1
|
Xu T, Rao J, Mo Y, Lam ACH, Yang Y, Wong SWF, Wong KH, Zhao X. 3D printing in musculoskeletal interface engineering: Current progress and future directions. Adv Drug Deliv Rev 2025; 219:115552. [PMID: 40032068 DOI: 10.1016/j.addr.2025.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The musculoskeletal system relies on critical tissue interfaces for its function; however, these interfaces are often compromised by injuries and diseases. Restoration of these interfaces is complex by nature which renders traditional treatments inadequate. An emerging solution is three-dimensional printing, which allows for precise fabrication of biomimetic scaffolds to enhance tissue regeneration. This review summarizes the use of 3D printing in creating scaffolds for musculoskeletal interfaces, mainly focusing on advanced techniques such as multi-material printing, bioprinting, and 4D printing. We emphasize the significance of mimicking natural tissue gradients and the selection of appropriate biomaterials to ensure scaffold success. The review outlines state-of-the-art 3D printing technologies, varying from extrusion, inkjet and laser-assisted bioprinting, which are crucial for producing scaffolds with tailored mechanical and biological properties. Applications in cartilage-bone, intervertebral disc, tendon/ligament-bone, and muscle-tendon junction engineering are discussed, highlighting the potential for improved integration and functionality. Furthermore, we address challenges in material development, printing resolution, and the in vivo performance of scaffolds, as well as the prospects for clinical translation. The review concludes by underscoring the transformative potential of 3D printing to advance orthopedic medicine, offering a roadmap for future research at the intersection of biomaterials, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Tianpeng Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Jingdong Rao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Yongyi Mo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Avery Chik-Him Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Sidney Wing-Fai Wong
- Industrial Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Sopilidis A, Stamatopoulos V, Giannatos V, Taraviras G, Panagopoulos A, Taraviras S. Integrating Modern Technologies into Traditional Anterior Cruciate Ligament Tissue Engineering. Bioengineering (Basel) 2025; 12:39. [PMID: 39851313 PMCID: PMC11762506 DOI: 10.3390/bioengineering12010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
The anterior cruciate ligament (ACL) is one of the most injured ligaments, with approximately 100,000 ACL reconstructions taking place annually in the United States. In order to successfully manage ACL rupture, it is of the utmost importance to understand the anatomy, unique physiology, and biomechanics of the ACL, as well as the injury mechanisms and healing capacity. Currently, the "gold standard" for the treatment of ACL ruptures is surgical reconstruction, particularly for young patients or athletes expecting to return to pivoting sports. Although ACL reconstruction boasts a high success rate, patients may face different, serious post-operative complications, depending on the type of graft and technique used in each one of them. Tissue engineering is a multidisciplinary field that could contribute to the formation of a tissue-engineered ACL graft manufactured by a combination of the appropriate stem-cell type, a suitable scaffold, and specific growth factors, combined with mechanical stimuli. In this review, we discuss the aspects that constitute the creation of a successful tissue-engineered graft while also underlining the current drawbacks that arise for each issue. Finally, we highlight the benefits of incorporating new technologies like artificial intelligence and machine learning that could revolutionize tissue engineering.
Collapse
Affiliation(s)
- Aris Sopilidis
- Department of Physiology, School of Medicine, University of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (A.S.); (V.S.); (G.T.)
| | - Vasileios Stamatopoulos
- Department of Physiology, School of Medicine, University of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (A.S.); (V.S.); (G.T.)
| | - Vasileios Giannatos
- Department of Orthopedics and Traumatology, Sports Medicine Department, University Hospital of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (V.G.); (A.P.)
| | - Georgios Taraviras
- Department of Physiology, School of Medicine, University of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (A.S.); (V.S.); (G.T.)
| | - Andreas Panagopoulos
- Department of Orthopedics and Traumatology, Sports Medicine Department, University Hospital of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (V.G.); (A.P.)
