1
|
Pettenuzzo S, Berardo A, Belluzzi E, Pozzuoli A, Ruggieri P, Carniel EL, Fontanella CG. Mechanical insights into fat pads: a comparative study of infrapatellar and suprapatellar fat pads in osteoarthritis. Connect Tissue Res 2025:1-12. [PMID: 40340764 DOI: 10.1080/03008207.2025.2502591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common musculoskeletal disorder, primarily affecting knee joints and causing pain and disability. The infrapatellar (IFP) and the suprapatellar (SFP) fat pad are knee adipose tissues that play essential mechanical roles during articular activity but are also sources of adipokines and cytokines, contributing to OA progression. For this reason, this work aims to provide new insights into IFP and SFP implications in knee OA. MATERIALS AND METHODS IFP and SFP tissue mechanical properties were studied through compression, indentation and shear mechanical tests performed on samples collected from patients who underwent total knee arthroplasty surgery due to end-stage OA. The energy loss, peak stress, and initial and final elastic moduli were calculated from the unconfined compression tests. The time-dependent response, evaluated in terms of equilibrium relative stiffness, was computed from stress-relaxation loading conditions. Considering shear tests, they provided strain-energy dissipation density, peak shear stress, and the shear moduli. RESULTS Experimental results showed the typical adipose tissue mechanics features: non-linear stiffening with strain and time-dependent response. Experimental results showed that OA IFP is stiffer than OA SFP, indeed IFP final compression elastic modulus was greater than the SFP (84.43 kPa vs 35.54 kPa respectively) (p = 0.042). Regarding the viscoelastic properties they were comparable: the equilibrium relative stiffness was reported as 0.13 for IFP and 0.11 for SFP (p = 0.026). CONCLUSIONS These outcomes provide new insights into the OA influence on knee mechanics and lay the basis for developing computational tools to improve knee prosthesis design.
Collapse
Affiliation(s)
- Sofia Pettenuzzo
- Department of Civil, Environmental and Architectural Engineering (DICEA), University of Padova, Padova, Italy
| | - Alice Berardo
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Elisa Belluzzi
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
- Department of Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University-Hospital of Padova, Padova, Italy
| | - Assunta Pozzuoli
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
- Department of Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University-Hospital of Padova, Padova, Italy
| | - Pietro Ruggieri
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Department of Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University-Hospital of Padova, Padova, Italy
| | - Emanuele Luigi Carniel
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Chiara Giulia Fontanella
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Stampoultzis T, Guo Y, Pioletti DP. "Heat of the Moment: The Overlooked Key to Cartilage Engineering''. ACS OMEGA 2025; 10:4170-4172. [PMID: 39959054 PMCID: PMC11822688 DOI: 10.1021/acsomega.4c10624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/18/2025]
Abstract
Articular cartilage's limited regenerative capacity is compounded by the overlooked thermomechanical factors critical to its function. Recent studies emphasize the importance of cartilage self-heating, arising predominantly from energy dissipation under physiological loading, in maintaining an optimal environment for chondrocyte activity. This thermal dimension, integral to cartilage homeostasis, is absent in traditional tissue engineering approaches, which may explain their limited success. A deeper integration of thermomechanical cues into regenerative strategies could thus be pivotal for advancing articular cartilage repair. Incorporating thermomechanical cues into regenerative strategies offers a practical pathway to revolutionize cartilage repair and regeneration. By mimicking the physiological environment through dynamic thermal and mechanical stimulation within bioreactors, these approaches hold promise for advancing tissue engineering models and optimizing in vitro culture conditions tailored to the complexities of cartilage regeneration. This Mini-Review aims to highlight the need for a paradigm shift in cartilage regeneration, advocating for approaches that incorporate dynamic thermal and mechanical stimuli to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Theofanis Stampoultzis
- Laboratory
of Biomechanical Orthopedics, Institute of Bioengineering, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Yanheng Guo
- Division
of Oral and Maxillofacial Surgery, Lausanne
University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Dominique P. Pioletti
- Laboratory
of Biomechanical Orthopedics, Institute of Bioengineering, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
3
|
Szarek P, Pierce DM. On the mechanics of networked type II collagen: Experiments, constitutive modeling, and validation. Acta Biomater 2025; 193:267-278. [PMID: 39788306 DOI: 10.1016/j.actbio.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
In this study we investigate the mechanics of type II collagen fibrils, an essential structural component in many load-bearing tissues including cartilage. Although type II collagen plays a crucial role in maintaining tissue integrity, the stress-stretch and failure response of type II collagen fibrils in tension is not established in the current mechanics literature. To address this knowledge gap, we conducted tensile tests on isolated collagen networks from articular cartilage and established a validated constitutive model for type II collagen fibril. We identified two distinct failure mechanisms: one without softening before failure and another with pronounced softening. Our findings reveal that network morphology significantly influences the bulk mechanical response, providing a framework for modeling the complex behavior of collagen fibrils in both healthy and diseased tissues. The validated model enhances the accuracy of finite element models used in analyses of soft tissues and may deepen our understanding of the mechanical progression of diseases like osteoarthritis. Our results offer valuable insights into the mechanics of type II collagen, with implications for improving computational models and for guiding future studies in tissue regeneration and disease treatment.
