1
|
Darwish OB, Aziz SMA, Sadek HS. Healing potentiality of blood clot, S-PRF and A-PRF as scaffold in treatment of non-vital mature single rooted teeth with chronic peri-apical periodontitis following regenerative endodontic therapy: randomized clinical trial. BMC Oral Health 2025; 25:50. [PMID: 39789544 PMCID: PMC11715601 DOI: 10.1186/s12903-024-05378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVES This randomized prospective controlled trial investigated the effectiveness of different strategies of regenerative endodontic therapy on necrotic mature anterior teeth with chronic periapical periodontitis with 18 months follow up. METHODS A total analyzed 51 adult participant with mature single rooted teeth having necrotic pulp with chronic periapical periodontitis (PAI ≥ 3) were selected. Patients had been randomly categorized into three distinct groups (n = 17 each group). All groups received the same treatment on the first visit. After 2 weeks, regenerative treatment was performed using either blood clot technique, Standard-PRF and Advanced-PRF approach. A standardized radiograph was taken, and the patients instructed for 6, 12 and 18 months follow up periods. Fisher's exact test was applied to compare the frequency of PAI scores at different follow-up intervals between the three groups. RESULTS The results showed radiographic success at 18 months (58.8% in blood group, 94.1% in S-PRF group and 76.5% in A-PRF group). There was no statistically significant difference between the three groups according to incidence of healing at 6, 12 and 18 months. Clinical success was 82.4% in blood group and 88.2% in both S-PRF and A-PRF groups. There was no significant difference between the three groups (p = 1). The overall success (clinical and radigraphic) was 76.5%. Incidence of the gaining sensitivity after 12 and 18 months was 29.4% with A-PRF group and 41.2% within the S-PRF group, 17.6% with BC group. CONCLUSION PRF based regenerative technique may outperform the blood clot technique in treatment of non-vital mature teeth with chronic periapical periodontitis. There is a need for future randomized clinical studies to consolidate procedures in this field with more prolonged evaluation periods. CLINICAL TRIAL REGISTRATION The study was retrospectively registered with ClinicalTrials.gov (ID: NCT04606719 ) in 28/10/2020.
Collapse
Affiliation(s)
- Omnia Badawy Darwish
- Endodontics Department, Faculty of Dentistry, Cairo University, 11 El-Saraya Street, Manial, Cairo, Egypt.
- Endodontics Department, Faculty of Dentistry, Menofia University, Shibin Al kawm, Menofia, Egypt.
| | | | - Hany Samy Sadek
- Endodontics Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Elnawam H, Thabet A, Mobarak A, Abdallah A, Elbackly R. Preparation and characterization of bovine dental pulp-derived extracellular matrix hydrogel for regenerative endodontic applications: an in vitro study. BMC Oral Health 2024; 24:1281. [PMID: 39448989 PMCID: PMC11515367 DOI: 10.1186/s12903-024-05004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The use of biological scaffolds in regenerative endodontics has gained much attention in recent years. The search for a new biomimetic scaffold that contains tissue-specific cell homing factors could lead to more predictable tissue regeneration. The aim of this study was to prepare and characterize decellularized bovine dental pulp-derived extracellular matrix (P-ECM) hydrogels for regenerative endodontic applications. METHODS Freshly extracted bovine molar teeth were collected. Bovine dental pulp tissues were harvested, and stored at -40º C. For decellularization, a 5-day protocol was implemented incorporating trypsin/EDTA, deionized water and DNase treatment. Decellularization was evaluated by DNA quantification and histological examination to assess collagen and glycosaminoglycans (GAGs) content. This was followed by the preparation of P-ECM hydrogel alone or combined with hyaluronic acid gel (P-ECM + HA). The fabricated scaffolds were then characterized using protein quantification, hydrogel topology and porosity, biodegradability, and growth factor content using Enzyme-linked immunosorbent assay (ELISA): transforming growth factor beta-1(TGF-β1), basic fibroblast growth factor (bFGF), bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). RESULTS Decellularization was histologically confirmed, and DNA content was below (50 ng/mg tissue). P-ECM hydrogel was prepared with a final ECM concentration of 3.00 mg/ml while P-ECM + HA hydrogel was prepared with a final ECM concentration of 1.5 mg/ml. Total protein content in P-ECM hydrogel was found to be (439.0 ± 123.4 µg/µl). P-ECM + HA showed sustained protein release while the P-ECM group showed gradual decreasing release. Degradation was higher in P-ECM + HA which had a significantly larger fiber diameter, while P-ECM had a larger pore area percentage. ELISA confirmed the retention and release of growth factors where P-ECM hydrogel had higher BMP-2 release, while P-ECM + HA had higher release of TGF-β1, bFGF, and VEGF. CONCLUSIONS Both P-ECM and P-ECM + HA retained their bioactive properties demonstrating a potential role as functionalized scaffolds for regenerative endodontic procedures.
