1
|
Carstens M, Martínez-Cerrato J, Garcia L, Rivera B, Bertram K. Safety of adipose-derived stromal vascular fraction cells to treat Parkinson's disease. Parkinsonism Relat Disord 2025; 132:107214. [PMID: 39658493 DOI: 10.1016/j.parkreldis.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Neuroinflammation is a significant correlate of Parkinson's Disease (PD), with positron emission tomography showing microglial activation early in the PD process and post-mortem tissue containing reactive microglia. Adipose-derived (AD) stromal vascular fraction (SVF) cells have been shown to respond to pro-inflammatory conditions with secretion of anti-inflammatory paracrine factors. This pilot clinical trial was to examine the safety and clinical response using autologous ADSVF to treat PD. Nine PD subjects had baseline neurological exams and Parkinson's Disease Questionnaire 39 (PDQ-39) and "off-medication" Movement Disorder Society (MDS) - Unified Parkinson's Disease Rating Scale (UPDRS) Part III assessments. Each subject had a liposuction procedure; the lipoaspirate was then processed via enzymatic digestion to yield SVF. All subjects were treated with a total dose of 30 million autologous SVF cells injected in the forehead and maxillary regions. Subjects were followed at 1-, 3-, 6-, 12-, and 24-months for safety and potential clinical improvement. There were no SVF intervention-related serious adverse events. PDQ-39 scores at 12-months and 24-months were improved in 6 of 9 subjects evaluable and 4 of 7 subjects evaluable, respectfully. Scores were stable in 1 subject and worse in 2 subjects. MDS-UPDRS Part III scores were improved at 24, months in 3 evaluable subjects and were stable in 2 subjects. One subject required increased dopaminergic medication for increased tremor (disease progression). Autologous ADSVF via facial injections to treat PD was safe, showed evidence of clinical improvement at 12 and 24 months and should be further evaluated in a Phase II placebo-controlled clinical trial.
Collapse
Affiliation(s)
- Michael Carstens
- Department of Surgery, Hospital Esucela Oscar Danilo Rosales Argüello, León, Nicaragua; Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Jorge Martínez-Cerrato
- Department of Medicine, Division of Neurology, Hospital Vivian Pellas - Managua, Nicaragua
| | - Luis Garcia
- Department of Medicine, Division of Neurology, Hospital Vivian Pellas - Managua, Nicaragua
| | - Bayron Rivera
- Department of Medicine, Division of Neurology, Hospital Esucela Oscar Danilo Rosales Argüello, León, Nicaragua
| | - Kenneth Bertram
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Fasano A, Matteoli M. Just a fat joke? Time will tell. Parkinsonism Relat Disord 2025; 132:107298. [PMID: 39880739 DOI: 10.1016/j.parkreldis.2025.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Affiliation(s)
- Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy.
| | - Michela Matteoli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| |
Collapse
|
3
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
4
|
Vij R, Kim H, Park H, Cheng T, Lotfi D, Chang D. Safety and efficacy of adipose-derived mesenchymal stem cell therapy in elderly Parkinson's disease patients: an intermediate-size expanded access program. Cytotherapy 2025; 27:181-187. [PMID: 39425736 DOI: 10.1016/j.jcyt.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE This intermediate-size expanded access program aimed to evaluate safety and clinical efficacy of multiple intravenous infusions of autologous, Hope Biosciences adipose-derived mesenchymal stem cell (HB-adMSC) therapy in elderly patients with Parkinson's disease (PD). METHODS Ten eligible participants (aged 76-95 years) received six intravenous infusions each with 200MM autologous HB-adMSCs over 18 weeks, with the end of study (EOS) at week 26. Safety was assessed through adverse events (AEs) and serious adverse events (SAEs). Efficacy was measured through improvements in both motor and non-motor symptoms, utilizing scales including Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts I-IV, Parkinson's Disease Questionnaire-39 (PDQ-39), Parkinson's disease Fatigue Scale (PFS-16), Patient Health Questionnaire-9 (PHQ-9), and Visual Analog Scale (VAS). Analysis employed paired t-tests and Minimal Clinically Important Difference (MCID) thresholds for the patient-reported outcomes. RESULTS Most AEs (37 out of 46) were mild in severity, with 5 SAEs reported, none attributed to the drug. No deaths occurred. Despite lack of statistical significance across the efficacy endpoints, modest yet clinically meaningful improvements with effect size > 0.3 were observed in several secondary efficacy endpoints (MDS-UPDRS part I & III, PDQ-39, and PHQ-9) at the EOS, nearing or surpassing the established MCID values. CONCLUSIONS The administration of autologous 200MM HB-adMSCs was found to be safe and well-tolerated in the elderly PD population. Although not achieving statistical significance, modest clinical improvements were noted across multiple secondary endpoints. These findings underscore the safety profile of the treatment in elderly patients and highlight the importance of evaluating clinical relevance alongside statistical measures for meaningful patient outcomes. Further investigation with a larger, randomized, placebo-controlled design is warranted to validate these observations.
