluronan (HA) is closely associated with changes in aggrecan. Here, to determine whether experimentally increased HA production promotes aggrecan retention and generates a positive feedback response, we overexpressed HA synthase-2 (HAS2) in chondrocytes via an inducible adenovirus construct (HA synthase-2 viral overexpression; HAS2-OE). HAS2-OE incrementally increased high-molecular-mass HA >100-fold within the cell-associated and growth medium pools. More importantly, our results indicated that the HAS2-OE expression system inhibits MMP3, MMP13, and other markers of the procatabolic phenotype (such as TNF-stimulated gene 6 protein (TSG6)) and also enhances aggrecan retention. These markers were inhibited in OA-associated chondrocytes and in chondrocytes activated by interleukin-1β (IL1β), but also chondrocytes activated by lipopolysaccharide (LPS), tumor necrosis factor α (TNFα), or HA oligosaccharides. However, the enhanced extracellular HA resulting from HAS2-OE did not reduce the procatabolic phenotype of neighboring nontransduced chondrocytes as we had expected. Rather, HA-mediated inhibition of the phenotype occurred only in transduced cells. In addition, high HA biosynthesis rates, especially in transduced procatabolic chondrocytes, resulted in marked changes in chondrocyte dependence on glycolysis versus oxidative phosphorylation for their metabolic energy needs.
Collapse
Affiliation(s)
- Shinya Ishizuka
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Saho Tsuchiya
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Yoshifumi Ohashi
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Kenya Terabe
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Emily B Askew
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Naoko Ishizuka
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Cheryl B Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
23
|
Pérez‐García S, Carrión M, Villanueva‐Romero R, Hermida‐Gómez T, Fernández‐Moreno M, Mellado M, Blanco FJ, Juarranz Y, Gomariz RP. Wnt and RUNX2 mediate cartilage breakdown by osteoarthritis synovial fibroblast-derived ADAMTS-7 and -12. J Cell Mol Med 2019; 23:3974-3983. [PMID: 30903650 PMCID: PMC6533528 DOI: 10.1111/jcmm.14283] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Failure of therapeutic approaches for the treatment of osteoarthritis (OA) based on the inhibition of metalloproteinases, might be because of their constitutive expression in homeostasis, together with their network complexity. The knowledge of this network would contribute to selective target pathological conditions. In this sense, blockade of mediators produced by neighbouring joint cells, such as synovial fibroblasts (SF), would prevent cartilage damage. Thus, we studied the contribution of ADAMTS-7 and -12 from SF to cartilage oligomeric matrix protein (COMP) degradation, and the signalling pathways involved in their expression. We report for the first time in SF, the involvement of ERK-Runx2 axis and Wnt/β-catenin signalling in ADAMTS-12 and ADAMTS-7 expressions, respectively, with the subsequent consequences in COMP degradation from cartilage extracellular matrix. After stimulation with IL-1β or fibronectin fragments, we showed that ERK inhibition decreased Runx2 activation and ADAMTS-12 expression in OA-SF, also reducing Fn-fs-induced COMP degradation. Blockage of Wnt signalling by DKK1 reduced ADAMTS-7 and COMP degradation in OA-SF as well. In addition, Wnt7B expression was induced by IL-1β and by itself, also increasing ADAMTS-7. Our results could contribute to the development of disease-modifying OA drugs targeting ADAMTS-7 and -12 for the prevention of extracellular matrix components degradation like COMP.