Collapse
Affiliation(s)
- Hisham Elnawam
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Abdelrahman Thabet
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmed Mobarak
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Amr Abdallah
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Li XL, Fan W, Fan B. Dental pulp regeneration strategies: A review of status quo and recent advances. Bioact Mater 2024; 38:258-275. [PMID: 38745589 PMCID: PMC11090883 DOI: 10.1016/j.bioactmat.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/18/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
Microorganisms, physical factors such as temperature or mechanical injury, and chemical factors such as free monomers from composite resin are the main causes of dental pulp diseases. Current clinical treatment methods for pulp diseases include the root canal therapy, vital pulp therapy and regenerative endodontic therapy. Regenerative endodontic therapy serves the purpose of inducing the regeneration of new functional pulp tissues through autologous revascularization or pulp tissue engineering. This article first discusses the current clinical methods and reviews strategies as well as the research outcomes regarding the pulp regeneration. Then the in vivo models, the prospects and challenges for regenerative endodontic therapy were further discussed.
Collapse
Affiliation(s)
- Xin-Lu Li
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079, Wuhan, China
| | - Wei Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079, Wuhan, China
| | - Bing Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079, Wuhan, China
| |
Collapse
|
4
|
Bordini EAF, Stuani VDT, Correa LE, Cassiano FB, Lovison MF, Leite ML, Hebling J, de Souza Costa CA, Soares DG. Chitosan-Calcium Aluminate as a Cell-homing Scaffold: Its Bioactivity Testing in a Microphysiological Dental Pulp Platform. Altern Lab Anim 2024; 52:107-116. [PMID: 38351650 DOI: 10.1177/02611929241232558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
In vitro models of the dental pulp microenvironment have been proposed for the assessment of biomaterials, to minimise animal use in operative dentistry. In this study, a scaffold/3-D dental pulp cell culture interface was created in a microchip, under simulated dental pulp pressure, to evaluate the cell-homing potential of a chitosan (CH) scaffold functionalised with calcium aluminate (the 'CHAlCa scaffold'). This microphysiological platform was cultured at a pressure of 15 cm H2O for up to 14 days; cell viability, migration and odontoblastic differentiation were then assessed. The CHAlCa scaffold exhibited intense chemotactic potential, causing cells to migrate from the 3-D culture to its surface, followed by infiltration into the macroporous structure of the scaffold. By contrast, the cells in the presence of the non-functionalised chitosan scaffold showed low cell migration and no cell infiltration. CHAlCa scaffold bioactivity was confirmed in dentin sialophosphoprotein-positive migrating cells, and odontoblastic markers were upregulated in 3-D culture. Finally, in situ mineralised matrix deposition by the cells was confirmed in an Alizarin Red-based assay, in which the CHAlCa and CH scaffolds were adapted to fit within dentin discs. More intense deposition of matrix was observed with the CHAlCa scaffold, as compared to the CH scaffold. In summary, we present an in vitro platform that provides a simple and reproducible model for selecting and developing innovative biomaterials through the assessment of their cell-homing potential. By using this platform, it was shown that the combination of calcium aluminate and chitosan has potential as an inductive biomaterial that can mediate dentin tissue regeneration during cell-homing therapies.