Collapse
Affiliation(s)
- Ridhima Vij
- Hope Biosciences Research Foundation, Sugar Land, Texas, USA.
| | - Hosu Kim
- Hope Biosciences, Sugar Land, Texas, USA
| | | | - Thanh Cheng
- Hope Biosciences Research Foundation, Sugar Land, Texas, USA
| | - Djamchid Lotfi
- Hope Biosciences Research Foundation, Sugar Land, Texas, USA
| | - Donna Chang
- Hope Biosciences Research Foundation, Sugar Land, Texas, USA; Hope Biosciences, Sugar Land, Texas, USA
| |
Collapse
|
5
|
Park JM, Rahmati M, Lee SC, Shin JI, Kim YW. Effects of mesenchymal stem cell on dopaminergic neurons, motor and memory functions in animal models of Parkinson's disease: a systematic review and meta-analysis. Neural Regen Res 2024; 19:1584-1592. [PMID: 38051903 PMCID: PMC10883506 DOI: 10.4103/1673-5374.387976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, and although restoring striatal dopamine levels may improve symptoms, no treatment can cure or reverse the disease itself. Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson's disease. Mesenchymal stem cells are considered a promising option due to fewer ethical concerns, a lower risk of immune rejection, and a lower risk of teratogenicity. We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function, memory, and preservation of dopaminergic neurons in a Parkinson's disease animal model. We searched bibliographic databases (PubMed/MEDLINE, Embase, CENTRAL, Scopus, and Web of Science) to identify articles and included only peer-reviewed in vivo interventional animal studies published in any language through June 28, 2023. The study utilized the random-effect model to estimate the 95% confidence intervals (CI) of the standard mean differences (SMD) between the treatment and control groups. We use the systematic review center for laboratory animal experimentation's risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment. A total of 33 studies with data from 840 Parkinson's disease model animals were included in the meta-analysis. Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test. Among the stem cell types, the bone marrow MSCs with neurotrophic factor group showed largest effect size (SMD [95% CI] = -6.21 [-9.50 to -2.93], P = 0.0001, I2 = 0.0 %). The stem cell treatment group had significantly more tyrosine hydroxylase positive dopaminergic neurons in the striatum ([95% CI] = 1.04 [0.59 to 1.49], P = 0.0001, I2 = 65.1 %) and substantia nigra (SMD [95% CI] = 1.38 [0.89 to 1.87], P = 0.0001, I2 = 75.3 %), indicating a protective effect on dopaminergic neurons. Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route (SMD [95% CI] = -2.59 [-3.25 to -1.94], P = 0.0001, I2 = 74.4 %). The memory test showed significant improvement only in the intravenous route (SMD [95% CI] = 4.80 [1.84 to 7.76], P = 0.027, I2 = 79.6 %). Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson's disease. Further research is required to determine the optimal stem cell types, modifications, transplanted cell numbers, and delivery methods for these protocols.