Collapse
Affiliation(s)
- Phoebe Szarek
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States; School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, Storrs, CT, United States.
| |
Collapse
|
4
|
Chawla D, Thao AK, Eriten M, Henak CR. Articular cartilage fatigue causes frequency-dependent softening and crack extension. J Mech Behav Biomed Mater 2024; 160:106753. [PMID: 39369619 DOI: 10.1016/j.jmbbm.2024.106753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Soft biological polymers, such as articular cartilage, possess exceptional fracture and fatigue resistance, offering inspiration for the development of novel materials. However, we lack a detailed understanding of changes in cartilage material behavior and of crack propagation following cyclic compressive loading. We investigated the structure and mechanical behavior of cartilage as a function of loading frequency and number of cycles. Microcracks were initiated in cartilage samples using microindentation, then cracks were extended under cyclic compression. Thickness, apparent stiffness, energy dissipation, phase angle, and crack length were measured to determine the effects of cyclic loading at two frequencies (1 Hz and 5 Hz). To capture the fatigue-induced material response (thickness, stiffness, energy dissipation, and phase angle), material properties were compared between pre-and-post diagnostic tests. The findings indicate that irreversible structural damage (reduced thickness), cartilage softening (reduced apparent stiffness), and reduced energy dissipation (including phase angle) increased with an increase in the number of cycles. Higher frequency loading resulted in less reduction in energy dissipation, phase angle, and thickness change. Crack lengths, quantified through brightfield imaging, increased with number of cycles and frequency. This study sheds light on the complex response of cartilage under cyclic loading resulting in softening, structural damage, and altered dynamic behavior. The findings provide better understanding of failure mechanisms in cartilage and thus may help in diagnosis and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexandria K Thao
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Stampoultzis T, Guo Y, Nasrollahzadeh N, Karami P, Pioletti DP. Mimicking Loading-Induced Cartilage Self-Heating in Vitro Promotes Matrix Formation in Chondrocyte-Laden Constructs with Different Mechanical Properties. ACS Biomater Sci Eng 2023; 9:651-661. [PMID: 36625682 PMCID: PMC9930743 DOI: 10.1021/acsbiomaterials.2c00723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
Articular cartilage presents a mechanically sensitive tissue. Chondrocytes, the sole cell type residing in the tissue, perceive and react to physical cues as signals that significantly modulate their behavior. Hyaline cartilage is a connective tissue with high dissipative capabilities, able to increase its temperature during daily activities, thus providing a dynamic thermal milieu for the residing chondrocytes. This condition, self-heating, which is still chiefly ignored among the scientific community, adds a new thermal dimension in cartilage mechanobiology. Motivated by the lack of studies exploring this dynamic temperature increase as a potential stimulus in cartilage-engineered constructs, we aimed to elucidate whether loading-induced evolved temperature serves as an independent or complementary regulatory cue for chondrocyte function. In particular, we evaluated the chondrocytes' response to thermal and/or mechanical stimulation in two types of scaffolds exhibiting dissipation levels close to healthy and degenerated articular cartilage. It was found, in both scaffold groups, that the combination of dynamic thermal and mechanical stimuli induced superior effects in the expression of major chondrogenic genes, such as SOX9 and LOXL2, compared to either signal alone. Similar effects were also observed in proteoglycan accumulation over time, along with increased mRNA transcription and synthesis of TRPV4, and for the first time demonstrated in chondrocytes, TREK1 ion channels. Conversely, the chondrogenic response of cells to isolated thermal or mechanical cues was generally scaffold-type dependent. Nonetheless, the significance of thermal stimulus as a chondro-inductive signal was better supported in both studied groups. Our data indicates that the temperature evolution is necessary for chondrocytes to more effectively perceive and translate applied mechanical loading.
