1
|
Anselmi C, Mendes Soares IP, Mota RLM, Leite ML, Ribeiro RADO, Fernandes LDO, Bottino MC, de Souza Costa CA, Hebling J. Functionalization of PCL-Based Fiber Scaffolds with Different Sources of Calcium and Phosphate and Odontogenic Potential on Human Dental Pulp Cells. J Funct Biomater 2024; 15:97. [PMID: 38667554 PMCID: PMC11051160 DOI: 10.3390/jfb15040097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the incorporation of sources of calcium, phosphate, or both into electrospun scaffolds and evaluated their bioactivity on human dental pulp cells (HDPCs). Additionally, scaffolds incorporated with calcium hydroxide (CH) were characterized for degradation, calcium release, and odontogenic differentiation by HDPCs. Polycaprolactone (PCL) was electrospun with or without 0.5% w/v of calcium hydroxide (PCL + CH), nano-hydroxyapatite (PCL + nHA), or β-glycerophosphate (PCL + βGP). SEM/EDS analysis confirmed fibrillar morphology and particle incorporation. HDPCs were cultured on the scaffolds to assess cell viability, adhesion, spreading, and mineralized matrix formation. PCL + CH was also evaluated for gene expression of odontogenic markers (RT-qPCR). Data were submitted to ANOVA and Student's t-test (α = 5%). Added CH increased fiber diameter and interfibrillar spacing, whereas βGP decreased both. PCL + CH and PCL + nHA improved HDPC viability, adhesion, and proliferation. Mineralization was increased eightfold with PCL + CH. Scaffolds containing CH gradually degraded over six months, with calcium release within the first 140 days. CH incorporation upregulated DSPP and DMP1 expression after 7 and 14 days. In conclusion, CH- and nHA-laden PCL fiber scaffolds were cytocompatible and promoted HDPC adhesion, proliferation, and mineralized matrix deposition. PCL + CH scaffolds exhibit a slow degradation profile, providing sustained calcium release and stimulating HDPCs to upregulate odontogenesis marker genes.
Collapse
Affiliation(s)
- Caroline Anselmi
- Department of Morphology, Orthodontics, and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil; (C.A.); (R.L.M.M.)
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (I.P.M.S.); (M.C.B.)
| | - Igor Paulino Mendes Soares
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (I.P.M.S.); (M.C.B.)
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil;
| | - Rafaella Lara Maia Mota
- Department of Morphology, Orthodontics, and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil; (C.A.); (R.L.M.M.)
| | - Maria Luísa Leite
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia (UBC), Vancouver, BC V6T 1Z4, Canada;
| | - Rafael Antonio de Oliveira Ribeiro
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil;
| | - Lídia de Oliveira Fernandes
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil;
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (I.P.M.S.); (M.C.B.)
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil;
| | - Josimeri Hebling
- Department of Morphology, Orthodontics, and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil; (C.A.); (R.L.M.M.)
| |
Collapse
|
2
|
Das A, Nasim I. Efficacy of a Novel Intracanal Medicament on Total Antioxidant Status in Patients With Apical Periodontitis: A Randomized Controlled Clinical Trial. Cureus 2024; 16:e54496. [PMID: 38516429 PMCID: PMC10955455 DOI: 10.7759/cureus.54496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Successful endodontic treatment relies upon the microbial debridement of the root canal system. This can be achieved to a great extent by using intracanal medicaments, which inhibit the microbes growing in the root canal. Evaluating the capacity of oxidants in the saliva is a crucial parameter for assessing the antioxidant capacity of any individual, which decreases in inflammatory conditions. An effective intracanal medicament can increase the total antioxidant capacity of saliva, which comes down because of inflammatory conditions. Aim To evaluate the effect of two intracanal medicaments on the antioxidant capacity of saliva. Materials and methods In a randomized prospective clinical trial, 42 patients with a mean age of 18-70 years were selected based on exclusion and inclusion criteria, and the baseline value of the total antioxidant capacity of saliva was recorded. The patients were categorized into two groups as per the block randomization method (Group I: calcium hydroxide (Maarc, New Delhi, India) intracanal medicament; Group II: Hekla lava (SBL Pvt. Ltd., Germany) intracanal medicament). Access opening, working length determination, and cleaning and shaping were conducted using hand K-files and ProTaper Gold rotary files. Intracanal medicaments were placed according to the groups assigned, and temporary restoration was placed. The patients were recalled after seven days. If the tooth was asymptomatic, obturation was completed, and a saliva sample was collected to assess the total antioxidant capacity. Results The total antioxidant capacity of saliva was increased after using intracanal medicaments and endodontic therapy, and there was a statistically significant difference before and after using both the medicaments (p=0.0005; i.e., calcium hydroxide and Hekla lava. When both medicaments were compared, there was no significant difference in the antioxidant capacity of saliva among medicaments (p=0.384). Conclusion The total antioxidant capacity of saliva was increased after using both the intracanal medicaments. Hence, Hekla lava can be potentially used as an alternative intracanal medicament.
Collapse
Affiliation(s)
- Aishwarya Das
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Iffat Nasim
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Pan H, Yang Y, Xu H, Jin A, Huang X, Gao X, Sun S, Liu Y, Liu J, Lu T, Wang X, Zhu Y, Jiang L. The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes. Front Cell Dev Biol 2023; 11:1174579. [PMID: 37818127 PMCID: PMC10561098 DOI: 10.3389/fcell.2023.1174579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.
Collapse
Affiliation(s)
- Houwen Pan
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Ngai P, Lee AHC, Xu J, Chang JWW, Liu J, Hu M, Sun Z, Neelakantan P, Li X, Zhang C. Effects of L-Chg 10-Teixobactin on Viability, Proliferation, and Osteo/Odontogenic Differentiation of Stem Cells from Apical Papilla. J Endod 2023; 49:162-168. [PMID: 36592717 DOI: 10.1016/j.joen.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Intracanal medicament is one of the essential steps for ensuring success in regenerative endodontic procedures. L-Chg10-teixobactin is a novel antimicrobial agent that exhibited potent antibacterial and antibiofilm effects against Enterococcusfaecalis at low concentrations compared with ampicillin. At the same time, its cytotoxicity on dental stem cells has not been studied. This study aimed to investigate the effects of L-Chg10-teixobactin on the viability, proliferation, migration, and osteo/odontogenic differentiation of stem cells from apical papilla (SCAPs). MATERIALS AND METHODS SCAPs isolated from immature human third molars were treated with various concentrations of L-Chg10-teixobactin, calcium hydroxide, and dimethyl sulfoxide. The viability and proliferation of SCAPs were assessed using the LIVE/DEAD Viability/Cytotoxicity Kit and Cell Counting Kit-8. A scratch wound healing test was used to evaluate the lateral migration capacity of SCAPs. Alkaline phosphatase (ALP) activity, calcium mineralization ability tests -ie, ALP staining and alizarin red S staining, and quantitative real-time polymerase chain reaction were performed to assess the osteo /odontogenic differentiation of SCAPs. RESULTS The tested concentrations of L-Chg10-teixobactin (0.01, 0.02, and 0.03 mg/mL), 1 mg/mL calcium hydroxide, and 0.03% dimethyl sulfoxide had no significant cytotoxic effect on SCAPs at any time point (P > .05). Besides, there were no significant differences between the control and experimental groups in SCAPs' viability, proliferation, and migration. L-Chg10-teixobactin upregulated the gene expression of osteo/odontogenic markers in SCAPs, while no significant difference was found in the ALP activity and alizarin red S staining. CONCLUSIONS L-Chg10-teixobactin demonstrated excellent biocompatibility on SCAPs at concentrations from 0.01 to 0.03 mg/mL and potentially enhance the osteo/odontogenic differentiation of SCAPs; suggesting its promising role as root canal medicament for regenerative endodontic procedures.