Collapse
Affiliation(s)
- Jong Mi Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Patel GD, Liu L, Li A, Yang YH, Shen CC, Brand-Saberi B, Yang X. Mesenchymal stem cell-based therapies for treating well-studied neurological disorders: a systematic review. Front Med (Lausanne) 2024; 11:1361723. [PMID: 38601118 PMCID: PMC11004389 DOI: 10.3389/fmed.2024.1361723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Background Millions of people across the globe are affected by conditions like Amyotrophic Lateral Sclerosis (ALS), Parkinson's Disease (PD), Multiple Sclerosis (MS), Spinal Cord Injury (SCI), and Traumatic Brain Injury (TBI), although most occurrences are common in the elderly population. This systematic review aims to highlight the safety of the procedures, their tolerability, and efficacy of the available therapies conducted over the years using mesenchymal stem cells (MSCs) in treating the neurological conditions mentioned above. Methods PubMed was used to search for published data from clinical trials performed using mesenchymal stem cells. Studies that provided the necessary information that mentioned the efficacy and adverse effects of the treatment in patients were considered for this review. Results In total, 43 manuscripts were selected after a strategic search, and these studies have been included in this systematic review. Most included studies reported the safety of the procedures used and the treatment's good tolerability, with mild adverse events such as fever, headache, mild pain at the injection site, or nausea being common. A few studies also reported death of some patients, attributed to the progression of the disease to severe stages before the treatment. Other severe events, such as respiratory or urinary infections reported in some studies, were not related to the treatment. Different parameters were used to evaluate the efficacy of the treatment based on the clinical condition of the patient. Conclusion Mesenchymal stem cells transplantation has so far proven to be safe and tolerable in select studies and patient types. This systematic review includes the results from the 43 selected studies in terms of safety and tolerability of the procedures, and several adverse events and therapeutic benefits during the follow-up period after administration of MSCs.
Collapse
Affiliation(s)
- Gaurav Deepak Patel
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Lichao Liu
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Ailian Li
- School of Stomatology, Southwest Medical University, Guangzhou, China
| | - Yun-Hsuan Yang
- School of Stomatology, Jinan University, Guangzhou, China
| | - Chia-Chi Shen
- School of Stomatology, Jinan University, Guangzhou, China
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
- Clinical Research Center, Clifford Hospital, Guangzhou, China
| |
Collapse
|
7
|
Shi JX, Zhang KZ. Advancements in Autologous Stem Cell Transplantation for Parkinson's Disease. Curr Stem Cell Res Ther 2024; 19:1321-1327. [PMID: 37691194 DOI: 10.2174/1574888x19666230907112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease marked by comparatively focal dopaminergic neuron degeneration in the substantia nigra of the midbrain and dopamine loss in the striatum, which causes motor and non-motor symptoms. Currently, pharmacological therapy and deep brain stimulation (DBS) are the primary treatment modalities for PD in clinical practice. While these approaches offer temporary symptom control, they do not address the underlying neurodegenerative process, and complications often arise. Stem cell replacement therapy is anticipated to prevent further progression of the disease due to its regenerative capacity, and considering the cost of immunosuppression and the potential immune dysfunctions, autologous stem cell transplantation holds promise as a significant method against allogeneic one to treat Parkinson's disease. In this review, the safety concerns surrounding tumorigenicity and complications associated with transplantation are discussed, along with methods utilized to evaluate the efficacy of such procedures. Subsequently, we summarize the preclinical and clinical studies involving autologous stem cell transplantation for PD, and finally talk about the benefits of autologous stem cell transplantation against allogeneic transplants.
Collapse
Affiliation(s)
- Jia-Xin Shi
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke-Zhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Tajali R, Eidi A, Tafti HA, Pazouki A, Kamarul T, Sharifi AM. Transplantation of adipose derived stem cells in diabetes mellitus; limitations and achievements. J Diabetes Metab Disord 2023; 22:1039-1052. [PMID: 37975135 PMCID: PMC10638327 DOI: 10.1007/s40200-023-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 11/19/2023]
Abstract
Objectives Diabetes mellitus (DM) is a complex metabolic disease that results from impaired insulin secreting pancreatic β-cells or insulin resistance. Although available medications help control the disease, patients suffer from its complications. Therefore, finding effective therapeutic approaches to treat DM is a priority. Adipose Derived Stem Cells (ADSCs) based therapy is a promising strategy in various regenerative medicine applications, but its systematic translational use is still somewhat out of reach. This review is aimed at clarifying achievements as well as challenges facing the application of ADSCs for the treatment of DM, with a special focus on the mechanisms involved. Methods Literature searches were carried out on "Scopus", "PubMed" and "Google Scholar" up to September 2022 to find relevant articles in the English language for the scope of this review. Results Recent evidence showed a significant role of ADSC therapies in DM by ameliorating insulin resistance and hyperglycemia, regulating hepatic glucose metabolism, promoting β cell function and regeneration, and functioning as a gene delivery tool. In addition, ADSCs could improve diabetic wound healing by promoting collagen deposition, inhibiting inflammation, and enhancing angiogenesis. Conclusion Overall, this literature review revealed the great clinical implications of ADSCs for translating into the clinical setting for the treatment of diabetes. However, further large-scale and controlled studies are needed to overcome challenges and confirm the safety and optimal therapeutic scheme before daily clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01280-8.