Collapse
Affiliation(s)
- Selene Pérez‐García
- Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridSpain
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridSpain
| | - Raúl Villanueva‐Romero
- Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridSpain
| | - Tamara Hermida‐Gómez
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Sergas Universidade de A Coruña (UDC)A CoruñaSpain
| | - Mercedes Fernández‐Moreno
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Sergas Universidade de A Coruña (UDC)A CoruñaSpain
| | - Mario Mellado
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología (CNB)/CSICMadridSpain
| | - Francisco J. Blanco
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Sergas Universidade de A Coruña (UDC)A CoruñaSpain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridSpain
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridSpain
| |
Collapse
|
24
|
Yang Y, Wang Y, Kong Y, Zhang X, Zhang H, Gang Y, Bai L. The therapeutic effects of lipoxin A4 during treadmill exercise on monosodium iodoacetate-induced osteoarthritis in rats. Mol Immunol 2018; 103:35-45. [DOI: 10.1016/j.molimm.2018.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/13/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
|
25
|
Fisch KM, Gamini R, Alvarez-Garcia O, Akagi R, Saito M, Muramatsu Y, Sasho T, Koziol JA, Su AI, Lotz MK. Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthritis Cartilage 2018; 26:1531-1538. [PMID: 30081074 PMCID: PMC6245598 DOI: 10.1016/j.joca.2018.07.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/28/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most prevalent joint disease. As disease-modifying therapies are not available, novel therapeutic targets need to be discovered and prioritized for their importance in mediating the abnormal phenotype of cells in OA-affected joints. Here, we generated a genome-wide molecular profile of OA to elucidate regulatory mechanisms of OA pathogenesis and to identify possible therapeutic targets using integrative analysis of mRNA-sequencing data obtained from human knee cartilage. DESIGN RNA-sequencing (RNA-seq) was performed on 18 normal and 20 OA human knee cartilage tissues. RNA-seq datasets were analysed to identify genes, pathways and regulatory networks that were dysregulated in OA. RESULTS RNA-seq data analysis revealed 1332 differentially expressed (DE) genes between OA and non-OA samples, including known and novel transcription factors (TFs). Pathway analysis identified 15 significantly perturbed pathways in OA with ECM-related, PI3K-Akt, HIF-1, FoxO and circadian rhythm pathways being the most significantly dysregulated. We selected DE TFs that are enriched for regulating DE genes in OA and prioritized these TFs by creating a cartilage-specific interaction subnetwork. This analysis revealed eight TFs, including JUN, Early growth response (EGR)1, JUND, FOSL2, MYC, KLF4, RELA, and FOS that both target large numbers of dysregulated genes in OA and are themselves suppressed in OA. CONCLUSIONS We identified a novel subnetwork of dysregulated TFs that represent new mediators of abnormal gene expression and promising therapeutic targets in OA.
Collapse
Affiliation(s)
- K M Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - R Gamini
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - O Alvarez-Garcia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - R Akagi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA; Department of Orthopaedic Surgery, Chiba University Hospital 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - M Saito
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA; Department of Orthopaedic Surgery, Chiba University Hospital 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - Y Muramatsu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA; Department of Orthopaedic Surgery, Chiba University Hospital 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - T Sasho
- Department of Orthopaedic Surgery, Chiba University Hospital 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | - J A Koziol
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - A I Su
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - M K Lotz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
26
|
Huang K, Wu LD. Dehydroepiandrosterone: Molecular mechanisms and therapeutic implications in osteoarthritis. J Steroid Biochem Mol Biol 2018; 183:27-38. [PMID: 29787833 DOI: 10.1016/j.jsbmb.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022]
Abstract
Dehydroepiandrosterone (DHEA), a 19-carbon steroid hormone primarily synthesized in the adrenal gland, exerts a chondroprotective effect against osteoarthritis (OA) and has been considered an effective candidate of disease-modifying OA drugs (DMOADs) that slow disease progression. We and others previously demonstrated that DHEA exerted a beneficial effect on osteoarthritic cartilage by positively modulating the balance between anabolic and catabolic factors (e.g., MMPs/TIMP-1, ADAMTS/TIMP-3 and cysteine proteinases/cystatin C), inhibiting catabolic signaling pathways (e.g., Wnt/β-catenin), and suppressing proinflammatory cytokines-mediated low-grade synovial inflammation (e.g., IL-1β). However, the full picture of the pharmacological molecular mechanism(s) underlying the activity of DHEA against OA is still incomplete, and a comprehensive and up-to-date review article in this field is unavailable. In this review, recent findings (apart from the well documented pathogenesis of OA) regarding disease-related mechanisms involving low grade synovial inflammation, cartilage matrix stiffness, chondrocyte autophagy and the roles of a variety of catabolic cellular signaling pathways are discussed. Moreover, the possible relationship between these disease-related mechanisms and DHEA action is discussed. Emerging evidence from in vivo and in vitro studies were scrutinized and are concisely presented to demonstrate the investigational and putative mechanisms underlying the anti-OA potential of DHEA.