Collapse
Affiliation(s)
- Ping Ngai
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Angeline Hui Cheng Lee
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Jian Xu
- Department of Dentistry, Longgang ENT Hospital, Shenzhen Longgang Institute of Stomatology, Shenzhen, P. R. China
| | - Jeffrey Wen Wei Chang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Junqing Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Mingxin Hu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Prasanna Neelakantan
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China.
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P. R. China.
| |
Collapse
|
5
|
Liu Y, Liu N, Na J, Li C, Yue G, Fan Y, Zheng L. Wnt/β-catenin plays a dual function in calcium hydroxide induced proliferation, migration, osteogenic differentiation and mineralization in vitro human dental pulp stem cells. Int Endod J 2023; 56:92-102. [PMID: 36229421 DOI: 10.1111/iej.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022]
Abstract
AIM Calcium hydroxide is the gold standard material for pulp capping and has been widely used in clinical dentistry. Calcium hydroxide promotes proliferation, migration and osteogenic differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanism is not clear. Our study investigated the role of Wnt/β-catenin pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation and mineralization of human DPSCs. METHODOLOGY Protein and gene expression was detected by western blot (WB), immunofluorescence staining and quantitative real-time PCR (qPCR). Cell viability was analysed using the Cell Counting Kit-8 (CCK-8) assay. Wound-healing assay was used to analyse cell migration. The expression of alkaline phosphatase (ALP) was detected using ALP staining. Mineralization was analysed by alizarin red staining. RESULTS Calcium hydroxide increased the protein expression of phosphorylated-GSK3β/GSK3β, β-catenin and the gene expression of LEF-1. Inhibition of Wnt/β-catenin abolished calcium hydroxide-induced proliferation and migration of DPSCs in 24 h. However, incubation with calcium hydroxide for 7 days and 14 days reduced Wnt/β-catenin signalling. Inhibition of Wnt/β-catenin promoted calcium hydroxide-induced osteogenic differentiation and mineralization in DPSCs. CONCLUSION Wnt/β-catenin pathway plays a dual role in calcium hydroxide-regulated DPSC behaviour. Incubation with calcium hydroxide promoted rapid proliferation and migration of DPSCs, while prolonged incubation negatively regulated osteogenic differentiation and mineralization.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Nan Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chiyu Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Gan Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
6
|
Kong H, Liu P, Li H, Zeng X, Xu P, Yao X, Liu S, Cheng CK, Xu J. Mesenchymal Stem Cell-Derived Extracellular Vesicles: The Novel Therapeutic Option for Regenerative Dentistry. Stem Cell Rev Rep 2023; 19:46-58. [PMID: 35132538 DOI: 10.1007/s12015-022-10342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2022] [Indexed: 01/29/2023]
Abstract
Dental mesenchymal stem cells (MSCs) are characterized by unlimited self-renewal ability and high multidirectional differentiation potential. Since dental MSCs can be easily isolated and exhibit a high capability to differentiate into odontogenic cells, they are considered as attractive therapeutic agents in regenerative dentistry. Recently, MSC-derived extracellular vesicles (MSC-EVs) have attracted widespread attention as carriers for cell-free therapy due to their potential functions. Many studies have shown that MSC-EVs can mediate microenvironment at tissue damage site, and coordinate the regeneration process. Additionally, MSC-EVs can mediate intercellular communication, thus affecting the phenotypes and functions of recipient cells. In this review, we mainly summarized the types of MSCs that could be potentially applied in regenerative dentistry, the possible molecular cargos of MSC-EVs, and the major effects of MSC-EVs on the therapeutic induction of osteogenic differentiation.
Collapse
Affiliation(s)
- Haiying Kong
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Peiqi Liu
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China.,Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hongwen Li
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China.,Shenzhen Longgang Institute of Stomatology, Shenzhen, Guangdong, China
| | - Xiantao Zeng
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Peiwu Xu
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Xinhui Yao
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Senqing Liu
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jian Xu
- Department of Dentistry, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China. .,Shenzhen Longgang Institute of Stomatology, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Algazlan AS, Almuraikhi N, Muthurangan M, Balto H, Alsalleeh F. Silver Nanoparticles Alone or in Combination with Calcium Hydroxide Modulate the Viability, Attachment, Migration, and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Int J Mol Sci 2022; 24:702. [PMID: 36614148 PMCID: PMC9821315 DOI: 10.3390/ijms24010702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to evaluate the effect of silver nanoparticles (AgNPs) alone or in combination with calcium hydroxide (Ca(OH)2) on the proliferation, viability, attachment, migration, and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Different concentrations of AgNPs alone or mixed with Ca(OH)2 were prepared. Cell proliferation was measured using AlamarBlue, and hMSCs attachment to dentin disks was evaluated using scanning electron microscopy. Live-dead imaging was performed to assess apoptosis. Wound healing ability was determined using the scratch-migration assay. To evaluate osteogenic differentiation, the expression of Runt-related transcription factor (RUNX2), Transforming growth factor beta-1 (TGF-β1), Alkaline Phosphatase (ALP), and Osteocalcin (OCN) were measured using real-time reverse transcriptase polymerase chain reaction. ALP staining and activity were also performed as indicators of osteogenic differentiation. AgNPs alone seemed to favor cell attachment. Lower concentrations of AgNPs enhanced cell proliferation. AgNP groups showed markedly less apoptosis. None of the medicaments had adverse effects on wound closure. The expression of TGF-β1 was significantly upregulated in all groups, and OCN was highly expressed in the AgNP groups. AgNPs 0.06% showed the most enhanced ALP gene expression levels, activity, and marked cytochemical staining. In conclusion, AgNPs positively affect hMSCs, making them a potential biomaterial for various clinical applications.