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Asklepiou Street 1, Rio, 26504 Patras, Greece; (A.S.); (V.S.); (G.T.)
| |
Collapse
|
3
|
DeFoor MT, Cognetti DJ, Yuan TT, Sheean AJ. Treatment of Tendon Injuries in the Servicemember Population across the Spectrum of Pathology: From Exosomes to Bioinductive Scaffolds. Bioengineering (Basel) 2024; 11:158. [PMID: 38391644 PMCID: PMC10886250 DOI: 10.3390/bioengineering11020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Tendon injuries in military servicemembers are one of the most commonly treated nonbattle musculoskeletal injuries (NBMSKIs). Commonly the result of demanding physical training, repetitive loading, and frequent exposures to austere conditions, tendon injuries represent a conspicuous threat to operational readiness. Tendon healing involves a complex sequence between stages of inflammation, proliferation, and remodeling cycles, but the regenerated tissue can be biomechanically inferior to the native tendon. Chemical and mechanical signaling pathways aid tendon healing by employing growth factors, cytokines, and inflammatory responses. Exosome-based therapy, particularly using adipose-derived stem cells (ASCs), offers a prominent cell-free treatment, promoting tendon repair and altering mRNA expression. However, each of these approaches is not without limitations. Future advances in tendon tissue engineering involving magnetic stimulation and gene therapy offer non-invasive, targeted approaches for improved tissue engineering. Ongoing research aims to translate these therapies into effective clinical solutions capable of maximizing operational readiness and warfighter lethality.
Collapse
Affiliation(s)
- Mikalyn T DeFoor
- San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| | - Daniel J Cognetti
- San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| | - Tony T Yuan
- Advanced Exposures Diagnostics, Interventions and Biosecurity Group, 59 Medical Wing, Lackland Air Force Base, San Antonio, TX 78236, USA
- Center for Biotechnology (4D Bio3), Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Andrew J Sheean
- San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
4
|
Silva M, Gomes S, Correia C, Peixoto D, Vinhas A, Rodrigues MT, Gomes ME, Covas JA, Paiva MC, Alves NM. Biocompatible 3D-Printed Tendon/Ligament Scaffolds Based on Polylactic Acid/Graphite Nanoplatelet Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2518. [PMID: 37764548 PMCID: PMC10536374 DOI: 10.3390/nano13182518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Three-dimensional (3D) printing technology has become a popular tool to produce complex structures. It has great potential in the regenerative medicine field to produce customizable and reproducible scaffolds with high control of dimensions and porosity. This study was focused on the investigation of new biocompatible and biodegradable 3D-printed scaffolds with suitable mechanical properties to assist tendon and ligament regeneration. Polylactic acid (PLA) scaffolds were reinforced with 0.5 wt.% of functionalized graphite nanoplatelets decorated with silver nanoparticles ((f-EG)+Ag). The functionalization of graphene was carried out to strengthen the interface with the polymer. (f-EG)+Ag exhibited antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), an important feature for the healing process and prevention of bacterial infections. The scaffolds' structure, biodegradation, and mechanical properties were assessed to confirm their suitability for tendon and ligamentregeneration. All scaffolds exhibited surface nanoroughness created during printing, which was increased by the filler presence. The wet state dynamic mechanical analysis proved that the incorporation of reinforcement led to an increase in the storage modulus, compared with neat PLA. The cytotoxicity assays using L929 fibroblasts showed that the scaffolds were biocompatible. The PLA+[(f-EG)+Ag] scaffolds were also loaded with human tendon-derived cells and showed their capability to maintain the tenogenic commitment with an increase in the gene expression of specific tendon/ligament-related markers. The results demonstrate the potential application of these new 3D-printed nanocomposite scaffolds for tendon and ligament regeneration.
Collapse
Affiliation(s)
- Magda Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (S.G.); (J.A.C.); (M.C.P.)
| | - Susana Gomes
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (S.G.); (J.A.C.); (M.C.P.)
| | - Cátia Correia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Daniela Peixoto
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Adriana Vinhas
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Márcia T. Rodrigues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - José A. Covas
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (S.G.); (J.A.C.); (M.C.P.)
| | - Maria C. Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (S.G.); (J.A.C.); (M.C.P.)