Collapse
Affiliation(s)
- Ester Alves Ferreira Bordini
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Vitor de Toledo Stuani
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Lígia Espoliar Correa
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Fernanda Balestrero Cassiano
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Marcella Fernandes Lovison
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Maria Luisa Leite
- Department of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Josimeri Hebling
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| |
Collapse
|
5
|
Widbiller M, Knüttel H, Meschi N, Durán-Sindreu Terol F. Effectiveness of endodontic tissue engineering in treatment of apical periodontitis: A systematic review. Int Endod J 2023; 56 Suppl 3:533-548. [PMID: 35699668 DOI: 10.1111/iej.13784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Regenerative endodontics has evolved in recent years with tissue engineering concepts in particular appearing promising. Endodontic tissue engineering (ETE) describes the various approaches based on the orthograde introduction of scaffolds or biomaterials (with or without cells) into the root canal to achieve pulp tissue regeneration. There are currently no systematic reviews investigating whether ETE is a suitable method for the treatment of endodontic disease in both mature and immature permanent teeth. OBJECTIVES The purpose of this systematic review was to determine the effectiveness of ETE in permanent teeth with pulp necrosis in comparison with conventional endodontic treatment. METHODS We searched MEDLINE, Embase and the Cochrane Library for published reports as well as Google Scholar for grey literature up to November 2021. Included were studies of patients with permanent immature or mature teeth and pulp necrosis with or without signs of apical periodontitis (P) comparing ETE (I) with calcium hydroxide apexification, apical plug and root canal treatment (C) in terms of tooth survival, pain, tenderness, swelling, need for medication (analgesics and antibiotics), radiographic evidence of reduction in apical lesion size, radiographic evidence of normal periodontal ligament space, function (fracture and restoration longevity), the need for further intervention, adverse effects (including exacerbation, restoration integrity, allergy and discolouration), oral health-related quality of life (OHRQoL), presence of sinus tract and response to sensibility testing (O). An observation period of at least 12 months was mandatory (T) and the number of patients in human experimental studies or longitudinal observational studies had to be at least 20 (10 in each arm) at the end (S). Risk of bias was appraised using the Cochrane risk-of-bias (RoB 2) tool. Two authors independently screened the records, assessed full texts for eligibility and evaluated risk of bias. Heterogeneity of outcomes and limited body of evidence did not allow for meta-analysis. RESULTS Two randomized clinical trials investigating cell transplantation approaches with a total of 76 participants (40 treated immature teeth and 36 treated mature teeth) were included for qualitative analysis. Both studies had moderate concerns in terms of risk of bias. Due to the lack of homogeneity a meta-analysis was not possible. Tooth survival for ETE, root canal treatment and apexification was 100% after 12 months. Teeth treated with ETE showed a higher number of cases with positive pulpal responses to sensitivity tests and with blood perfusion compared with root canal treatment or apexification. DISCUSSION This systematic review highlights that there is limited evidence for ETE approaches. Even though the results of this review suggest a high survival with ETE in mature and immature teeth, there is a moderate risk of bias due to methodological limitations in the included studies, so the overall results should be interpreted with caution. Lack of a robust control group was a common problem during literature screening, and outcomes besides dental survival were reported inconsistently. Future clinical trials need to address methodical as well as assessment concerns and report long-term results. CONCLUSION The benefits and high survival rates reported for ETE techniques suggest that this procedure might be an alternative to conventional procedures for permanent teeth with pulpal necrosis. However, more appropriate studies are needed to derive clinical recommendations. REGISTRATION PROSPERO (CRD42021266350).
Collapse
Affiliation(s)
- Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Helge Knüttel
- University Library, University of Regensburg, Regensburg, Germany
| | - Nastaran Meschi
- Department of Oral Health Sciences, BIOMAT - Biomaterials Research Group, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
6
|
Astudillo-Ortiz E, Babo PS, Sunde PT, Galler KM, Gomez-Florit M, Gomes ME. Endodontic Tissue Regeneration: A Review for Tissue Engineers and Dentists. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:491-513. [PMID: 37051704 DOI: 10.1089/ten.teb.2022.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The paradigm shift in the endodontic field from replacement toward regenerative therapies has witnessed the ever-growing research in tissue engineering and regenerative medicine targeting pulp-dentin complex in the past few years. Abundant literature on the subject that has been produced, however, is scattered over diverse areas of knowledge. Moreover, the terminology and concepts are not always consensual, reflecting the range of research fields addressing this subject, from endodontics to biology, genetics, and engineering, among others. This fact triggered some misinterpretations, mainly when the denominations of different approaches were used as synonyms. The evaluation of results is not precise, leading to biased conjectures. Therefore, this literature review aims to conceptualize the commonly used terminology, summarize the main research areas on pulp regeneration, identify future trends, and ultimately clarify whether we are really on the edge of a paradigm shift in contemporary endodontics toward pulp regeneration.