Collapse
Affiliation(s)
- Almaha S. Algazlan
- Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11461, Saudi Arabia
| | - Nihal Almuraikhi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Manikandan Muthurangan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hanan Balto
- Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11461, Saudi Arabia
| | - Fahd Alsalleeh
- Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
8
|
Jiang X, Dai Y, Liu H. Evaluation of the characteristics of root canal calcification after regenerative endodontic procedures: A retrospective cohort study over 3 years. Int J Paediatr Dent 2022; 33:305-313. [PMID: 36511087 DOI: 10.1111/ipd.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/25/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
AIM This study aimed to evaluate the characteristics of root canal calcification after regenerative endodontic procedures (REPs) during long-term follow-up. DESIGN Data of children who underwent REPs and were followed up for >3 years in the Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China, from January 2013 to January 2019, were collected. All the patients were treated by the protocol of REPs based on the American Association of Endodontists (AAE) protocol. A total of 91 teeth of 54 boys and 37 girls (average age 10.4 ± 1.9 years) with follow-up duration >3 years were included. The follow-up duration ranged from 36 to 92 months (average, 53.2 ± 13.4 months). The prevalence, contributing factors, and long-term prognoses of root canal calcification after REPs are discussed. Independent t-test and χ2 test were used for statistical analysis. RESULTS The incidence of root canal calcification was 78% (71/91). The use of calcium hydroxide paste was significantly correlated with the occurrence of root canal calcification (p < .05). Some teeth showed aggravation of calcification with time; however, not all teeth showed calcification after longer follow-up duration. CONCLUSIONS Teeth treated with REPs had a relatively high probability of root canal calcification detection during the long-term follow-up. The occurrence of calcification is related to the use of calcium hydroxide paste but does not affect the long-term prognosis of teeth.
Collapse
Affiliation(s)
- Xijun Jiang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunfei Dai
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - He Liu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
9
|
Kim Y, Lee D, Kye M, Ha YJ, Kim SY. Biocompatible Properties and Mineralization Potential of Premixed Calcium Silicate-Based Cements and Fast-Set Calcium Silicate-Based Cements on Human Bone Marrow-Derived Mesenchymal Stem Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7595. [PMID: 36363187 PMCID: PMC9654067 DOI: 10.3390/ma15217595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Premixed calcium silicate-based cements (CSCs) and fast-set CSCs were developed for the convenience of retrograde filling during endodontic microsurgery. The aim of this study was to analyze the biocompatible properties and mineralization potential of premixed CSCs, such as Endocem MTA Premixed (EM Premixed) and EndoSequence BC RRM putty (EndoSequence), and fast-set RetroMTA on human bone marrow-derived mesenchymal stem cells (BMSCs) compared to ProRoot MTA. Using CCK-8, a significantly higher proliferation of BMSCs occurred only in the EM Premixed group on days 2 and 4 (p < 0.05). On day 6, the ProRoot MTA group had significantly higher cell proliferation than the control group (p < 0.05). Regardless of the experimental materials, all groups had complete cell migration by day 4. Alizarin Red-S staining and alkaline phosphatase assay demonstrated higher mineralization potential of all CSCs similar to ProRoot MTA (p < 0.05). The EndoSequence group showed more upregulation of SMAD1 and OSX gene expression than the other experimental groups (p < 0.05), and all experimental cements upregulated osteogenic gene expression more than the control group (p < 0.05). Therefore, using premixed CSCs and fast-set CSCs as retrograde filling cements may facilitate satisfactory biological responses and comparable osteogenic potential to ProRoot MTA.
Collapse
Affiliation(s)
- Yemi Kim
- Department of Conservative Dentistry, College of Medicine, Ewha Womans University, Seoul 07986, Korea
| | - Donghee Lee
- Department of Dentistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Minjoo Kye
- Department of Conservative Dentistry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yun-Jae Ha
- Department of Conservative Dentistry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sin-Young Kim
- Department of Conservative Dentistry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
10
|
Plasma Rich in Growth Factors in the Treatment of Endodontic Periapical Lesions in Adult Patients: 3-Dimensional Analysis Using Cone-Beam Computed Tomography on the Outcomes of Non-Surgical Endodontic Treatment Using A-PRF+ and Calcium Hydroxide: A Retrospective Cohort Study. J Clin Med 2022; 11:jcm11206092. [PMID: 36294413 PMCID: PMC9605098 DOI: 10.3390/jcm11206092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
The study presents results of periapical lesion healing after one-visit root canal treatment (RCT) with Advanced Platelet Rich Fibrin plus (A-PRF+) application compared to a two-visit RCT with an inter-appointment calcium hydroxide filling. The comparison was made based on CBCT-Periapical Index (PAI) lesion volume changes and the occurrence of post endodontic pain. The results of 3D radiographic healing assessments based on volume reduction criteria were different from the CBCT-PAI. Based on volume changes, the healing assessment criteria-9 cases from the Study Group and six cases in the Control Group were defined as healed. Based on the CBCT-PAI healing assessment criteria, 8 cases from the Study Group and 9 cases from the Control Group were categorized as healed. The volumes of apical radiolucency were, on average, reduced by 85.93% in the Study Group and by 72.31% in the Control Group. Post-endodontic pain occurred more frequently in the Control than in the Study Group. The highest score of pain in the Study Group was five (moderate pain, n = 1), while in the Control Group, the highest score was eight (severe pain, n = 2). In the 6-month follow-up, CBCT scans showed a better healing tendency for patients in the Study Group.