Collapse
Affiliation(s)
- Kai Huang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, China.
| | - Li-Dong Wu
- Department of Orthopedic Surgery, The Second Hospital of Medical College, Zhejiang University, China
| |
Collapse
|
27
|
Onset and Progression of Human Osteoarthritis-Can Growth Factors, Inflammatory Cytokines, or Differential miRNA Expression Concomitantly Induce Proliferation, ECM Degradation, and Inflammation in Articular Cartilage? Int J Mol Sci 2018; 19:ijms19082282. [PMID: 30081513 PMCID: PMC6121276 DOI: 10.3390/ijms19082282] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative whole joint disease, for which no preventative or therapeutic biological interventions are available. This is likely due to the fact that OA pathogenesis includes several signaling pathways, whose interactions remain unclear, especially at disease onset. Early OA is characterized by three key events: a rarely considered early phase of proliferation of cartilage-resident cells, in contrast to well-established increased synthesis, and degradation of extracellular matrix components and inflammation, associated with OA progression. We focused on the question, which of these key events are regulated by growth factors, inflammatory cytokines, and/or miRNA abundance. Collectively, we elucidated a specific sequence of the OA key events that are described best as a very early phase of proliferation of human articular cartilage (AC) cells and concomitant anabolic/catabolic effects that are accompanied by incipient pro-inflammatory effects. Many of the reviewed factors appeared able to induce one or two key events. Only one factor, fibroblast growth factor 2 (FGF2), is capable of concomitantly inducing all key events. Moreover, AC cell proliferation cannot be induced and, in fact, is suppressed by inflammatory signaling, suggesting that inflammatory signaling cannot be the sole inductor of all early OA key events, especially at disease onset.
Collapse
|
28
|
Mohetaer M, Li G, Wang Y, Cao L. Protective effects of gemigliptin against type II collagen degradation in human chondrocytes. Biomed Pharmacother 2018; 104:590-594. [PMID: 29803171 DOI: 10.1016/j.biopha.2018.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Degradation of components of the extracellular matrix such as type II collagen in articular cartilage induced by matrix metalloproteinases (MMPs) has been considered as a major pathological characteristic of osteoarthritis (OA). Gemigliptin is a potent and a highly selective dipeptidyl peptidase-IV (DPP-IV) inhibitor, which has been clinically used as an oral agent for the treatment of type 2 diabetes. However, the effects of gemigliptin on articular cartilage destruction and the pathogenesis of OA remain unknown. In the current study, we addressed for the first time the inhibitory property of gemigliptin against interleukin-1β (IL-1β)-induced degradation of type II collagen in human chondrocytes. Our results demonstrate that gemigliptin treatment inhibited the expression of matrix metalloproteinase 1 (MMP-1), matrix metalloproteinase 3 (MMP-3), and matrix metalloproteinase 13 (MMP-13) at both the gene and protein levels. Mechanistically, our results indicate that gemigliptin inhibited activation of the nuclear factor-κB (NF-κB) signaling pathway by suppressing phosphorylation of IκB kinase (IKK)/nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα) and p38. Our results implicate that gemigliptin treatment might be a potential therapeutic strategy for chondroprotective therapy.
Collapse
Affiliation(s)
- Momin Mohetaer
- Department of Orthopaedics, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Guoqing Li
- Department of Orthopaedics, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Yang Wang
- Department of Orthopaedics, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Li Cao
- Department of Orthopaedics, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
29
|
Yang Q, Ding W, Cao Y, Zhou Y, Ni S, Shi T, Fu W. Interferonregulatoryfactor-8(IRF-8) regulates the expression of matrix metalloproteinase-13 (MMP-13) in chondrocytes. Cell Stress Chaperones 2018; 23:393-398. [PMID: 29247272 PMCID: PMC5904082 DOI: 10.1007/s12192-017-0849-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022] Open
Abstract
Low levels of inflammation-induced expression of matrix metalloproteinase (MMP) play a crucial role in articular cartilage matrix destruction in osteoarthritis (OA) patients. Interferon regulatory factor-8 (IRF-8), an important member in the IRF family, plays a key role in regulating the inflammation-related signaling pathway. The aim of this study is to investigate the physiological roles of IRF-8 in the pathological progression of OA. We found that IRF-8 was expressed in human primary chondrocytes. Interestingly, the expression of IRF-8 was upregulated in OA chondrocytes. In addition, IRF-8 was increased in response to interleukin-1β (IL-1β) treatment, mediated by the Janus kinase 2 (JAK2) pathway. Overexpression of IRF-8 in human chondrocytes by transduction with lentiviral-IRF-8 exacerbated IL-1β-induced expression of matrix metalloproteinase-13 (MMP-13) in human chondrocytes. In contrast, knockdown of IRF-8 inhibited IL-1β-induced expression of MMP-13. Importantly, IRF-8 could bind to the promoter of MMP-13 and stimulate its activity. Additionally, overexpression of IRF-8 exacerbated IL-1β-induced degradation of type II collagen. However, silencing IRF-8 abrogated the degradation of type II collagen. Taken together, our findings identified a novel function of IRF-8 in regulating articular cartilage matrix destruction by promoting the expression of MMP-13.