Collapse
Affiliation(s)
- Raziye Tajali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hosein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery research center, IRAN University of Medical Sciences Tehran, Tehran, Iran
| | - Tunku Kamarul
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and regenerative Medicine research center, Iran University of medical Sciences, Tehran, Iran
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Ferreira MY, Carvalho Junior JDC, Ferreira LM. Evaluating the quality of studies reporting on clinical applications of stromal vascular fraction: A systematic review and proposed reporting guidelines (CLINIC-STRA-SVF). Regen Ther 2023; 24:332-342. [PMID: 37662694 PMCID: PMC10474569 DOI: 10.1016/j.reth.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023] Open
Abstract
Background The stromal vascular fraction (SVF) has been widely explored in a number of therapeutic applications in several specialties. Its therapeutic potential is being increasingly demonstrated, although its mechanism of action is still unclear. Objective To evaluate the quality of studies reporting on clinical applications of SVF. Method This is a systematic literature review that followed the PRISMA guidelines with the search of the studies from December 1, 2012, to December 1, 2022, in the following databases: MEDLINE, LILACS and EMBASE. The level of evidence of the studies was assessed using the GRADE system, and the rigor used in the publication of the results was assessed in relation to adherence to the guidelines indicated by the EQUATOR Network Group. The CLINIC - STRA-SVF reporting guideline was developed after the completion of this systematic review. Results A total of 538 articles were found, and 77 articles were selected after reading the titles and abstracts and removing duplicates. Then, 15 studies were removed for not meeting the inclusion criteria, leaving 62 studies. The CLINIC - STRA-SVF was developed and consists of 33 items and two tables. Conclusion There is scientific evidence, although mostly with a low level of evidence, that the use of SVF in clinical applications is safe and effective. The information published in these studies should be standardized, and the CLINIC - STRA-SVF reporting guideline proposed in this study may assist in the design, conduct, recording and reporting of clinical trials and others clinical studies involving the SVF.
Collapse
Affiliation(s)
- Marcio Yuri Ferreira
- Translational Surgery Graduate Program of Universidade Federal de São Paulo - Unifesp, São Paulo, SP, Brazil
| | | | - Lydia Masako Ferreira
- Plastic Surgery Division, Universidade Federal de São Paulo - Escola Paulista de Medicina, SP, Brazil
| |
Collapse
|
10
|
Wang F, Sun Z, Peng D, Gianchandani S, Le W, Boltze J, Li S. Cell-therapy for Parkinson's disease: a systematic review and meta-analysis. J Transl Med 2023; 21:601. [PMID: 37679754 PMCID: PMC10483810 DOI: 10.1186/s12967-023-04484-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cell-based strategies focusing on replacement or protection of dopaminergic neurons have been considered as a potential approach to treat Parkinson's disease (PD) for decades. However, despite promising preclinical results, clinical trials on cell-therapy for PD reported mixed outcomes and a thorough synthesis of these findings is lacking. We performed a systematic review and meta-analysis to evaluate cell-therapy for PD patients. METHODS We systematically identified all clinical trials investigating cell- or tissue-based therapies for PD published before July 2023. Out of those, studies reporting transplantation of homogenous cells (containing one cell type) were included in meta-analysis. The mean difference or standardized mean difference in quantitative neurological scale scores before and after cell-therapy was analyzed to evaluate treatment effects. RESULTS The systematic literature search revealed 106 articles. Eleven studies reporting data from 11 independent trials (210 patients) were eligible for meta-analysis. Disease severity and motor function evaluation indicated beneficial effects of homogenous cell-therapy in the 'off' state at 3-, 6-, 12-, or 24-month follow-ups, and for motor function even after 36 months. Most of the patients were levodopa responders (61.6-100% in different follow-ups). Cell-therapy was also effective in improving the daily living activities in the 'off' state of PD patients. Cells from diverse sources were used and multiple transplantation modes were applied. Autografts did not improve functional outcomes, while allografts exhibited beneficial effects. Encouragingly, both transplantation into basal ganglia and to areas outside the basal ganglia were effective to reduce disease severity. Some trials reported adverse events potentially related to the surgical procedure. One confirmed and four possible cases of graft-induced dyskinesia were reported in two trials included in this meta-analysis. CONCLUSIONS This meta-analysis provides preliminary evidence for the beneficial effects of homogenous cell-therapy for PD, potentially to the levodopa responders. Allogeneic cells were superior to autologous cells, and the effective transplantation sites are not limited to the basal ganglia. PROSPERO registration number: CRD42022369760.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Zhengwu Sun
- Department of Clinical Pharmacy, Central Hospital of Dalian University of Technology, Dalian, China
| | - Daoyong Peng
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Shikha Gianchandani
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Beijing, 100038, China.