Collapse
Affiliation(s)
- Theofanis Stampoultzis
- Laboratory
of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne 1015, Switzerland
| | - Yanheng Guo
- Laboratory
of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne 1015, Switzerland
| | - Naser Nasrollahzadeh
- Laboratory
of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne 1015, Switzerland
| | - Peyman Karami
- Laboratory
of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne 1015, Switzerland
| | - Dominique P. Pioletti
- Laboratory
of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
7
|
Szarek P, Pierce DM. A specialized protocol for mechanical testing of isolated networks of type II collagen. J Mech Behav Biomed Mater 2022; 136:105466. [PMID: 36183667 DOI: 10.1016/j.jmbbm.2022.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
The mechanical responses of most soft biological tissues rely heavily on networks of collagen fibers, thus quantifying the mechanics of both individual collagen fibers and networks of these fibers advances understanding of biological tissues in health and disease. The mechanics of type I collagen are well-studied and quantified. Yet no data exist on the tensile mechanical responses of individual type II collagen fibers nor of isolated networks comprised of type II collagen. We aimed to establish methods to facilitate studies of networked and individual type II collagen fibers within the native networked structure, specifically to establish best practices for isolating and mechanically testing type II collagen networks in tension. We systematically investigated mechanical tests of networks of type II collagen undergoing uniaxial extension, and quantified ranges for each of the important variables to help ensure that the experiment itself does not affect the measured mechanical parameters. Specifically we determined both the specimen (establishing networks of isolated collagen, the footprint and thickness of the specimen) and the mechanical test (both the device and the strain rate) to establish a repeatable and practical protocol. Mechanical testing of isolated networks of type II collagen fibers leveraging this protocol will lead to better understanding of the mechanics both of these networks and of the individual fibers. Such understanding may aid in developing and testing therapeutics, understanding inter-constituent interactions (and their roles in bulk-tissue biomechanics), investigating mechanical/biochemical modifications to networked type II collagen, and proposing, calibrating, and validating constitutive models for finite element analyses.
Collapse
Affiliation(s)
- Phoebe Szarek
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America.
| |
Collapse
|
8
|
Kroupa KR, Wu MI, Zhang J, Jensen M, Wong W, Engiles JB, Schaer TP, Grinstaff MW, Snyder BD, Bergholt MS, Albro MB. Raman needle arthroscopy for in vivo molecular assessment of cartilage. J Orthop Res 2022; 40:1338-1348. [PMID: 34370873 PMCID: PMC9291802 DOI: 10.1002/jor.25155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 02/04/2023]
Abstract
The development of treatments for osteoarthritis (OA) is burdened by the lack of standardized biomarkers of cartilage health that can be applied in clinical trials. We present a novel arthroscopic Raman probe that can "optically biopsy" cartilage and quantify key extracellular matrix (ECM) biomarkers for determining cartilage composition, structure, and material properties in health and disease. Technological and analytical innovations to optimize Raman analysis include (1) multivariate decomposition of cartilage Raman spectra into ECM-constituent-specific biomarkers (glycosaminoglycan [GAG], collagen [COL], water [H2 O] scores), and (2) multiplexed polarized Raman spectroscopy to quantify superficial zone (SZ) COL anisotropy via a partial least squares-discriminant analysis-derived Raman collagen alignment factor (RCAF). Raman measurements were performed on a series of ex vivo cartilage models: (1) chemically GAG-depleted bovine cartilage explants (n = 40), (2) mechanically abraded bovine cartilage explants (n = 30), (3) aging human cartilage explants (n = 14), and (4) anatomical-site-varied ovine osteochondral explants (n = 6). Derived Raman GAG score biomarkers predicted 95%, 66%, and 96% of the variation in GAG content of GAG-depleted bovine explants, human explants, and ovine explants, respectively (p < 0.001). RCAF values were significantly different for explants with abrasion-induced SZ COL loss (p < 0.001). The multivariate linear regression of Raman-derived ECM biomarkers (GAG and H2 O scores) predicted 94% of the variation in elastic modulus of ovine explants (p < 0.001). Finally, we demonstrated the first in vivo Raman arthroscopy assessment of an ovine femoral condyle through intraarticular entry into the synovial capsule. This study advances Raman arthroscopy toward a transformative low-cost, minimally invasive diagnostic platform for objective monitoring of treatment outcomes from emerging OA therapies.