Collapse
|
11
|
Yeniterzi D, Demirsoy Z, Saylam A, Özçubukçu S, Gülseren G. Nanoarchitectonics of Fullerene Based Enzyme Mimics for Osteogenic Induction of Stem Cells. Macromol Biosci 2022; 22:e2200079. [PMID: 35751428 DOI: 10.1002/mabi.202200079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/10/2022] [Indexed: 11/06/2022]
Abstract
Enzyme mimicry is a topic of considerable interest in the development of multifunctional biomimetic materials. Mimicking enzyme activity is a major challenge in biomaterials research, and artificial analogs that simultaneously recapitulate the catalytic and metabolic activity of native enzymes are considered to be the ultimate goal of this field. This consensus may be challenged by self-assembling multifunctional nanostructures to develop close-to-fidelity enzyme mimics. Here, we present the ability of fullerene nanostructures decorated with active units to form enzyme-like materials that can mimic phosphatases in a metal-free manner. These nanostructures self-assemble into nanoclusters forming multiple random active sites that can cleave both phosphomonoesters and phosphodiesters while being more specific for the phosphomonoesters. Moreover, they are reusable and show an increase in catalytic activity over multiple cycles similar to their natural counterparts. In addition to having enzyme-like catalytic properties, these nanocatalysts imitate the biological functions of their natural analogs by inducing biomineralization and osteoinduction in preosteoblast and mesenchymal stem cells in vitro studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dilara Yeniterzi
- Graduate School of Natural & Applied Sciences, Konya Food and Agriculture University, Konya, 42080, Turkey
| | - Zeynep Demirsoy
- Graduate School of Natural & Applied Sciences, Konya Food and Agriculture University, Konya, 42080, Turkey
| | - Aytül Saylam
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Salih Özçubukçu
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Gülcihan Gülseren
- Graduate School of Natural & Applied Sciences, Konya Food and Agriculture University, Konya, 42080, Turkey.,Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, 42080, Turkey
| |
Collapse
|
12
|
Na J, Zhang L, Zheng L, Jiang J, Shi Q, Li C, Fan Y. Static magnetic field regulates proliferation, migration, and differentiation of human dental pulp stem cells by MAPK pathway. Cytotechnology 2022; 74:395-405. [DOI: 10.1007/s10616-022-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/29/2022] [Indexed: 11/03/2022] Open
|
13
|
Effect of Different Intracanal Medicaments on the Viability and Survival of Dental Pulp Stem Cells. J Pers Med 2022; 12:jpm12040575. [PMID: 35455691 PMCID: PMC9032254 DOI: 10.3390/jpm12040575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Stem cells play an important role in the success of regenerative endodontic procedures. They are affected by the presence of medicaments that are used before the induction of bleeding or the creation of a scaffold for endodontic regeneration. This study examines the effects of different intracanal medicaments on the viability and survival of dental pulp stem cells at different doses and over different exposure times. Methods: Dental pulp stem cells were cultured from healthy third molar teeth using the long-term explant culture method and characterized using flow cytometry and exposed to different concentrations of calcium hydroxide, doxycycline, potassium iodide, triamcinolone, and glutaraldehyde, each ranging from 0 (control) to 1000 µg/mL. Exposure times were 6, 24, and 48 h. Cell viability was measured using the MTT assay, and apoptosis was measured using the Annexin V-binding assay. Results: All medicaments significantly reduced cell viability at different concentrations over different exposure times. Calcium hydroxide and triamcinolone favored cell viability at higher concentrations during all exposure times compared to other medicaments. The apoptosis assay showed a significant increase in cell death on exposure to doxycycline, potassium iodide, and glutaraldehyde. Conclusion: The intracanal medicaments examined in our study affected the viability of dental pulp stem cells in a time and dose-dependent manner. They also adversely affected the survival of dental pulp stem cells. Further studies are needed to better understand the effect of prolonged exposure to medicaments according to clinical protocols and their effect on the stemness of dental pulp stem cells.
Collapse
|
14
|
Wang W, Wang X, Li L, Liu Y. Anti-Inflammatory and Repairing Effects of Mesoporous Silica-Loaded Metronidazole Composite Hydrogel on Human Dental Pulp Cells. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6774075. [PMID: 35368951 PMCID: PMC8967504 DOI: 10.1155/2022/6774075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
In order to test an effective biopolymer scaffold in promoting the growth of human dental pulp stem cells (HDPSCs), mesoporous silica @ hydrogel (MSN@Gel) nanocomposites are invented as a new type of biopolymer scaffold for HDPSCs proliferation in this paper. The expression levels of alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP) are significantly increased in the MSN@Gel group so as to better repair damaged dentin. In order to inhibit the proliferation of bacteria in the dental pulp, metronidazole (MTR) is loaded into MSN. The study found that MSN could effectively prolong the half-life of MTR by 1.75 times, and the viability of HDPSCs could be better maintained in the MSN-MTR@Gel group so as to better promote its proliferation to repair pulpitis. However, with the increase of the MTR concentration, its proliferation effect on HDPSCs decreased gradually, and the proliferation effect is the best in 10 μmol/L. Therefore, the MSN-MTR@Gel scaffold is expected to become an effective method for pulpitis therapy in the future.
Collapse
Affiliation(s)
- Wei Wang
- Oral Medical Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xixi Wang
- Department of Stomatology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Luyang Li
- Department of Stomatology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Ying Liu
- Department of Stomatology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
15
|
Abstract
PURPOSE MicroRNA-151b (miR-151b) showed altered expression in ovariectomized rat model of osteoporosis. This study established an ovariectomy-induced osteoporotic rat model to investigate the role of miR-151b in osteoblasts. METHODS Eighteen female Sprague-Dawley (SD) rats were divided randomly into Sham and OVX group (n = 9). The transfections with different miRNAs and expression vectors were confirmed by RT-qPCR. The protein expression of Msx2 was detected by Western blots. The interaction between miR-151b and Msx2D was evaluated by RNA pull-down and dual luciferase reporter assay. RESULTS The expression of miR-151b was significantly increased in femoral tissues of ovariectomy-induced osteoporotic rats. The expression of osteogenesis marker genes including RUNX2, ALP, OCN, OSX, and Msx2 were all significantly increased in osteogenic medium (OM) incubated primary osteoblasts and MC3T3-E1 cells. The interaction between miR-151b and Msx2 was confirmed by luciferase reporter assay and RNA pull-down. Moreover, overexpression of miR-151b significantly inhibited Msx2 in both MC3T3-E1 cells and primary osteoblasts, while miR-151b inhibitor had the opposite effect on the expression of Msx2. In addition, in primary osteoblasts and MC3T3-E1 cells, miR-151b overexpression, or Msx2 silence significantly decreased the expression of OSX, ALP, RUNX2, and OCN. CONCLUSION MiR-151b could inhibit osteoblast proliferation, differentiation, and mineralization via downregulating Msx2 in both MC3T3-E1 cells and primary osteoblasts. MiR-151b might serve as a novel therapeutic target for osteoporosis. ABBREVIATIONS miR-151b: microRNA-151b; miRNAs: microRNAs; Msx2: Msh homeobox 2; MAPK: mitogen-activated protein kinase; STAT: signal transducer and activator of transcription; SD: Sprague-Dawley; BMD: bone mineral density; qRT-PCR: quantitative reverse transcription PCR; MTT: methyl thiazolyl tetrazolium; OVX: ovariectomy; ALP: alkaline phosphatase.
Collapse
Affiliation(s)
- Fuan Liu
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Yunbang Liang
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Xiaoyi Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
16
|
Łukowicz K, Zagrajczuk B, Truchan K, Niedzwiedzki Ł, Cholewa-Kowalska K, Osyczka AM. Chemical Compounds Released from Specific Osteoinductive Bioactive Materials Stimulate Human Bone Marrow Mesenchymal Stem Cell Migration. Int J Mol Sci 2022; 23:ijms23052598. [PMID: 35269740 PMCID: PMC8909964 DOI: 10.3390/ijms23052598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
In this work, a poly(L-lactide-co-glycolide) (PLGA)-based composite was enriched with one of the following sol-gel bioactive glasses (SBG) at 50 wt.%: A1—40 mol% SiO2, 60 mol% CaO, CaO/SiO2 ratio of 1.50; S1—80 mol% SiO2, 20 mol% CaO, CaO/SiO2 ratio of 0.25; A2—40 mol% SiO2, 54 mol% CaO, 6 mol% P2O5, CaO/SiO2 ratio of 1.35; S2—80 mol% SiO2,16 mol% CaO, 4 mol% P2O5, CaO/SiO2 ratio of 0.20. The composites and PLGA control sheets were then soaked for 24 h in culture media, and the obtained condition media (CM) were used to treat human bone marrow stromal cells (hBMSCs) for 72 h. All CMs from the composites increased ERK 1/2 activity vs. the control PLGA CM. However, expressions of cell migration-related c-Fos, osteopontin, matrix metalloproteinase-2, C-X-C chemokine receptor type 4, vascular endothelial growth factor, and bone morphogenetic protein 2 were significantly increased only in cells treated with the CM from the A1/PLGA composite. This CM also significantly increased the rate of human BMSC migration but did not affect cell metabolic activity. These results indicate important biological markers that are upregulated by products released from the bioactive composites of a specific chemical composition, which may eventually prompt osteoprogenitor cells to colonize the bioactive material and accelerate the process of tissue regeneration.