Collapse
Affiliation(s)
- Qining Yang
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, 321000, People's Republic of China
| | - Weiguo Ding
- Department of Orthopaedics, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - Yang Cao
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, 321000, People's Republic of China
| | - Yongwei Zhou
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, 321000, People's Republic of China
| | - Shuo Ni
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, 321000, People's Republic of China
| | - Tiejun Shi
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, 321000, People's Republic of China
| | - Weicong Fu
- Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, 321000, People's Republic of China
| |
Collapse
|
30
|
Raman S, FitzGerald U, Murphy JM. Interplay of Inflammatory Mediators with Epigenetics and Cartilage Modifications in Osteoarthritis. Front Bioeng Biotechnol 2018; 6:22. [PMID: 29594113 PMCID: PMC5861204 DOI: 10.3389/fbioe.2018.00022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/22/2018] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA), a degenerative disease of diarthrodial joints, is influenced by mechanical and inflammatory factors with aging, obesity, chronic injuries, and secondary diseases thought to be major factors driving the process of articular cartilage degeneration. Chondrocytes, the cellular component of cartilage, reside in an avascular environment and normally have limited potential to replicate. However, extrinsic factors such as injury to the joint or intrinsic alterations to the chondrocytes themselves can lead to an altered phenotype and development of OA. Synovial inflammation is also a pivotal element of the osteoarthritic, degenerative process: influx of pro-inflammatory cytokines and production of matrix metalloproteinases accelerate advanced cellular processes such as synovitis and cartilage damage. As well as a genetic input, recent data have highlighted epigenetic factors as contributing to disease. Studies conducted over the last decade have focused on three key aspects in OA; inflammation and the immune response, genome-wide association studies that have identified important genes undergoing epigenetic modifications, and finally how chondrocytes transform in their function during development and disease. Data highlighted here have identified critical inflammatory genes involved in OA and how these factors impact chondrocyte hypertrophy in the disease. This review also addresses key inflammatory factors in synovial inflammation, epigenetics, and chondrocyte fate, and how agents that inhibit epigenetic mechanisms like DNA methylation and histone modifications could aid in development of long-term treatment strategies for the disease.
Collapse
Affiliation(s)
- Swarna Raman
- Orthobiology, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Una FitzGerald
- School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - J Mary Murphy
- Orthobiology, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
31
|
Soul J, Dunn SL, Anand S, Serracino-Inglott F, Schwartz JM, Boot-Handford RP, Hardingham TE. Stratification of knee osteoarthritis: two major patient subgroups identified by genome-wide expression analysis of articular cartilage. Ann Rheum Dis 2018; 77:423. [PMID: 29273645 PMCID: PMC5867416 DOI: 10.1136/annrheumdis-2017-212603] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is a heterogeneous and complex disease. We have used a network biology approach based on genome-wide analysis of gene expression in OA knee cartilage to seek evidence for pathogenic mechanisms that may distinguish different patient subgroups. METHODS Results from RNA-Sequencing (RNA-Seq) were collected from intact knee cartilage at total knee replacement from 44 patients with OA, from 16 additional patients with OA and 10 control patients with non-OA. Results were analysed to identify patient subsets and compare major active pathways. RESULTS The RNA-Seq results showed 2692 differentially expressed genes between OA and non-OA. Analysis by unsupervised clustering identified two distinct OA groups: Group A with 24 patients (55%) and Group B with 18 patients (41%). A 10 gene subgroup classifier was validated by RT-qPCR in 16 further patients with OA. Pathway analysis showed increased protein expression in both groups. PhenomeExpress analysis revealed group differences in complement activation, innate immune responses and altered Wnt and TGFβ signalling, but no activation of inflammatory cytokine expression. Both groups showed suppressed circadian regulators and whereas matrix changes in Group A were chondrogenic, in Group B they were non-chondrogenic with changes in mechanoreceptors, calcium signalling, ion channels and in cytoskeletal organisers. The gene expression changes predicted 478 potential biomarkers for detection in synovial fluid to distinguish patients from the two groups. CONCLUSIONS Two subgroups of knee OA were identified by network analysis of RNA-Seq data with evidence for the presence of two major pathogenic pathways. This has potential importance as a new basis for the stratification of patients with OA for drug trials and for the development of new targeted treatments.