Collapse
Affiliation(s)
- Kimberly R. Kroupa
- Department of Mechanical EngineeringBoston UniversityBostonMassachusettsUSA
| | - Man I Wu
- Department of Mechanical EngineeringBoston UniversityBostonMassachusettsUSA
| | - Juncheng Zhang
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
| | - Magnus Jensen
- Department of Craniofacial Development & Stem Cell BiologyKings CollegeLondonUK
| | - Wei Wong
- Department of Mechanical EngineeringBoston UniversityBostonMassachusettsUSA
| | - Julie B. Engiles
- Department of Pathobiology, New Bolton CenterUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Thomas P. Schaer
- Department of Clinical Studies, New Bolton CenterSchool of Veterinary Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Mark W. Grinstaff
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA,Division of Materials Science & EngineeringBoston UniversityBostonMassachusettsUSA
| | - Brian D. Snyder
- Department of Orthopaedic SurgeryBoston Children's HospitalBostonMassachusettsUSA
| | - Mads S. Bergholt
- Department of Craniofacial Development & Stem Cell BiologyKings CollegeLondonUK
| | - Michael B. Albro
- Department of Mechanical EngineeringBoston UniversityBostonMassachusettsUSA,Division of Materials Science & EngineeringBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
9
|
Gao W, Hasan H, Anderson DE, Lee W. The Role of Mechanically-Activated Ion Channels Piezo1, Piezo2, and TRPV4 in Chondrocyte Mechanotransduction and Mechano-Therapeutics for Osteoarthritis. Front Cell Dev Biol 2022; 10:885224. [PMID: 35602590 PMCID: PMC9114637 DOI: 10.3389/fcell.2022.885224] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mechanical factors play critical roles in the pathogenesis of joint disorders like osteoarthritis (OA), a prevalent progressive degenerative joint disease that causes debilitating pain. Chondrocytes in the cartilage are responsible for extracellular matrix (ECM) turnover, and mechanical stimuli heavily influence cartilage maintenance, degeneration, and regeneration via mechanotransduction of chondrocytes. Thus, understanding the disease-associated mechanotransduction mechanisms can shed light on developing effective therapeutic strategies for OA through targeting mechanotransducers to halt progressive cartilage degeneration. Mechanosensitive Ca2+-permeating channels are robustly expressed in primary articular chondrocytes and trigger force-dependent cartilage remodeling and injury responses. This review discusses the current understanding of the roles of Piezo1, Piezo2, and TRPV4 mechanosensitive ion channels in cartilage health and disease with a highlight on the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA.
Collapse
Affiliation(s)
- Winni Gao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hamza Hasan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Devon E. Anderson
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Whasil Lee
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
10
|
Orozco GA, Tanska P, Gustafsson A, Korhonen RK, Isaksson H. Crack propagation in articular cartilage under cyclic loading using cohesive finite element modeling. J Mech Behav Biomed Mater 2022; 131:105227. [DOI: 10.1016/j.jmbbm.2022.105227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/01/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
|
11
|
Shao H, Yang J, Ma Y, Su X, Tang G, Jiang J, Du J, Liu J. Evaluation of cartilage degeneration using multiparametric quantitative ultrashort echo time-based MRI: an ex vivo study. Quant Imaging Med Surg 2022; 12:1738-1749. [PMID: 35284286 PMCID: PMC8899946 DOI: 10.21037/qims-21-550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/10/2021] [Indexed: 01/26/2024]
Abstract