Collapse
Affiliation(s)
- Krzysztof Łukowicz
- Department Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (K.Ł.); (K.T.)
| | - Barbara Zagrajczuk
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland; (B.Z.); (K.C.-K.)
| | - Karolina Truchan
- Department Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (K.Ł.); (K.T.)
| | - Łukasz Niedzwiedzki
- Department of Orthopedics and Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, Kopernika 19e, 31-501 Krakow, Poland;
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland; (B.Z.); (K.C.-K.)
| | - Anna M. Osyczka
- Department Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (K.Ł.); (K.T.)
- Correspondence:
| |
Collapse
|
17
|
Phenytoin Regulates Migration and Osteogenic Differentiation by MAPK Pathway in Human Periodontal Ligament Cells. Cell Mol Bioeng 2021; 15:151-160. [DOI: 10.1007/s12195-021-00700-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
|
18
|
Oh H, Kim E, Lee S, Park S, Chen D, Shin SJ, Kim E, Kim S. Comparison of Biocompatibility of Calcium Silicate-Based Sealers and Epoxy Resin-Based Sealer on Human Periodontal Ligament Stem Cells. MATERIALS 2020; 13:ma13225242. [PMID: 33233519 PMCID: PMC7699603 DOI: 10.3390/ma13225242] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022]
Abstract
The aim of this study was to evaluate the biocompatibility of calcium silicate-based sealers (CeraSeal and EndoSeal TCS) and epoxy resin-based sealer (AH-Plus) in terms of cell viability, inflammatory response, expression of mesenchymal phenotype, osteogenic potential, cell attachment, and morphology, of human periodontal ligament stem cells (hPDLSCs). hPDLSCs were acquired from the premolars (n = 4) of four subjects, whose ages extended from 16 to 24 years of age. Flow cytometry analysis showed stemness of hPDLSCs was maintained in all materials. In cell viability test, AH-Plus showed the lowest cell viability, and CeraSeal showed significantly higher cell viability than others. In ELISA test, AH-Plus showed higher expression of IL-6 and IL-8 than calcium silicate-based sealers. In an osteogenic potential test, AH-Plus showed a lower expression level than other material; however, EndoSeal TCS showed a better expression level than others. All experiments were repeated at least three times per cell line. Scanning electronic microscopy studies showed low degree of cell proliferation on AH-Plus, and high degree of cell proliferation on calcium silicate-based sealers. In this study, calcium silicate-based sealers appear to be more biocompatible and less cytotoxic than epoxy-resin based sealers.
Collapse
Affiliation(s)
- Hanseul Oh
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea; (H.O.); (E.K.); (S.L.); (D.C.); (E.K.)
| | - Egan Kim
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea; (H.O.); (E.K.); (S.L.); (D.C.); (E.K.)
| | - Sukjoon Lee
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea; (H.O.); (E.K.); (S.L.); (D.C.); (E.K.)
| | - Soyeon Park
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea;
| | - Dongzi Chen
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea; (H.O.); (E.K.); (S.L.); (D.C.); (E.K.)
| | - Su-Jung Shin
- Department of Conservative Dentistry, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry, 211 Eonju-Ro, Gangnam-Gu, Seoul 06273, Korea;
| | - Euiseong Kim
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea; (H.O.); (E.K.); (S.L.); (D.C.); (E.K.)
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea;
- Department of Electrical & Electronic Engineering, Yonsei University College of Engineering, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Sunil Kim
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea; (H.O.); (E.K.); (S.L.); (D.C.); (E.K.)
- Correspondence: ; Tel.: +82-2-2228-3148
| |
Collapse
|
19
|
Araújo Lopes JM, Benetti F, Rezende GC, Souza MT, Conti LC, Ervolino E, Jacinto RC, Zanotto ED, Cintra LTA. Biocompatibility, induction of mineralization and antimicrobial activity of experimental intracanal pastes based on glass and glass‐ceramic materials. Int Endod J 2020; 53:1494-1505. [DOI: 10.1111/iej.13382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- J. M. Araújo Lopes
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - F. Benetti
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
- Endodontic Section Department of Restorative Dentistry School of Dentistry Universidade Federal de Minas Gerais Belo HorizonteBrazil
| | - G. C. Rezende
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - M. T. Souza
- Vitreous Materials Laboratory (LaMaV) Department of Materials Engineering Federal University of São Carlos (UFSCar) São CarlosBrazil
| | - L. C. Conti
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - E. Ervolino
- Department of Basic Science School of Dentistry São Paulo State University (Unesp) Araçatuba Brazil
| | - R. C. Jacinto
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - E. D. Zanotto
- Vitreous Materials Laboratory (LaMaV) Department of Materials Engineering Federal University of São Carlos (UFSCar) São CarlosBrazil
| | - L. T. A. Cintra
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| |
Collapse
|
20
|
Ayoub S, Cheayto A, Bassam S, Najar M, Berbéri A, Fayyad-Kazan M. The Effects of Intracanal Irrigants and Medicaments on Dental-Derived Stem Cells Fate in Regenerative Endodontics: An update. Stem Cell Rev Rep 2020; 16:650-660. [PMID: 32394343 DOI: 10.1007/s12015-020-09982-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regenerative endodontics is a biologically based treatment designed for immature permanent teeth with necrotic pulp to replace dentin and root structures, as well as dental pulp cells. This procedure has become a part of novel modality in endodontics therapeutic manner, and it is considered as an alternative to apexification. In the last decade, numerous case reports, which describe this procedure, have been published. This therapeutic approach succeeded due to its lower financial cost and ease of performance. Although the clinical protocol of this procedure is not standardized and the effects of irrigants and medicaments on dental stem cells fate remain somewhat ambiguous, however when successful, it is an improvement of endodontics treatment protocols which leads to continued root development, increased dentinal wall thickness, and apical closure of immature teeth. To ensure a successful regenerative procedure, it is essential to investigate the appropriate disinfection protocols and the use of biocompatible molecules in order to control the release of growth factors and the differentiation of stem cells. This is the first review in the literature to summarize the present knowledge regarding the effect of intracanal irrigants and medicaments on the dental derived stem cells fate in regenerative endodontic procedures.