Collapse
Affiliation(s)
- Jamie Soul
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sara L Dunn
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sanjay Anand
- Department of Orthopaedic Surgery, Stockport NHS Foundation Trust, Stockport, UK
| | | | - Jean-Marc Schwartz
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Ray P Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tim E Hardingham
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
32
|
Platelet-rich plasma inhibits Wnt/β-catenin signaling in rabbit cartilage cells activated by IL-1β. Int Immunopharmacol 2018; 55:282-289. [DOI: 10.1016/j.intimp.2017.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 01/15/2023]
|
33
|
Snelling SJB, Bas S, Puskas GJ, Dakin SG, Suva D, Finckh A, Gabay C, Hoffmeyer P, Carr AJ, Lübbeke A. Presence of IL-17 in synovial fluid identifies a potential inflammatory osteoarthritic phenotype. PLoS One 2017; 12:e0175109. [PMID: 28399156 PMCID: PMC5388337 DOI: 10.1371/journal.pone.0175109] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 03/21/2017] [Indexed: 11/30/2022] Open
Abstract
Purpose Osteoarthritis (OA) is a common and heterogeneous arthritic disorder. Patients suffer pain and their joints are characterized by articular cartilage loss and osteophyte formation. Risk factors for OA include age and obesity with inflammation identified as a key mediator of disease pathogenesis. Interleukin-17A (IL-17) is a pro-inflammatory cytokine that has been implicated in inflammatory diseases such as rheumatoid arthritis. IL-17 can upregulate expression of inflammatory cytokines and adipocytokines. The aim of this study was to evaluate IL-17 levels in the synovial fluid of patients with end-stage knee and hip OA in relation to inflammation- and pain-related cytokines and adipocytokines in synovial fluid and serum, and clinical and radiographic disease parameters. Methods This is a cross-sectional study of 152 patients undergoing total hip and knee arthroplasty for OA. IL-17, IL-6, leptin, adiponectin, visfatin, resistin, C-C Motif Chemokine Ligand 2 (CCL2), C-C Motif Chemokine Ligand 7 (CCL7) and nerve growth factor (NGF) protein levels were measured in synovial fluid and serum using enzyme-linked immunosorbent assay (ELISA). Baseline characteristics included age, sex, body mass index, co-morbidities, pain and function, and radiographic analyses (OA features, K&L grade, minimal joint space width). Results 14 patients (9.2%) had detectable IL-17 in synovial fluid. These patients had significantly higher median concentrations of IL-6, leptin, resistin, CCL7 and NGF. Osteophytes, sclerosis and minimum joint space width were significantly reduced in patients with detectable IL-17 in synovial fluid. No differences were found in pain, function and comorbidities. IL-17 concentrations in synovial fluid and serum were moderately correlated (r = 0.482). Conclusion The presence of IL-17 in the synovial fluid therefore identifies a substantial subset of primary end-stage OA patients with distinct biological and clinical features. Stratification of patients on the basis of IL-17 may identify those responsive to therapeutic targeting.
Collapse
MESH Headings
- Aged
- Arthroplasty, Replacement, Hip
- Arthroplasty, Replacement, Knee
- Biomarkers/metabolism
- Comorbidity
- Cross-Sectional Studies
- Female
- Humans
- Interleukin-17/metabolism
- Male
- Osteoarthritis, Hip/diagnostic imaging
- Osteoarthritis, Hip/immunology
- Osteoarthritis, Hip/surgery
- Osteoarthritis, Knee/diagnostic imaging
- Osteoarthritis, Knee/immunology
- Osteoarthritis, Knee/surgery
- Pain/diagnostic imaging
- Pain/etiology
- Pain/immunology
- Pain/surgery
- Patient Reported Outcome Measures
- Synovial Fluid/diagnostic imaging
- Synovial Fluid/immunology
Collapse
Affiliation(s)
- Sarah J. B. Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Sylvette Bas
- Division of Rheumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Gabor J. Puskas
- Division of Orthopaedic Surgery and Traumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Stephanie G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Domizio Suva
- Division of Orthopaedic Surgery and Traumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Axel Finckh
- Division of Rheumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Cem Gabay
- Division of Rheumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Hoffmeyer
- Division of Orthopaedic Surgery and Traumatology, Geneva University Hospitals, Geneva, Switzerland
| | - Andrew J. Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anne Lübbeke
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Division of Orthopaedic Surgery and Traumatology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
34
|
Furuta J, Ariyoshi W, Okinaga T, Takeuchi J, Mitsugi S, Tominaga K, Nishihara T. High molecular weight hyaluronic acid regulates MMP13 expression in chondrocytes via DUSP10/MKP5. J Orthop Res 2017; 35:331-339. [PMID: 27101204 DOI: 10.1002/jor.23266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/18/2016] [Indexed: 02/04/2023]