BACKGROUND The quantitative MR techniques developed rapidly, vary MR-biomarkers have shown the ability to assess the quality of articular cartilage. This study aimed to investigate the diagnostic efficacy of multi-parametric quantitative ultrashort echo time (UTE)-based MRI for evaluating human cartilage degeneration. METHODS Twenty fresh anterolateral femoral condyle samples were obtained from 20 patients (age, 58.8±6.6 years; 6 females) who underwent total knee arthroplasty due to primary osteoarthritis (OA). The samples were imaged using UTE-based magnetization transfer (UTE-MT), UTE-based adiabatic T1ρ (UTE-AdiabT1ρ), UTE-based T2* (UTE-T2*), and CubeQuant-T2 sequences. Cartilage degeneration was classified based on the OA Research Society International grade and polarized light microscopy (PLM) collagen organization score. Spearman's correlation analysis was used to determine the relationships between quantitative MRI biomarkers [UTE-MT ratio (UTE-MTR), UTE-AdiabT1ρ, UTE-T2*, and CubeQuant-T2], OA Research Society International grade, and PLM collagen organization score. The diagnostic efficacy of each MRI biomarker for the detection of mild cartilage degeneration was assessed using the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS Of the quantitative MRI biomarkers, UTE-MTR had the strongest correlation with both OA Research Society International grade (r=-0.709, P<0.001) and PLM collagen organization score (r=0.579, P<0.001). The UTE-MTR and UTE-AdiabT1ρ values showed significant differences between the normal group and the mild degeneration group (P=0.047 and 0.015, respectively), while UTE-T2* and CubeQuant-T2 did not. The UTE-MTR values were 15.90%±1.06% and 14.59%±1.35% for normal and mildly degenerated cartilage, respectively. The UTE-AdiabT1ρ values were 40.19±2.87 and 42.6±2.26 ms for normal and mildly degenerated cartilage, respectively. ROC analysis showed that UTE-MTR (AUC =0.805, P=0.001, sensitivity =73.7%, specificity =89.5%) had the highest diagnostic efficacy for mild cartilage degeneration, while UTE-AdiabT1ρ (AUC =0.727, P=0.017) and CubeQuant-T2 (AUC =0.712, P=0.026) showed lower diagnostic efficacy. CONCLUSIONS Quantitative UTE-MT and UTE-AdiabT1ρ biomarkers may potentially be used in the evaluation of early cartilage degeneration.
Collapse
Affiliation(s)
- Hongda Shao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Xiaolian Su
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjie Jiang
- Department of Orthopedics, People’s Hospital of Jingjiang, Jingjiang, China
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Impact of different physical activity types on knee joint structural degeneration assessed with 3-T MRI in overweight and obese subjects: data from the osteoarthritis initiative. Skeletal Radiol 2021; 50:1427-1440. [PMID: 33404670 PMCID: PMC8122031 DOI: 10.1007/s00256-020-03642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess the impact of different types of physical activity types on longitudinal knee joint structural changes over 48 months in overweight and obese subjects. MATERIALS AND METHODS We included 415 subjects with a BMI ≥ 25 kg/m2, Kellgren-Lawrence scores ≤ 3 at baseline and Whole-Organ Magnetic Resonance Imaging Score (WORMS) scores available from the Osteoarthritis Initiative cohort. Regular self-reported participation in six physical activity types was assessed: ball sports, bicycling, jogging/running, elliptical-trainer, racquet sports, and swimming. Moreover, they were classified into high- and low-impact physical activity groups. Evaluation of structural knee abnormalities was performed using WORMS obtained by two independent observers blinded to the subjects' physical activity and time point. Linear regression models were used to assess the associations between participation in different physical activity types and changes in WORMS. RESULTS No significant differences in epidemiological data were found between the groups except for gender composition, and there were no significant differences in baseline WORMS. In the cohort as a whole and most exercise groups overall WORMS significantly increased during the observational period. Highest increases compared to the remainder of the group were found in the high impact group (increase in WORMS 4.65; [95% CI] [3.94,5.35]; p = 0.040) and the racquet sports group (6.39; [95% CI] [5.13,7.60]; p ≤ 0.001). Subjects using an elliptical-trainer showed the lowest increase in WORMS (- 1.50 [- 0.21, 3.22]; p = 0.002). CONCLUSION Progression of knee joint degeneration was consistently higher in subjects engaging in high-impact and racquet sports while subjects using an elliptical-trainer showed the smallest changes in structural degeneration. This work was presented during the 2020 Radiological Society of North America Annual meeting.