Collapse
Affiliation(s)
- Sara Ayoub
- Department of Prosthodontics, Faculty of Dental Medicine, Lebanese University, Hadath, Beirut, Lebanon
| | - Ali Cheayto
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Hadath, Beirut, Lebanon
| | - Sanaa Bassam
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Hadath, Beirut, Lebanon
| | - Mehdi Najar
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Osteoarthritis Research Unit, Department of Medicine, Research Center (CRCHUM), University of Montreal Hospital, University of Montreal, Montreal, QC, Canada
| | - Antoine Berbéri
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Hadath, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
21
|
Wu JL, McIntyre PW, Hong JM, Yassen GH, Bruzzaniti A. Effects of radiopaque double antibiotic pastes on the proliferation, alkaline phosphatase activity and mineral deposition of dental pulp stem cells. Arch Oral Biol 2020; 117:104764. [PMID: 32485262 DOI: 10.1016/j.archoralbio.2020.104764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of two radiopaque agents, barium sulfate (BaSO4) or zirconium oxide (ZrO2) in double antibiotic paste (DAP), on the proliferation and mineral deposition of human dental pulp stem cells (DPSC). MATERIALS AND METHODS Radiopaque antimicrobial medicaments composed of methylcellulose (MC) thickening polymer with BaSO4 or ZrO2 and either 1 or 5 mg/mL DAP (equal portions of metronidazole and ciprofloxacin) were used to investigate DPSC proliferation after 3 days, and alkaline phosphatase (ALP) activity and mineral deposition after 7 and 14 days. Radiopaque agents without DAP and Ca(OH)2 were used as controls. RESULTS MC-BaSO4 DAP and MC-ZrO2 DAP at 1 or 5 mg/mL had no adverse effect on DPSC proliferation, compared to the media and MC controls. MC-ZrO2 (DAP-free) greatly increased ALP activity after 7 days. DPSC mineral deposition was modestly reduced at 7 days by MC-BaSO4 DAP and MC-ZrO2 DAP, but not by DAP-free radiopaque agents, and was most reduced by 5 mg/mL DAP in the 14-day cultures. CONCLUSIONS MC-BaSO4 or MC-ZrO2 medicaments containing up to 5 mg/mL of DAP supported the proliferation and early osteogenic differentiation of DPSC. Low DAP concentrations and short culture times led to more favorable effects on ALP activity and mineral deposition by DPSC. The findings suggest that radiopaque agents added for the purpose of detecting whether medicaments occupy the full extent of the root canal may have clinical applications. Radiopaque antibiotic medicaments containing low DAP concentrations may be an alternative to Ca(OH)2 for regenerative endodontic procedures.
Collapse
Affiliation(s)
- Jennifer L Wu
- Department of Biomedical Sciences & Comprehensive Care, Indiana University School of Dentistry, 1121 W Michigan St, Indianapolis, IN, 46202, USA
| | - Patrick W McIntyre
- Department of Biomedical Sciences & Comprehensive Care, Indiana University School of Dentistry, 1121 W Michigan St, Indianapolis, IN, 46202, USA
| | - Jung Min Hong
- Department of Biomedical Sciences & Comprehensive Care, Indiana University School of Dentistry, 1121 W Michigan St, Indianapolis, IN, 46202, USA
| | - Ghaeth H Yassen
- Department of Endodontics, Case Western Reserve School of Dental Medicine, 2124 Cornell Rd, Cleveland, OH, 44106, USA.
| | - Angela Bruzzaniti
- Department of Biomedical Sciences & Comprehensive Care, Indiana University School of Dentistry, 1121 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
22
|
Ebrahimpour N, Mehrabani M, Iranpour M, Kordestani Z, Mehrabani M, Nematollahi MH, Asadipour A, Raeiszadeh M, Mehrbani M. The efficacy of a traditional medicine preparation on second-degree burn wounds in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112570. [PMID: 31945402 DOI: 10.1016/j.jep.2020.112570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 12/08/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lime Salve (L.S) has been well documented from the 9th to the 19th century AD by traditional Iranian medicine (TIM) as an effective remedy for burn healing. AIM OF THE STUDY The present study was undertaken to evaluate the healing effect and related underlying mechanisms of Lime Salve in a model of deep second-degree thermal burn in male Wistar rats. MATERIALS AND METHOD L.S was made up of a combination of refined calcium hydroxide powder, beeswax and sesame oil and its quality control was assessed. A deep second-degree burn was created by a hot plate in 48 male Wistar rats. Afterwards, they were randomly divided into four groups including normal saline (C group), L.S (T group), basement of formulation composed of beeswax and sesame oil (B group) and silver sulfadiazine (S group). On days 5, 10, 17 and 24, the wounds were digitally photographed by a camera and after sacrifice of the rats, skin samples were obtained for performing qRT-PCR, immunohistochemistry staining and histological examination. RESULTS L.S prominently augmented the wound closure rate, neovascularization on day 10 and collagen formation on days 17 and 24 in comparison with the C group. Furthermore, the Salve-exposed specimens showed a significant higher epithelialization during the experiment with a peak on day 24. qRT-PCR also showed that on day 10, VEGF and TGF-β1 genes were significantly higher in the T group as compared with the C group. Also, MMP-9 and MMP-2 genes had a significant peak of expression on day 17 and rapid reduction of expression on day 24. Expression levels of IL-6 and TNF-α genes peaked on day 10 in the T group, followed by a progressive reduction until the end of the examination. CONCLUSION L.S could effectively accelerate the healing process of deep second-degree burn wounds and therefore, it may be recommended as a promising topical medication for treating burn wounds in the future clinical trials.
Collapse
Affiliation(s)
- Nasser Ebrahimpour
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehrnaz Mehrabani
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zeinab Kordestani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran.
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Asadipour
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Medical Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahboobeh Raeiszadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Department of Traditional Pharmacy, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehrzad Mehrbani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
23
|
In Vitro Effect of Putty Calcium Silicate Materials on Human Periodontal Ligament Stem Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New bioactive materials have been developed for retrograde root filling. These materials come into contact with vital tissues and facilitate biomineralization and apical repair. The objective of this study was to evaluate the cytocompatibility and bioactivity of two bioactive cements, Bio-C Repair (Angelus, Londrina, Pr, Brazil) and TotalFill BC RRM putty (FGK, Dentaire SA, La-Chaux-de-fonds, Switzerland). The biological properties in human periodontal ligament stem cells (hPDLSCs) that were exposed to Bio-C Repair and TotalFill BC RRM putty were studied. Cell viability, migration, and cell adhesion were analyzed. Moreover, qPCR and mineralization assay were performed to evaluate the bioactivity potential of these cements. The results were statistically analyzed using ANOVA and the Tukey test (p < 0.05). It was observed that cell viability and cell migration in Bio-C Repair and TotalFill BC RRM putty were similar to the control without statistically significant differences, except at 72 h when TotalFill BC RRM putty was slightly lower (p < 0.05). Excellent cell adhesion and morphology were observed with both Bio-C Repair and TotalFill BC RRM putty. Both cements promoted the osteo- and cementogenic differentiation of hPDLSCs. These results suggest that Bio-C Repair and TotalFill BC RRM putty are biologically appropriate materials to be used as retrograde obturation material.