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Cecerska-Heryć E, Pękała M, Serwin N, Gliźniewicz M, Grygorcewicz B, Michalczyk A, Heryć R, Budkowska M, Dołęgowska B. The Use of Stem Cells as a Potential Treatment Method for Selected Neurodegenerative Diseases: Review. Cell Mol Neurobiol 2023:10.1007/s10571-023-01344-6. [PMID: 37027074 DOI: 10.1007/s10571-023-01344-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Stem cells have been the subject of research for years due to their enormous therapeutic potential. Most neurological diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are incurable or very difficult to treat. Therefore new therapies are sought in which autologous stem cells are used. They are often the patient's only hope for recovery or slowing down the progress of the disease symptoms. The most important conclusions arise after analyzing the literature on the use of stem cells in neurodegenerative diseases. The effectiveness of MSC cell therapy has been confirmed in ALS and HD therapy. MSC cells slow down ALS progression and show early promising signs of efficacy. In HD, they reduced huntingtin (Htt) aggregation and stimulation of endogenous neurogenesis. MS therapy with hematopoietic stem cells (HSCs) inducted significant recalibration of pro-inflammatory and immunoregulatory components of the immune system. iPSC cells allow for accurate PD modeling. They are patient-specific and therefore minimize the risk of immune rejection and, in long-term observation, did not form any tumors in the brain. Extracellular vesicles derived from bone marrow mesenchymal stromal cells (BM-MSC-EVs) and Human adipose-derived stromal/stem cells (hASCs) cells are widely used to treat AD. Due to the reduction of Aβ42 deposits and increasing the survival of neurons, they improve memory and learning abilities. Despite many animal models and clinical trial studies, cell therapy still needs to be refined to increase its effectiveness in the human body.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland.
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
12
|
Yan S, Campos de Souza S, Xie Z, Bao Y. Research progress in clinical trials of stem cell therapy for stroke and neurodegenerative diseases. IBRAIN 2023; 9:214-230. [PMID: 37786546 PMCID: PMC10529019 DOI: 10.1002/ibra.12095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 10/04/2023]
Abstract
The incidence of stroke and neurodegenerative diseases is gradually increasing in modern society, but there is still no treatment that is effective enough. Stem cells are cells that can reproduce (self-renew) and differentiate into the body, which have shown significance in basic research, while doctors have also taken them into clinical trials to determine their efficacy and safety. Existing clinical trials mainly include middle-aged and elderly patients with stroke or Parkinson's disease (mostly 40-80 years old), mainly involving injection of mesenchymal stem cells and bone marrow mesenchymal stem cells through the veins and the putamen, with a dosage of mostly 106-108 cells. The neural and motor functions of the patients were restored after stem cell therapy, and the safety was found to be good during the follow-up period of 3 months to 5 years. Here, we review all clinical trials and the latest advances in stroke, Alzheimer's disease, and Parkinson's disease, with the hope that stem cell therapy will be used in the clinic in the future to achieve effective treatment rates and benefit patients.