Collapse
Affiliation(s)
- Esteban Astudillo-Ortiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Endodontics, School of Dentistry, University of Cuenca, Cuenca, Ecuador
| | - Pedro S Babo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Pia T Sunde
- Department of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
7
|
Leveque M, Bekhouche M, Farges JC, Aussel A, Sy K, Richert R, Ducret M. Bioactive Endodontic Hydrogels: From Parameters to Personalized Medicine. Int J Mol Sci 2023; 24:14056. [PMID: 37762359 PMCID: PMC10531297 DOI: 10.3390/ijms241814056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Regenerative endodontic procedures (REPs) aim at recreating dental pulp tissue using biomaterials such as hydrogels. Their bioactivity is mostly related to the nature of biomolecules or chemical compounds that compose the endodontic hydrogel. However, many other parameters, such as hydrogel concentration, bioactive molecules solubility, and apex size, were reported to influence the reciprocal host-biomaterial relationship and hydrogel behavior. The lack of knowledge regarding these various parameters, which should be considered, leads to the inability to predict the clinical outcome and suggests that the biological activity of endodontic hydrogel is impossible to anticipate and could hinder the bench-to-bedside transition. We describe, in this review, that most of these parameters could be identified, described, and studied. A second part of the review lists some challenges and perspectives, including development of future mathematical models that are able to explain, and eventually predict, the bioactivity of endodontic hydrogel used in a clinical setting.
Collapse
Affiliation(s)
- Marianne Leveque
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/UCBL, 69007 Lyon, France; (M.L.); (M.B.); (J.-C.F.)
| | - Mourad Bekhouche
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/UCBL, 69007 Lyon, France; (M.L.); (M.B.); (J.-C.F.)
| | - Jean-Christophe Farges
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/UCBL, 69007 Lyon, France; (M.L.); (M.B.); (J.-C.F.)
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (K.S.); (R.R.)
- Service d’Odontologie, Hospices Civils de Lyon, 69007 Lyon, France
| | - Audrey Aussel
- BIOTIS—Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, 33076 Bordeaux, France;
- UFR d’Odontologie, Université de Bordeaux, 33600 Bordeaux, France
- CHU de Bordeaux, Pôle de Médecine et Chirurgie Bucco-Dentaire, 33076 Bordeaux, France
| | - Kadiatou Sy
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (K.S.); (R.R.)
- Service d’Odontologie, Hospices Civils de Lyon, 69007 Lyon, France
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Raphaël Richert
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (K.S.); (R.R.)
- Service d’Odontologie, Hospices Civils de Lyon, 69007 Lyon, France
| | - Maxime Ducret
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/UCBL, 69007 Lyon, France; (M.L.); (M.B.); (J.-C.F.)
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France; (K.S.); (R.R.)
- Service d’Odontologie, Hospices Civils de Lyon, 69007 Lyon, France
| |
Collapse
|
8
|
Widbiller M, Galler KM. Engineering the Future of Dental Health: Exploring Molecular Advancements in Dental Pulp Regeneration. Int J Mol Sci 2023; 24:11453. [PMID: 37511210 PMCID: PMC10380375 DOI: 10.3390/ijms241411453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Protected by the surrounding mineralized barriers of enamel, dentin, and cementum, dental pulp is a functionally versatile tissue that fulfills multiple roles [...].
Collapse
Affiliation(s)
- Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, D-93093 Regensburg, Germany
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nuernberg, D-91054 Erlangen, Germany
| |
Collapse
|
9
|
Noohi P, Abdekhodaie MJ, Saadatmand M, Nekoofar MH, Dummer PMH. The development of a dental light curable PRFe-loaded hydrogel as a potential scaffold for pulp-dentine complex regeneration: An in vitro study. Int Endod J 2023; 56:447-464. [PMID: 36546662 DOI: 10.1111/iej.13882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
AIM The study aimed to develop a bicomponent bioactive hydrogel formed in situ and enriched with an extract of platelet-rich fibrin (PRFe) and to assess its potential for use in pulp-dentine complex tissue engineering via cell homing. METHODOLOGY A bicomponent hydrogel based on photo-activated naturally derived polymers, methacrylated chitosan (ChitMA) and methacrylated collagen (ColMA), plus PRFe was fabricated. The optimized formulation of PRFe-loaded bicomponent hydrogel was determined by analysing the mechanical strength, swelling ratio and cell viability simultaneously. The physical, mechanical, rheological and morphological properties of the optimal hydrogel with and without PRFe were determined. Additionally, MTT, phalloidin/DAPI and live/dead assays were carried out to compare the viability, cytoskeletal morphology and migration ability of stem cells from the apical papilla (SCAP) within the developed hydrogels with and without PRFe, respectively. To further investigate the effect of PRFe on the differentiation of encapsulated SCAP, alizarin red S staining, RT-PCR analysis and immunohistochemical detection were performed. Statistical significance was established at p < .05. RESULTS The optimized formulation of PRFe-loaded bicomponent hydrogel can be rapidly photocrosslinked using available dental light curing units. Compared to bicomponent hydrogels without PRFe, the PRFe-loaded hydrogel exhibited greater viscoelasticity and higher cytocompatibility to SCAP. Moreover, it promoted cell proliferation and migration in vitro. It also supported the odontogenic differentiation of SCAP as evidenced by its promotion of biomineralization and upregulating the gene expression for ALP, COL I, DSPP and DMP1 as well as facilitated angiogenesis by enhancing VEGFA gene expression. CONCLUSIONS The new PRFe-loaded ChitMA/ColMA hydrogel developed within this study fulfils the criteria of injectability, cytocompatibility, chemoattractivity and bioactivity to promote odontogenic differentiation, which are fundamental requirements for scaffolds used in pulp-dentine complex regeneration via cell-homing approaches.