Collapse
|
24
|
Huang Y, Deng H, Fan Y, Zheng L, Che J, Li X, Aifantis KE. Conductive nanostructured Si biomaterials enhance osteogeneration through electrical stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109748. [PMID: 31349398 DOI: 10.1016/j.msec.2019.109748] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/05/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
It is well known that the differentiation of stem cells is affected by the cell culture medium, the scaffold surface and electrochemical signals. However, stimulation of patterned biomaterials seeded with stem cell cultures has not been explored. Herein the effect of electrical stimulation on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) cultured on solid and nanoporous micropyramid patterned Si surfaces was evaluated. It was found that both stimulation and scaffold patterning significantly enhanced osteo-differentiation. The stimulated nanoporous micropyramid scaffolds were more promising compared to the stimulated solid micropyramid surfaces, as they significantly promoted the osteogenic differentiation of rBMSCs via BMP/Smad signaling pathway. Particularly, as compared to the unstimulated patterned biomaterials, the stimulated patterned scaffolds allowed for a significant increase in core binding factor alpha l, alkaline phosphatase, the alpha l chain of type I Col, osteocalcin, and osteonectin, all of which are characteristic for osteo-differentiation. The proposed combination of electrical stimulation with scaffold patterning may provide novel promising strategies for bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | | | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Lisha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Jifei Che
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Katerina E Aifantis
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
25
|
Wu A, Bao Y, Yu H, Zhou Y, Lu Q. Berberine Accelerates Odontoblast Differentiation by Wnt/β-Catenin Activation. Cell Reprogram 2019; 21:108-114. [PMID: 30969881 DOI: 10.1089/cell.2018.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Berberine, a Chinese medical herbal extract, plays a key role in antidiabetic, antiangiogenesis, anti-inflammatory, antimicrobial, anticancer, and antihypercholesterolemic. Our previous studies revealed that berberine exerted odontoprotective effect by increasing odontoblast differentiation. However, the mechanisms involved in the odontoprotective effect of berberine have not been fully explored. The Wnt/β-catenin pathway is involved in odontoblast differentiation of dental pulp stem cells (DPSCs). If β-catenin is nuclear translocation, the Wnt/β-catenin pathway is activation. In this study, DPSCs were treated with or without berberine. Then, we examined the accelerative effects of berberine on odontoblast differentiation and mineralized nodules formation by real-time polymerase chain reaction, alizarin red S staining, and alkaline phosphatase staining. In addition, while treated with berberine, β-catenin translocated to the nucleus evaluated by western blot and immunofluorescent staining. Our results revealed that berberine functions as a promoter of odontoblast differentiation by promoting Wnt/β-catenin pathway, suggesting that it may be useful in guiding therapeutic strategies for the treatment of dental caries.
Collapse
Affiliation(s)
- Anqian Wu
- 1 Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yueqi Bao
- 2 Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hongqiang Yu
- 1 Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yanmin Zhou
- 1 Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin, China.,3 Department of Implantology, Stomatological Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Lu
- 4 Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
26
|
Okamoto M, Takahashi Y, Komichi S, Ali M, Watanabe M, Hayashi M. Effect of tissue inhibitor of metalloprotease 1 on human pulp cells in vitro and rat pulp tissue in vivo. Int Endod J 2019; 52:1051-1062. [PMID: 30761555 DOI: 10.1111/iej.13099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
AIM To evaluate the dentinogenetic effects of tissue inhibitor of metalloprotease (TIMP1) on human pulp cells in vitro and rat pulp tissue in vivo. METHODOLOGY The effect of TIMP1 on pulp cell functions related to hard tissue formation as part of the wound healing process (i.e. biocompatibility, proliferation, differentiation and mineralized nodule formation) was evaluated in vitro and using a direct pulp capping experimental animal model in vivo. The effects of different-sized cavity preparations on hard tissue formation induced by ProRoot MTA at 2 weeks were evaluated using micro-computed tomography (micro-CT). Tertiary dentine formation quality and quantity after pulp capping using TIMP1, ProRoot MTA and phosphate-buffered saline (PBS) was also evaluated after 4 weeks using micro-CT in term of dentine volume (DV), dentine mineral density (DVD) and histological analysis. The data were evaluated by Student's t-test, one-way ANOVA with Tukey's post hoc test, the Kruskal-Wallis test or the Steel-Dwass test. P values < 0.05 were considered statistically significant. RESULTS TIMP1 significantly stimulated dental pulp stem cell proliferation, differentiation, and mineralization and was more biocompatible compared with the PBS control (P < 0.05). In the pulp capping model, the amount of tertiary dentine that formed was directly proportional to the size of the pulp exposure; greater amounts of tertiary dentine were observed in pulps with larger exposures after 2 weeks. 4-week samples of TIMP1 and ProRoot MTA had similar characteristics, but both sample significantly induced tertiary dentine formation beneath the cavity compared with PBS (P < 0.05) under standardized cavity preparations. CONCLUSIONS TIMP1 has an important role in pulpal wound healing, which makes it a potential biological pulp capping material and candidate molecule for regenerative endodontic therapy.
Collapse
Affiliation(s)
- M Okamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Y Takahashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Komichi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Ali
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Watanabe
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
27
|
Liu H, Chen B, Li Y. microRNA-203 promotes proliferation, differentiation, and migration of osteoblasts by upregulation of Msh homeobox 2. J Cell Physiol 2019; 234:17639-17648. [PMID: 30854680 DOI: 10.1002/jcp.28387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022]
Abstract
Despite the improvements in fracture healing, about 10% of patients undergo abnormal healing. As a tumor suppressor, upregulation of microRNA (miR)-203 has been observed in osteogenic differentiation. Herein, we aimed to explore the functional role of miR-203 in osteoblasts as well as the underlying mechanisms. The expression of miR-203 in MC3T3-E1 cells that underwent osteogenic differentiation was determined by quantitative reverse transcription PCR (qRT-PCR). The effects of aberrantly expressed miR-203 on cell viability, migration, and expressions of proteins associated with proliferation, migration, and osteogenic differentiation were measured by using a Cell Counting Kit-8 assay, Transwell cell migration assay, and western blot/qRT-PCR, respectively. The possible downstream factor of miR-203 was subsequently studied. Finally, involvements of the mitogen-activated protein kinase (MAPK)/activator of transcription (STAT) pathways were assessed by western blot. We found that the miR-203 level was increased in osteogenic differentiation of MC3T3-E1 cells with increasing duration time (28th day, p < 0.001). After cell transfection, we interestingly found that miR-203 overexpression could increase cell viability (p < 0.05), promote proliferation, migration (p < 0.05), and osteogenic differentiation, and upregulate Msh homeobox 2 (Msx2) expression. Furthermore, Msx2 knockdown was proved to abrogate the effects of miR-203 overexpression on MC3T3-E1 cells. Finally, phosphorylated levels of key kinases in the MAPK/STAT pathways were increased by miR-203 overexpression via upregulating Msx2 expression. In conclusion, miR-203 overexpression promoted proliferation, migration, and osteogenic differentiation of MC3T3-E1 cells through upregulating Msx2 along with activation of the MAPK/STAT pathways.