| | - Natália M. Alves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Guimarães, Portugal; (M.S.); (C.C.); (D.P.); (A.V.); (M.T.R.); (M.E.G.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| |
Collapse
|
5
|
Solis-Cordova J, Edwards JH, Fermor HL, Riches P, Brockett CL, Herbert A. Characterisation of native and decellularised porcine tendon under tension and compression: A closer look at glycosaminoglycan contribution to tendon mechanics. J Mech Behav Biomed Mater 2023; 139:105671. [PMID: 36682172 DOI: 10.1016/j.jmbbm.2023.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Decellularised porcine superflexor tendon (pSFT) has been characterised as a suitable scaffold for anterior cruciate ligament replacement, with dimensions similar to hamstring tendon autograft. However, decellularisation of tissues may reduce or damage extracellular matrix components, leading to undesirable biomechanical changes at a whole tissue scale. Although the role of collagen in tendons is well established, the mechanical contribution of glycosaminoglycans (GAGs) is less evident and could be altered by the decellularisation process. In this study, the contribution of GAGs to the tensile and compressive mechanical properties of pSFT was determined and whether decellularisation affected these properties by reducing GAG content or functionality. PSFTs were either enzymatically treated using chondroitinase ABC to remove GAGs or decellularised using previously established methods. Native, GAG-depleted and decellularised pSFT groups were then subjected to quantitative assays and biomechanical characterisation. In tension, specimens underwent stress relaxation and strength testing. In compression, specimens underwent confined compression testing. The GAG-depleted group was found to have circa 86% reduction of GAG content compared to native and decellularised groups. There was no significant difference in GAG content between native (3.75 ± 0.58 μg/mg) and decellularised (3.40 ± 0.37 μg/mg) groups. Stress relaxation testing discovered the time-independent and time-dependent relaxation moduli of the decellularised group were reduced ≥50% compared to native and GAG-depleted groups. However, viscoelastic behaviour of native and GAG-depleted groups resulted similar. Strength testing discovered no differences between native and GAG-depleted group's properties, albeit a reduction ∼20% for decellularised specimens' linear modulus and tensile strength compared to native tissue. In compression testing, the aggregate modulus was found to be circa 74% lower in the GAG-depleted group than the native and decellularised groups, while the zero-strain permeability was significantly higher in the GAG-depleted group (0.86 ± 0.65 mm4/N) than the decellularised group (0.03 ± 0.04 mm4/N). The results indicate that GAGs may significantly contribute to the mechanical properties of pSFT in compression, but not in tension. Furthermore, the content and function of GAGs in pSFTs are unaffected by decellularisation and the mechanical properties of the tissue remain comparable to native tissue.
Collapse
Affiliation(s)
- Jacqueline Solis-Cordova
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Institute of Medical and Biological Engineering, School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.
| | - Jennifer H Edwards
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hazel L Fermor
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Philip Riches
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Wolfson Centre, Glasgow, United Kingdom
| | - Claire L Brockett
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Anthony Herbert
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Kokozidou M, Gögele C, Pirrung F, Hammer N, Werner C, Kohl B, Hahn J, Breier A, Schröpfer M, Meyer M, Schulze-Tanzil G. In vivo ligamentogenesis in embroidered poly(lactic-co-ε-caprolactone) / polylactic acid scaffolds functionalized by fluorination and hexamethylene diisocyanate cross-linked collagen foams. Histochem Cell Biol 2023; 159:275-292. [PMID: 36309635 PMCID: PMC10006054 DOI: 10.1007/s00418-022-02156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Although autografts represent the gold standard for anterior cruciate ligament (ACL) reconstruction, tissue-engineered ACLs provide a prospect to minimize donor site morbidity and limited graft availability. This study characterizes the ligamentogenesis in embroidered poly(L-lactide-co-ε-caprolactone) (P(LA-CL)) / polylactic acid (PLA) constructs using a dynamic nude mice xenograft model. (P(LA-CL))/PLA scaffolds remained either untreated (co) or were functionalized by gas fluorination (F), collagen foam cross-linked with hexamethylene diisocyanate (HMDI) (coll), or F combined with the foam (F + coll). Cell-free constructs or those seeded for 1 week with lapine ACL ligamentocytes were implanted into nude mice for 12 weeks. Following explantation, cell vitality and content, histo(patho)logy of scaffolds (including organs: liver, kidney, spleen), sulphated glycosaminoglycan (sGAG) contents and biomechanical properties were assessed.Scaffolds did not affect mice weight development and organs, indicating no organ toxicity. Moreover, scaffolds maintained their size and shape and reflected a high cell viability prior to and following implantation. Coll or F + coll scaffolds seeded with cells yielded superior macroscopic properties compared to the controls. Mild signs of inflammation (foreign-body giant cells and hyperemia) were limited to scaffolds without collagen. Microscopical score values and sGAG content did not differ significantly. Although remaining stable after explantation, elastic modulus, maximum force, tensile strength and strain at Fmax were significantly lower in explanted scaffolds compared to those before implantation, with no significant differences between scaffold subtypes, except for a higher maximum force in F + coll compared with F samples (in vivo). Scaffold functionalization with fluorinated collagen foam provides a promising approach for ACL tissue engineering. a Lapine anterior cruciate ligament (LACL): red arrow, posterior cruciate ligament: yellow arrow. Medial anterior meniscotibial ligament: black arrow. b Explant culture to isolate LACL fibroblasts. c Scaffold variants: co: controls; F: functionalization by gas-phase fluorination; coll: collagen foam cross-linked with hexamethylene diisocyanate (HMDI). c1-2 Embroidery pattern of the scaffolds. d Scaffolds were seeded with LACL fibroblasts using a dynamical culturing approach as depicted. e Scaffolds were implanted subnuchally into nude mice, fixed at the nuchal ligament and sacrospinal muscle tendons. f Two weeks after implantation. g Summary of analyses performed. Scale bars 1 cm (b, d), 0.5 cm (c). (sketches drawn by G.S.-T. using Krita 4.1.7 [Krita foundation, The Netherlands]).