Abstract
To determine the effect of high molecular weight hyaluronic acid (HA) on matrix metalloproteinase 13 (MMP13) expression induced by tumor necrosis factor α (TNF-α) in chondrocytes. Human chondrocytic C28/I2 cells were incubated with TNF-α and HA. In some experiments, the cells were pre-incubated with a CD44 function-blocking monoclonal antibody (CD44 mAb) prior to addition of TNF-α and HA. The expression of MMP13 was determined by real-time reverse-transcription polymerase chain reaction (RT-PCR) and an enzyme linked immunosorbent assay, while the phosphorylation of signaling molecules was measured by western blot analysis. The transcriptional activity of activator protein 1 (AP-1) was analyzed by a reporter assay. To further clarify the molecular mechanisms of HA in MMP13 regulation, the expression level of dual-specificity protein phosphatase 10 (DUSP10)/mitogen-activated protein kinases phosphatase 5 (MKP5) in HA-treated chondrocytes was assessed by real-time RT-PCR, western blotting, and immunofluorescence microscopy. HA decreased MMP13 mRNA and protein expression induced by TNF-α. Blockage of HA-CD44 binding by CD44 mAb suppressed HA-mediated inhibition of MMP13. HA inhibited transient phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun NH2 -terminal kinase (JNK) induced by TNF-α. Reporter assay findings also revealed that pre-treatment with HA inhibited the transcriptional activity of AP-1 mediated by TNF-α. Moreover, HA induced the expression of DUSP10/MKP5, a negative regulator of p38 MAPK and JNK pathways. These results indicate that HA-CD44 interactions downregulate TNF-α-induced MMP13 expression via regulation of DUSP10/MKP5, suggesting that HA plays an important role as a regulatory factor in cartilage degradation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:331-339, 2017.
Collapse
Affiliation(s)
- Junya Furuta
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Oral and Maxillofacial Surgery, Department of Science of Physical Function, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Jun Takeuchi
- Pharmaceuticals Information Group, Seikagaku Corporation, Tokyo, Japan
| | - Sho Mitsugi
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical Function, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical Function, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
35
|
Samavedi S, Diaz-Rodriguez P, Erndt-Marino JD, Hahn MS. A Three-Dimensional Chondrocyte-Macrophage Coculture System to Probe Inflammation in Experimental Osteoarthritis. Tissue Eng Part A 2016; 23:101-114. [PMID: 27736317 DOI: 10.1089/ten.tea.2016.0007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The goal of the present study was to develop a fully three-dimensional (3D) coculture system that would allow for systematic evaluation of the interplay between activated macrophages (AMs) and chondrocytes in osteoarthritic disease progression and treatment. Toward this end, our coculture system was first validated against existing in vitro osteoarthritis models, which have generally cultured healthy normal chondrocytes (NCs)-in two-dimensional (2D) or 3D-with proinflammatory AMs in 2D. In this work, NCs and AMs were both encapsulated within poly(ethylene glycol) diacrylate hydrogels to mimic the native 3D environments of both cell types within the osteoarthritic joint. As with previous studies, increases in matrix metalloproteinases (MMPs) and proinflammatory cytokines associated with the early stages of osteoarthritis were observed during NC-AM coculture, as were decreases in protein-level Aggrecan and collagen II. Thereafter, the coculture system was extended to osteoarthritic chondrocytes (OACs) and AMs to evaluate the potential effects of AMs on pre-existing osteoarthritic phenotypes. OACs in coculture with AMs expressed significantly higher levels of MMP-1, MMP-3, MMP-9, MMP-13, IL-1β, TNF-α, IL-6, IL-8, and IFN-γ compared to OACs in mono-culture, indicating that proinflammatory macrophages may intensify the abnormal matrix degradation and cytokine secretion already associated with OACs. Likewise, AMs cocultured with OACs expressed significantly more IL-1β and VEGF-A compared to AM mono-culture controls, suggesting that OACs may intensify abnormal macrophage activation. Finally, OACs cultured in the presence of nonactivated macrophages produced lower levels of MMP-9 and proinflammatory cytokines IL-1β, TNF-α, and IFN-γ compared to OACs in the OAC-AM system, results that are consistent with anti-inflammatory agents temporarily reducing certain OA symptoms. In summary, the 3D coculture system developed herein captures several key features of inflammatory OA and may prove useful in future screening of therapeutic agents and/or assessment of disease progression mechanisms.