Collapse
|
13
|
Szarek P, Lilledahl MB, Emery NC, Lewis CG, Pierce DM. The zonal evolution of collagen-network morphology quantified in early osteoarthritic grades of human cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100086. [DOI: 10.1016/j.ocarto.2020.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022] Open
|
14
|
Progressive deformation-induced degradation of knee articular cartilage and osteoarthritis. J Biomech 2020; 111:109995. [DOI: 10.1016/j.jbiomech.2020.109995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/28/2020] [Accepted: 08/08/2020] [Indexed: 11/23/2022]
|
15
|
Marshall L, Tarakanova A, Szarek P, Pierce DM. Cartilage and collagen mechanics under large-strain shear within in vivo and at supraphysiogical temperatures. J Mech Behav Biomed Mater 2020; 103:103595. [PMID: 32090923 DOI: 10.1016/j.jmbbm.2019.103595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022]
Abstract
Human joints, particularly those of extremities, experience a significant range of temperatures in vivo. Joint temperature influences the mechanics of both joint and cartilage, and the mechanics of cartilage can affect the temperature of both joint and cartilage. Thermal treatments and tissue repairs, such as thermal chondroplasty, and ex vivo tissue engineering may also expose cartilage to supraphysiological temperatures. Furthermore, although cartilage undergoes principally compressive loads in vivo, shear strain plays a significant role at larger compressive strains. Thus, we aimed to determine whether and how the bulk mechanical responses of cartilage undergoing large-strain shear change (1) within the range of temperatures relevant in vivo, and (2) both during and after supraphysiological thermal treatments. We completed large-strain shear tests (10 and 15%) at four thermal conditions: 24∘C and 40∘C to span the in vivo range, and 70∘C and 24∘C repeated after 70∘C to explore mechanics during and after potential treatments. We calculated the bulk mechanical responses (strain-energy dissipation densities, peak-to-peak shear stresses, and peak-effective shear moduli) as of function of temperature and used statistical methods to probe significant differences. To probe the mechanisms underlying differences we assessed specimens, principally the type II collagen, with imaging (second harmonic generation and transmission electron microscopies, and histology) and assessed the temperature-dependent mechanics of type II collagen molecules within cartilage using steered molecular dynamics simulations. Our results suggest that the bulk mechanical responses of cartilage depend significantly on temperature both within the in vivo range and at supraphysiological temperatures, showing significant reductions in all mechanical measures with increasing temperature. Using imaging and simulations we determined that one underlying mechanism explaining our results may be changes in the molecular deformation profiles of collagen molecules versus temperature, likely compounded at larger length scales. These new insights into the mechanics of cartilage and collagen may suggest new treatment targets for damaged or osteoarthritic cartilage.
Collapse
Affiliation(s)
- Lauren Marshall
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT, 06269, USA
| | - Anna Tarakanova
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT, 06269, USA; Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Phoebe Szarek
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT, 06269, USA; Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA.
| |
Collapse
|
16
|
Maier F, Lewis CG, Pierce DM. Through-thickness patterns of shear strain evolve in early osteoarthritis. Osteoarthritis Cartilage 2019; 27:1382-1391. [PMID: 31121293 DOI: 10.1016/j.joca.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 04/04/2019] [Accepted: 04/27/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Given the structural changes associated with the progression of Osteoarthritis (OA), we hypothesized that patterns of through-thickness, large-strain shear evolve with early-stage OA. We therefore aimed to determine whether and how patterns of shear strains change during early-stage OA to 1) gain insight into the progression of OA by quantifying changes in local deformations; 2) gauge the potential of patterns in shear strain to serve as image-based biomarkers of early-stage OA; and 3) provide high-resolution, through-thickness data for proposing, fitting, and validating constitutive models for cartilage. DESIGN We completed displacement-driven, large-strain shear tests (5, 10, 15%) on 44 specimens of variably advanced osteoarthritic human articular cartilage as determined by both Osteoarthritis Research Society International (OARSI) grade and PLM-CO score. We recorded the through-thickness deformations with a stereo-camera system and processed these data using digital image correlation (DIC) to determine full-thickness patterns of strains and relative zonal recruitments, i.e., the average shear strain in a through-thickness zone weighted by its relative thickness and normalized by the applied strain. RESULTS We observed three general shapes for the curves of averaged through-thickness, Green-Lagrange shear strains during progression of OA. We also observed that during the progression of OA only the deep zone is recruited differently under shear in a statistically significant way. CONCLUSIONS We propose that changes in through-thickness patterns of shear strain could provide sensitive biomarkers for early clinical detection of OA. The relative zonal recruitment of the deep zone decreases with progressing OA (OARSI grade) and microstructural remodeling (PLM-CO score), which do not consistently affect recruitment of the superficial and middle zones.
Collapse
Affiliation(s)
- F Maier
- University of Connecticut, Department of Mechanical Engineering, Storrs, CT, USA
| | - C G Lewis
- Hartford Healthcare, Bone & Joint Institute, Hartford, CT, USA
| | - D M Pierce
- University of Connecticut, Department of Mechanical Engineering, Storrs, CT, USA; University of Connecticut, Department of Biomedical Engineering, Storrs, CT, USA.
| |
Collapse
|