Collapse
Affiliation(s)
- Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.,Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Felix Pirrung
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Straße 44, 01187, Dresden, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Judith Hahn
- Workgroup Bio-Engineering, Department Materials Engineering, Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Institute Polymers Materials, Hohe Straße 6, 01069, Dresden, Germany
| | - Annette Breier
- Workgroup Bio-Engineering, Department Materials Engineering, Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Institute Polymers Materials, Hohe Straße 6, 01069, Dresden, Germany
| | - Michaela Schröpfer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599, Freiberg, Germany
| | - Michael Meyer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599, Freiberg, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.
| |
Collapse
|
7
|
In focus in HCB. Histochem Cell Biol 2023; 159:221-224. [PMID: 36877266 DOI: 10.1007/s00418-023-02184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Khamplod T, Winterburn JB, Cartmell SH. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds - a step towards ligament repair applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:895-910. [PMID: 36570876 PMCID: PMC9769142 DOI: 10.1080/14686996.2022.2149034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
The incidence of anterior cruciate ligament (ACL) ruptures is approximately 50 per 100,000 people. ACL rupture repair methods that offer better biomechanics have the potential to reduce long term osteoarthritis. To improve ACL regeneration biomechanically similar, biocompatible and biodegradable tissue scaffolds are required. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with high 3-hydroxyvalerate (3HV) content, based scaffold materials have been developed, with the advantages of traditional tissue engineering scaffolds combined with attractive mechanical properties, e.g., elasticity and biodegradability. PHBV with 3HV fractions of 0 to 100 mol% were produced in a controlled manner allowing specific compositions to be targeted, giving control over material properties. In conjunction electrospinning conditions were altered, to manipulate the degree of fibre alignment, with increasing collector rotating speed used to obtain random and aligned PHBV fibres. The PHBV based materials produced were characterised, with mechanical properties, thermal properties and surface morphology being studied. An electrospun PHBV fibre mat with 50 mol% 3HV content shows a significant increase in elasticity compared to those with lower 3HV content and could be fabricated into aligned fibres. Biocompatibility testing with L929 fibroblasts demonstrates good cell viability, with the aligned fibre network promoting fibroblast alignment in the axial fibre direction, desirable for ACL repair applications. Dynamic load testing shows that the 50 mol% 3HV PHBV material produced can withstand cyclic loading with reasonable resilience. Electrospun PHBV can be produced with low batch variability and tailored, application specific properties, giving these biomaterials promise in tissue scaffold applications where aligned fibre networks are desired, such as ACL regeneration. .