Collapse
Affiliation(s)
- Satyavrata Samavedi
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Department of Chemical Engineering, Indian Institute of Technology , Hyderabad, India
| | | | - Joshua D Erndt-Marino
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| | - Mariah S Hahn
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
36
|
Yuan Y, Zhang GQ, Chai W, Ni M, Xu C, Chen JY. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1: miR-138 promotes cartilage degradation. Bone Joint Res 2016; 5:523-530. [PMID: 27799147 PMCID: PMC5108353 DOI: 10.1302/2046-3758.510.bjr-2016-0074.r2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/08/2016] [Indexed: 12/03/2022] Open
Abstract
Objectives Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Materials and Methods Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1. Results MiR-138-5p was significantly increased in OA cartilage and in chondrocytes in response to IL-1β-stimulation. Overexpression of miR-138-5p significantly increased the IL-1β-induced downregulation of COL2A1, ACAN, and GAGs, and increased the IL-1β-induced over expression of MMP-13.We found that FOXC1 is directly regulated by miR-138-5p. Additionally, co-transfection with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 resulted in higher levels of COL2A1, ACAN, and GAGs, but lower levels of MMP-13. Conclusion miR-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes, possibly by targeting FOXC1. Cite this article: Y. Yuan, G. Q. Zhang, W. Chai,M. Ni, C. Xu, J. Y. Chen. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1: miR-138 promotes cartilage degradation. Bone Joint Res 2016;5:523–530. DOI: 10.1302/2046-3758.510.BJR-2016-0074.R2.
Collapse
Affiliation(s)
- Y Yuan
- Department of Orthopaedics, Chinese PLA General Hospital, No.28 Fuxing Road,Haidian District,Beijing 100853,China and, Jinan Military General Hospital, No.25, Shifan Road, Tianqiao District, Jinan 250031, Shandong, China
| | - G Q Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - W Chai
- Department of Orthopaedics, Chinese PLA General Hospital, General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - M Ni
- Department of Orthopaedics, Chinese PLA General Hospital, General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - C Xu
- Department of Orthopaedics, Chinese PLA General Hospital, General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - J Y Chen
- Department of Orthopaedics, Chinese PLA General Hospital, General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
37
|
Dunn S, Soul J, Anand S, Schwartz JM, Boot-Handford R, Hardingham T. Gene expression changes in damaged osteoarthritic cartilage identify a signature of non-chondrogenic and mechanical responses. Osteoarthritis Cartilage 2016; 24:1431-40. [PMID: 26973327 PMCID: PMC4989048 DOI: 10.1016/j.joca.2016.03.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/18/2016] [Accepted: 03/04/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Joint degeneration in osteoarthritis (OA) is characterised by damage and loss of articular cartilage. The pattern of loss is consistent with damage occurring only where the mechanical loading is high. We have investigated using RNA-sequencing (RNA-seq) and systems analyses the changes that occur in damaged OA cartilage by comparing it with intact cartilage from the same joint. METHODS Cartilage was obtained from eight OA patients undergoing total knee replacement. RNA was extracted from cartilage on the damaged distal medial condyle (DMC) and the intact posterior lateral condyle (PLC). RNA-seq was performed to identify differentially expressed genes (DEGs) and systems analyses applied to identify dysregulated pathways. RESULTS In the damaged OA cartilage, there was decreased expression of chondrogenic genes SOX9, SOX6, COL11A2, COL9A1/2/3, ACAN and HAPLN1; increases in non-chondrogenic genes COL1A1, COMP and FN1; an altered pattern of secreted proteinase expression; but no expression of major inflammatory cytokines. Systems analyses by PhenomeExpress revealed significant sub-networks of DEGs including mitotic cell cycle, Wnt signalling, apoptosis and matrix organisation that were influenced by a core of altered transcription factors (TFs), FOSL1, AHR, E2F1 and FOXM1. CONCLUSIONS Gene expression changes in damaged cartilage suggested a signature non-chondrogenic response of altered matrix protein and secreted proteinase expression. There was evidence of a damage response in this late OA cartilage, which surprisingly showed features detected experimentally in the early response of cartilage to mechanical overload. PhenomeExpress analysis identified a hub of DEGs linked by a core of four differentially regulated TFs.