Collapse
Affiliation(s)
- Shan‐Shan Yan
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Senio Campos de Souza
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Zhen‐Dong Xie
- Institute for Bioengineering of CataloniaUniversity of BarcelonaCarrer de Baldiri ReixacBarcelonaSpain
| | - Yong‐Xin Bao
- Qingdao Women and Children's HospitalQingdao UniversityQingdaoChina
| |
Collapse
|
13
|
Adipose-Derived Mesenchymal Stromal Cells in Basic Research and Clinical Applications. Int J Mol Sci 2023; 24:ijms24043888. [PMID: 36835295 PMCID: PMC9962639 DOI: 10.3390/ijms24043888] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (AD-MSCs) have been extensively studied in recent years. Their attractiveness is due to the ease of obtaining clinical material (fat tissue, lipoaspirate) and the relatively large number of AD-MSCs present in adipose tissue. In addition, AD-MSCs possess a high regenerative potential and immunomodulatory activities. Therefore, AD-MSCs have great potential in stem cell-based therapies in wound healing as well as in orthopedic, cardiovascular, or autoimmune diseases. There are many ongoing clinical trials on AD-MSC and in many cases their effectiveness has been proven. In this article, we present current knowledge about AD-MSCs based on our experience and other authors. We also demonstrate the application of AD-MSCs in selected pre-clinical models and clinical studies. Adipose-derived stromal cells can also be the pillar of the next generation of stem cells that will be chemically or genetically modified. Despite much research on these cells, there are still important and interesting areas to explore.
Collapse
|
14
|
Al‐kharboosh R, Perera JJ, Bechtle A, Bu G, Quinones‐Hinojosa A. Emerging point-of-care autologous cellular therapy using adipose-derived stromal vascular fraction for neurodegenerative diseases. Clin Transl Med 2022; 12:e1093. [PMID: 36495120 PMCID: PMC9736801 DOI: 10.1002/ctm2.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders are characterized by the gradual decline and irreversible loss of cognitive functions and CNS structures. As therapeutic recourse stagnates, neurodegenerative diseases will cost over a trillion dollars by 2050. A dearth of preventive and regenerative measures to hinder regression and enhance recovery has forced patients to settle for traditional therapeutics designed to manage symptoms, leaving little hope for a cure. In the last decade, pre-clinical animal models and clinical investigations in humans have demonstrated the safety and promise of an emerging cellular product from subcutaneous fat. The adipose-derived stromal vascular fraction (SVF) is an early intervention and late-stage novel 'at point' of care cellular treatment, demonstrating improvements in clinical applications for Multiple Sclerosis, Alzheimer's disease, and Parkinson's disease. SVF is a heterogeneous fraction of cells forming a robust cellular ecosystem and serving as a novel and valuable source of point-of-care autologous cell therapy, providing an easy-to-access population that we hypothesize can mediate repair through 'bi-directional' communication in response to pathological cues. We provide the first comprehensive review of all pre-clinical and clinical findings available to date and highlight major challenges and future directions. There is a greater medical and economic urgency to innovate and develop novel cellular therapy solutions that enable the repair and regeneration of neuronal tissue that has undergone irreversible and permanent damage.
Collapse
Affiliation(s)
- Rawan Al‐kharboosh
- Department of NeuroscienceMayo ClinicJacksonvilleFlorida,Department of Regenerative SciencesMayo Clinic Graduate SchoolRochesterMinnesota,Department of NeurosurgeryMayo ClinicJacksonvilleFlorida
| | | | | | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFlorida
| | | |
Collapse
|
15
|
Rahbaran M, Zekiy AO, Bahramali M, Jahangir M, Mardasi M, Sakhaei D, Thangavelu L, Shomali N, Zamani M, Mohammadi A, Rahnama N. Therapeutic utility of mesenchymal stromal cell (MSC)-based approaches in chronic neurodegeneration: a glimpse into underlying mechanisms, current status, and prospects. Cell Mol Biol Lett 2022; 27:56. [PMID: 35842587 PMCID: PMC9287902 DOI: 10.1186/s11658-022-00359-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Recently, mesenchymal stromal cell (MSC)-based therapy has become an appreciated therapeutic approach in the context of neurodegenerative disease therapy. Accordingly, a myriad of studies in animal models and also some clinical trials have evinced the safety, feasibility, and efficacy of MSC transplantation in neurodegenerative conditions, most importantly in Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). The MSC-mediated desired effect is mainly a result of secretion of immunomodulatory factors in association with release of various neurotrophic factors (NTFs), such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Thanks to the secretion of protein-degrading molecules, MSC therapy mainly brings about the degradation of pathogenic protein aggregates, which is a typical appearance of chronic neurodegenerative disease. Such molecules, in turn, diminish neuroinflammation and simultaneously enable neuroprotection, thereby alleviating disease pathological symptoms and leading to cognitive and functional recovery. Also, MSC differentiation into neural-like cells in vivo has partially been evidenced. Herein, we focus on the therapeutic merits of MSCs and also their derivative exosome as an innovative cell-free approach in AD, HD, PD, and ALS conditions. Also, we give a brief glimpse into novel approaches to potentiate MSC-induced therapeutic merits in such disorders, most importantly, administration of preconditioned MSCs.