Collapse
Affiliation(s)
- Thammarit Khamplod
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
- Henry Royce Institute, The University of Manchester, Manchester, UK
| | - James B. Winterburn
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Sarah H. Cartmell
- Henry Royce Institute, The University of Manchester, Manchester, UK
- Department of Materials Science, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Karathanasopoulos N, Al-Ketan O. Towards biomimetic, lattice-based, tendon and ligament metamaterial designs. J Mech Behav Biomed Mater 2022; 134:105412. [PMID: 35988525 DOI: 10.1016/j.jmbbm.2022.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
The engineering of tendon and ligament tissue biocompatible restoration materials constitutes a long-standing engineering challenge, from the chemical, biological and mechanical compatibility analysis and design perspective. Their mechanics are inherently anisotropic, exceeding the potential limits of common, non-architected engineering materials. In the current contribution, the design of advanced material or "metamaterial" architectures that can emulate the mechanical properties observed in native tendon and ligament tissues is analytically, experimentally, and numerically investigated. To that scope, anisotropic metamaterial designs that are based on rectangular cuboid architectures with and without inner body-centered strengthening cores are considered. Thereupon, the metamaterial design specifications required for the approximation of the highly anisotropic tissue performance, namely of the characteristic normal, shear and Poisson's ratio attributes are studied. It is shown that certain strengthened, anisotropic body-centered cuboid lattice architectures allow for substantial effective metamaterial stiffness along the primal tissue loading direction, upon a rather low shear loading resistance. The previous mechanical attributes come along with Poisson's ratio values well above unity and moderate relative density values, furnishing a combination of material characteristics that is highly desirable in restoration praxis. The analytically and numerically guided anisotropic metamaterial performance is experimentally reproduced both for the case of uniaxial and shear loads, using a microfabrication stereolithography additive manufacturing technique. The obtained scanning electron microscopy images highlight the fabrication feasibility of the identified metamaterial architectures, in scales that are directly comparable with the ones reported for the natural tissues, having feature sizes in the range of some 10ths of micrometers and elastic attributes within the range of clinical observation.
Collapse
Affiliation(s)
- N Karathanasopoulos
- New York University, Department of Engineering, Abu Dhabi Campus, United Arab Emirates; Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Oraib Al-Ketan
- New York University, Department of Engineering, Abu Dhabi Campus, United Arab Emirates
| |
Collapse
|
10
|
Pitta Kruize C, Panahkhahi S, Putra NE, Diaz-Payno P, van Osch G, Zadpoor AA, Mirzaali MJ. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces. ACS Biomater Sci Eng 2021. [PMID: 34784181 DOI: 10.1021/acsbiomaterials.1c00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone-to-soft tissue interfaces are responsible for transferring loads between tissues with significantly dissimilar material properties. The examples of connective soft tissues are ligaments, tendons, and cartilages. Such natural tissue interfaces have unique microstructural properties and characteristics which avoid the abrupt transitions between two tissues and prevent formation of stress concentration at their connections. Here, we review some of the important characteristics of these natural interfaces. The native bone-to-soft tissue interfaces consist of several hierarchical levels which are formed in a highly specialized anisotropic fashion and are composed of different types of heterogeneously distributed cells. The characteristics of a natural interface can rely on two main design principles, namely by changing the local microarchitectural features (e.g., complex cell arrangements, and introducing interlocking mechanisms at the interfaces through various geometrical designs) and changing the local chemical compositions (e.g., a smooth and gradual transition in the level of mineralization). Implementing such design principles appears to be a promising approach that can be used in the design, reconstruction, and regeneration of engineered biomimetic tissue interfaces. Furthermore, prominent fabrication techniques such as additive manufacturing (AM) including 3D printing and electrospinning can be used to ease these implementation processes. Biomimetic interfaces have several biological applications, for example, to create synthetic scaffolds for osteochondral tissue repair.
Collapse
Affiliation(s)
- Carlos Pitta Kruize
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Sara Panahkhahi
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Niko Eka Putra
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Pedro Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Gerjo van Osch
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
11
|
Abstract
In tissue engineering, scaffolds should provide the topological and physical cues as native tissues to guide cell adhesion, growth, migration, and differentiation. Fibrous structure is commonly present in human musculoskeletal tissues, including muscles, tendons, ligaments, and cartilage. Biomimetic fibrous scaffolds are thus critical for musculoskeletal tissue engineering. Electrospinning is a versatile technique for fabricating nanofibers from a variety of biomaterials. However, conventional electrospinning can only generate 2D nanofiber mats. Postprocessing methods are often needed to create 3D electrospun nanofiber scaffolds. In this chapter, we present two novel electrospinning-based scaffold fabrication techniques, which can generate 3D nanofiber scaffolds in one-station process: divergence electrospinning and hybrid 3D printing with parallel electrospinning. These techniques can be applied for engineering tissues with aligned fiber structures.
Collapse
|
12
|
The Role of Scaffolds in Tendon Tissue Engineering. J Funct Biomater 2020; 11:jfb11040078. [PMID: 33139620 PMCID: PMC7712651 DOI: 10.3390/jfb11040078] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Tendons are unique forms of connective tissue aiming to transmit the mechanical force of muscle contraction to the bones. Tendon injury may be due to direct trauma or might be secondary to overuse injury and age-related degeneration, leading to inflammation, weakening and subsequent rupture. Current traditional treatment strategies focus on pain relief, reduction of the inflammation and functional restoration. Tendon repair surgery can be performed in people with tendon injuries to restore the tendon's function, with re-rupture being the main potential complication. Novel therapeutic approaches that address the underlying pathology of the disease is warranted. Scaffolds represent a promising solution to the challenges associated with tendon tissue engineering. The ideal scaffold for tendon tissue engineering needs to exhibit physiologically relevant mechanical properties and to facilitate functional graft integration by promoting the regeneration of the native tissue.