Collapse
Affiliation(s)
- S.L. Dunn
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - J. Soul
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - S. Anand
- Stockport NHS Foundation Trust, Manchester, UK
| | - J.-M. Schwartz
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - R.P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK,Address correspondence and reprint requests to: R.P. Boot-Handford, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK. Tel: 44-01612755097.
| | - T.E. Hardingham
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK,Address correspondence and reprint requests to: T.E. Hardingham, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK. Tel: 44-01612755511.
| |
Collapse
|
38
|
Pérez-García S, Gutiérrez-Cañas I, Seoane IV, Fernández J, Mellado M, Leceta J, Tío L, Villanueva-Romero R, Juarranz Y, Gomariz RP. Healthy and Osteoarthritic Synovial Fibroblasts Produce a Disintegrin and Metalloproteinase with Thrombospondin Motifs 4, 5, 7, and 12: Induction by IL-1β and Fibronectin and Contribution to Cartilage Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2449-61. [PMID: 27449198 DOI: 10.1016/j.ajpath.2016.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022]
Abstract
Current description of osteoarthritis includes the involvement of synovial inflammation. Studies contributing to understanding the mechanisms of cross-talk and feedback among the joint tissues could be relevant to the development of therapies that block disease progression. During osteoarthritis, synovial fibroblasts exposed to anomalous mechanical forces and an inflammatory microenvironment release factors such as a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) metalloproteinases that mediate tissue damage and perpetuate inflammation. We therefore studied the production of ADAMTS by synovial fibroblasts and their contribution to cartilage degradation. Moreover, we analyzed the implication of two mediators present in the osteoarthritis joint, IL-1β as proinflammatory cytokine, and 45-kDa fibronectin fragments as products of matrix degradation. We reported that synovial fibroblasts constitutively express and release ADAMTS 4, 5, 7, and 12. Despite the contribution of both mediators to the stimulation of Runx2 and Wnt/β-catenin signaling pathways, as well as to ADAMTS expression, promoting the degradation of aggrecan and cartilage oligomeric matrix protein from cartilage, fibronectin fragments rather than IL-1β played the major pathological role in osteoarthritis, contributing to the maintenance of the disease. Moreover, higher levels of ADAMTS 4 and 7 and a specific regulation of ADAMTS-12 were observed in osteoarthritis, suggesting them as new potential therapeutic targets. Therefore, synovial fibroblasts provide the biochemical tools to the chronicity and destruction of the osteoarthritic joints.
Collapse
Affiliation(s)
- Selene Pérez-García
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Iria V Seoane
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Julián Fernández
- Traumatology Service, Hospital Universitario de La Princesa, Medical Research Institute, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Javier Leceta
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Laura Tío
- Cellular Inflammation and Cartilage Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Raúl Villanueva-Romero
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Yasmina Juarranz
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Rosa P Gomariz
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
39
|
Zhu X, Yang S, Lin W, Wang L, Ying J, Ding Y, Chen X. Roles of Cell Cyle Regulators Cyclin D1, CDK4, and p53 in Knee Osteoarthritis. Genet Test Mol Biomarkers 2016; 20:529-34. [PMID: 27391794 DOI: 10.1089/gtmb.2016.0020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the roles of cyclin D1, CDK4, and p53 in knee osteoarthritis (KOA). METHODS A total of 76 healthy controls and 154 KOA cases (grades ranging from II to IV) were recruited. Protein expression of cyclin D1, CDK4, and p53 were detected by immunohistochemistry, and mRNA expression levels of the cyclin D1, the CDK4, and the p53 genes were measured by reverse transcription-polymerase chain reaction. RESULTS Both protein and mRNA expression levels of cyclin D1 and CDK4 were significantly lower in KOA cases than those in healthy controls, while protein and mRNA expression of p53 was significantly higher in KOA cases than that in healthy controls (all p < 0.05). As the grades of KOA increased, Cyclin D1 and CDK4 mRNA expressions decreased, whereas p53 mRNA expression increased (all p < 0.05). In KOA cases, mRNA expression of Cyclin D1 was positively correlated to CDK4 mRNA levels (r = 0.386, p < 0.001), while negatively correlated with p53 mRNA levels (r = -0.227, p = 0.005). CONCLUSIONS Expression of the Cyclin D1, CDK4, and p53 genes are correlated with the disease grades of KOA.
Collapse
Affiliation(s)
- Xiongbai Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, People's Republic of China
| | - Shengwu Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, People's Republic of China
| | - Wenjun Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, People's Republic of China
| | - Lu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, People's Republic of China
| | - Jinwei Ying
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, People's Republic of China
| | - Yewei Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, People's Republic of China
| | - Xin Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|