Collapse
Affiliation(s)
- Haochuan Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
28
|
Klein‐Júnior CA, Reston E, Plepis AM, Martins VC, Pötter IC, Lundy F, Hentschke GS, Hentschke VS, Karim IE. Development and evaluation of calcium hydroxide‐coated, pericardium‐based biomembranes for direct pulp capping. ACTA ACUST UNITED AC 2018; 10:e12380. [DOI: 10.1111/jicd.12380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Celso A. Klein‐Júnior
- Department of Operative DentistryLutheran University of Brazil, Cachoeira do Sul Brazil
| | - Eduardo Reston
- Department of Operative DentistryLutheran University of Brazil, Cachoeira do Sul Brazil
| | - Ana M. Plepis
- Department of BiomaterialsState University of São Paulo São Paulo Brazil
| | | | - Isabel C. Pötter
- Department of Operative DentistryLutheran University of Brazil, Cachoeira do Sul Brazil
| | - Fionnuala Lundy
- Centre for Experimental MedicineQueen’s University Belfast Belfast UK
| | | | - Vítor S. Hentschke
- Department of Operative DentistryLutheran University of Brazil, Cachoeira do Sul Brazil
| | - Ikhlas El Karim
- Centre for Experimental MedicineQueen’s University Belfast Belfast UK
| |
Collapse
|
29
|
McIntyre PW, Wu JL, Kolte R, Zhang R, Gregory RL, Bruzzaniti A, Yassen GH. The antimicrobial properties, cytotoxicity, and differentiation potential of double antibiotic intracanal medicaments loaded into hydrogel system. Clin Oral Investig 2018; 23:1051-1059. [DOI: 10.1007/s00784-018-2542-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
|
30
|
Elucidation on Predominant Pathways Involved in the Differentiation and Mineralization of Odontoblast-Like Cells by Selective Blockade of Mitogen-Activated Protein Kinases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2370438. [PMID: 29675422 PMCID: PMC5838463 DOI: 10.1155/2018/2370438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/21/2018] [Indexed: 12/12/2022]
Abstract
Aim To analyze the effect of three mitogen-activated protein kinase (MAPK) inhibitors, namely, SB202190 (p38 inhibitor), SP600125 (JNK inhibitor), and PD98059 (ERK inhibitor) in Dex-stimulated MDPC-23 cell differentiation and mineralization. Methods Experiment was divided into five groups, control (cells without Dex and inhibitors treatment), Dex (cells with Dex treatment but without inhibitors), Dex + SB202190, Dex + SP600125, and Dex + PD98059. Cell differentiation was assessed by alkaline phosphatase (ALP) activity assay and real time RT-PCR. Cell mineralization was investigated by alizarin red staining. Results Exposure to SB202190 (20 μM) significantly decreased the mineral deposition in Dex-treated cells as demonstrated by alizarin red staining. Treatment of SP600125 (20 μM) attenuated the mineralization as well, albeit at a lower degree as compared to SB202190 (20 μM). Similarly, SB202190 (20 μM) completely abrogated the ALP activity stimulated by Dex at six days in culture, while no changes were observed with regard to ALP activity in SP600125 (20 μM) and PD98059 (20 μM) treated cells. The upregulation of bone sialoprotein (BSP), ALP, and osteopontin (OPN) in Dex challenged cells was completely inhibited by SB202190. Conclusion Blockade of p38-MAPK signaling pathway resulted in significant inhibition of ALP activity, mineralization, and downregulation of osteogenic markers. The data implicated that p38 signaling pathway plays a critical role in the regulation of MDPC-23 cells differentiation and mineralization.
Collapse
|
31
|
Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, Lozano A, Castelo-Baz P, Moraleda JM, Rodríguez-Lozano FJ. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J 2017; 50 Suppl 2:e63-e72. [DOI: 10.1111/iej.12859] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Affiliation(s)
- C. J. Tomás-Catalá
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
- Faculty of Medicine; School of Dentistry; University of Murcia; Murcia Spain
| | - M. Collado-González
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
| | - D. García-Bernal
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
| | - R. E. Oñate-Sánchez
- Faculty of Medicine; School of Dentistry; University of Murcia; Murcia Spain
| | - L. Forner
- Department of Stomatology; University de Valencia; Valencia Spain
| | - C. Llena
- Department of Stomatology; University de Valencia; Valencia Spain
| | - A. Lozano
- Department of Stomatology; University de Valencia; Valencia Spain
| | - P. Castelo-Baz
- University of Santiago de Compostela; Santiago de Compostela Spain
| | - J. M. Moraleda
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
| | - F. J. Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
- Faculty of Medicine; School of Dentistry; University of Murcia; Murcia Spain
| |
Collapse
|
32
|
Kim DK, Kim JI, Hwang TI, Sim BR, Khang G. Bioengineered Osteoinductive Broussonetia kazinoki/Silk Fibroin Composite Scaffolds for Bone Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1384-1394. [PMID: 28001353 DOI: 10.1021/acsami.6b14351] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this article, Broussonetia kazinoki (BK) powdery extract is utilized to modify the silk fibroin (SF) scaffold and applied to the bone defect area. The BK/SF scaffold is an efficient cell carrier which promotes cell proliferation and osteogenic differentiation of rBMSCs (bone marrow derived mesenchymal stem cells). We confirmed biocompatibility and osteogenic differentiation capacity of BK/SF scaffolds compared to pristine SF scaffold in both in vitro and in vivo evaluation. Gene expression related to osteogenic differentiation and bone regeneration significantly upregulated in the BK/SF scaffold group. The implanted scaffolds were attached well to the surface of the bone defect region and integrated with surrounding tissues without significant inflammatory reaction. Furthermore, almost 45% of bone volume has been recovered at 8 weeks postsurgery, while the SF and control group showed 20% recovery. These results suggest that BK powdery extract incorporated with an SF scaffold might be a suitable substitute for an alternative bone graft for bone regeneration.
Collapse
Affiliation(s)
- Do Kyung Kim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University , Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Jeong In Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University , Jeonju 561-756, Republic of Korea
| | - Tae In Hwang
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University , Jeonju 561-756, Republic of Korea
| | - Bo Ra Sim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University , Deokjin-gu, Jeonju 561-756, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University , Deokjin-gu, Jeonju 561-756, Republic of Korea
| |
Collapse
|