Collapse
|
13
|
Pitaru AA, Lacombe JG, Cooke ME, Beckman L, Steffen T, Weber MH, Martineau PA, Rosenzweig DH. Investigating Commercial Filaments for 3D Printing of Stiff and Elastic Constructs with Ligament-Like Mechanics. MICROMACHINES 2020; 11:mi11090846. [PMID: 32933035 PMCID: PMC7570386 DOI: 10.3390/mi11090846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
The current gold standard technique for treatment of anterior cruciate ligament (ACL) injury is reconstruction with autograft. These treatments have a relatively high failure and re-tear rate. To overcome this, tissue engineering and additive manufacturing are being used to explore the potential of 3D scaffolds as autograft substitutes. However, mechanically optimal polymers for this have yet to be identified. Here, we use 3D printing technology and various materials with the aim of fabricating constructs better matching the mechanical properties of the native ACL. A fused deposition modeling (FDM) 3D printer was used to microfabricate dog bone-shaped specimens from six different polymers—PLA, PETG, Lay FOMM 60, NinjaFlex, NinjaFlex-SemiFlex, and FlexiFil—at three different raster angles. The tensile mechanical properties of these polymers were determined from stress–strain curves. Our results indicate that no single material came close enough to successfully match reported mechanical properties of the native ACL. However, PLA and PETG had similar ultimate tensile strengths. Lay FOMM 60 displayed a percentage strain at failure similar to reported values for native ACL. Furthermore, raster angle had a significant impact on some mechanical properties for all of the materials except for FlexiFil. We therefore conclude that while none of these materials alone is optimal for mimicking ACL mechanical properties, there may be potential for creating a 3D-printed composite constructs to match ACL mechanical properties. Further investigations involving co-printing of stiff and elastomeric materials must be explored.
Collapse
Affiliation(s)
- Audrey A. Pitaru
- Division of Orthopaedic Surgery, McGill University, Montreal, QC H3A 1A1, Canada; (A.A.P.); (J.-G.L.); (M.E.K.); (M.H.W.); (P.A.M.)
- Department of Experimental Surgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jean-Gabriel Lacombe
- Division of Orthopaedic Surgery, McGill University, Montreal, QC H3A 1A1, Canada; (A.A.P.); (J.-G.L.); (M.E.K.); (M.H.W.); (P.A.M.)
- Department of Experimental Surgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Megan E. Cooke
- Division of Orthopaedic Surgery, McGill University, Montreal, QC H3A 1A1, Canada; (A.A.P.); (J.-G.L.); (M.E.K.); (M.H.W.); (P.A.M.)
- Department of Experimental Surgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Lorne Beckman
- The Orthopaedics Research Lab, McGill University, Montreal, QC H3A 1A1, Canada; (L.B.); (T.S.)
| | - Thomas Steffen
- The Orthopaedics Research Lab, McGill University, Montreal, QC H3A 1A1, Canada; (L.B.); (T.S.)
| | - Michael H. Weber
- Division of Orthopaedic Surgery, McGill University, Montreal, QC H3A 1A1, Canada; (A.A.P.); (J.-G.L.); (M.E.K.); (M.H.W.); (P.A.M.)
- Department of Experimental Surgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Paul A. Martineau
- Division of Orthopaedic Surgery, McGill University, Montreal, QC H3A 1A1, Canada; (A.A.P.); (J.-G.L.); (M.E.K.); (M.H.W.); (P.A.M.)
- Department of Experimental Surgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Derek H. Rosenzweig
- Division of Orthopaedic Surgery, McGill University, Montreal, QC H3A 1A1, Canada; (A.A.P.); (J.-G.L.); (M.E.K.); (M.H.W.); (P.A.M.)
- Department of Experimental Surgery, McGill University, Montreal, QC H3A 1A1, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montreal, QC H3A 1A1, Canada
- Correspondence: ; Tel.: +01-514-934-1934 (ext. 43238)
| |
Collapse
|