Collapse
Affiliation(s)
- Mohaddeseh Rahbaran
- Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mahta Bahramali
- Biotechnology Department, University of Tehran, Tehran, Iran
| | | | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Delaram Sakhaei
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Mohammadi
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran.
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
16
|
Oliveira Miranda C. Mesenchymal stem cells for lysosomal storage and polyglutamine disorders: Possible shared mechanisms. Eur J Clin Invest 2022; 52:e13707. [PMID: 34751953 DOI: 10.1111/eci.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/28/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mesenchymal stem cells' (MSC) therapeutic potential has been investigated for the treatment of several neurodegenerative diseases. The fact these cells can mediate a beneficial effect in different neurodegenerative contexts strengthens their competence to target diverse mechanisms. On the other hand, distinct disorders may share similar mechanisms despite having singular neuropathological characteristics. METHODS We have previously shown that MSC can be beneficial for two disorders, one belonging to the groups of Lysosomal Storage Disorders (LSDs) - the Krabbe Disease or Globoid Cell Leukodystrophy, and the other to the family of Polyglutamine diseases (PolyQs) - the Machado-Joseph Disease or Spinocerebellar ataxia type 3. We gave also input into disease characterization since neuropathology and MSC's effects are intrinsically associated. This review aims at describing MSC's multimode of action in these disorders while emphasizing to possible mechanistic alterations they must share due to the accumulation of cellular toxic products. RESULTS Lysosomal storage disorders and PolyQs have different aetiology and associated symptoms, but both result from the accumulation of undegradable products inside neuronal cells due to inefficient clearance by the endosomal/lysosomal pathway. Moreover, numerous cellular mechanisms that become compromised latter are also shared by these two disease groups. CONCLUSIONS Here, we emphasize MSC's effect in improving proteostasis and autophagy cycling turnover, neuronal survival, synaptic activity and axonal transport. LSDs and PolyQs, though rare in their predominance, collectively affect many people and require our utmost dedication and efforts to get successful therapies due to their tremendous impact on patient s' lives and society.
Collapse
Affiliation(s)
- Catarina Oliveira Miranda
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Mukai T, Sei K, Nagamura-Inoue T. Mesenchymal Stromal Cells Perspective: New Potential Therapeutic for the Treatment of Neurological Diseases. Pharmaceutics 2021; 13:pharmaceutics13081159. [PMID: 34452120 PMCID: PMC8401282 DOI: 10.3390/pharmaceutics13081159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Several studies have shown that mesenchymal stromal/stem cells (MSCs) exert their neuroprotective and neurorestorative efficacy via the secretion of neurotrophic factors. Based on these studies, many clinical trials using MSCs for the treatment of neurological disorders have been conducted, and results regarding their feasibility and efficacy have been reported. The present review aims to highlight the characteristics and basic research regarding the role of MSCs in neurological disease and to discuss the recent progress in clinical trials using MSCs to treat various neurological disorders.
Collapse
Affiliation(s)
- Takeo Mukai
- Department of Pediatrics, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; (K.S.); (T.N.-I.)
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: 81-3-5449-5452
| | - Kenshi Sei
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; (K.S.); (T.N.-I.)
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; (K.S.); (T.N.-I.)
| |
Collapse
|