Collapse
Affiliation(s)
- Parisa Noohi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.,Environmental and Applied Science Management, Yeates School of Graduate Studies, Toronto Metropolitan University, Toronto, Canada
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad H Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endodontics, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Ohlsson E, Galler KM, Widbiller M. A Compilation of Study Models for Dental Pulp Regeneration. Int J Mol Sci 2022; 23:ijms232214361. [PMID: 36430838 PMCID: PMC9695686 DOI: 10.3390/ijms232214361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Efforts to heal damaged pulp tissue through tissue engineering have produced positive results in pilot trials. However, the differentiation between real regeneration and mere repair is not possible through clinical measures. Therefore, preclinical study models are still of great importance, both to gain insights into treatment outcomes on tissue and cell levels and to develop further concepts for dental pulp regeneration. This review aims at compiling information about different in vitro and in vivo ectopic, semiorthotopic, and orthotopic models. In this context, the differences between monolayer and three-dimensional cell cultures are discussed, a semiorthotopic transplantation model is introduced as an in vivo model for dental pulp regeneration, and finally, different animal models used for in vivo orthotopic investigations are presented.
Collapse
Affiliation(s)
- Ella Ohlsson
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nuernberg, D-91054 Erlangen, Germany
| | - Kerstin M. Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nuernberg, D-91054 Erlangen, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, D-93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
11
|
Bucchi C, Ohlsson E, de Anta JM, Woelflick M, Galler K, Manzanares-Cespedes MC, Widbiller M. Human Amnion Epithelial Cells: A Potential Cell Source for Pulp Regeneration? Int J Mol Sci 2022; 23:ijms23052830. [PMID: 35269973 PMCID: PMC8911206 DOI: 10.3390/ijms23052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to analyze the suitability of pluripotent stem cells derived from the amnion (hAECs) as a potential cell source for revitalization in vitro. hAECs were isolated from human placentas, and dental pulp stem cells (hDPSCs) and dentin matrix proteins (eDMPs) were obtained from human teeth. Both hAECs and hDPSCs were cultured with 10% FBS, eDMPs and an osteogenic differentiation medium (StemPro). Viability was assessed by MTT and cell adherence to dentin was evaluated by scanning electron microscopy. Furthermore, the expression of mineralization-, odontogenic differentiation- and epithelial–mesenchymal transition-associated genes was analyzed by quantitative real-time PCR, and mineralization was evaluated through Alizarin Red staining. The viability of hAECs was significantly lower compared with hDPSCs in all groups and at all time points. Both hAECs and hDPSCs adhered to dentin and were homogeneously distributed. The regulation of odontoblast differentiation- and mineralization-associated genes showed the lack of transition of hAECs into an odontoblastic phenotype; however, genes associated with epithelial–mesenchymal transition were significantly upregulated in hAECs. hAECs showed small amounts of calcium deposition after osteogenic differentiation with StemPro. Pluripotent hAECs adhere on dentin and possess the capacity to mineralize. However, they presented an unfavorable proliferation behavior and failed to undergo odontoblastic transition.
Collapse
Affiliation(s)
- Cristina Bucchi
- Research Centre for Dental Sciences (CICO), Department of Integral Adult Dentistry, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence:
| | - Ella Ohlsson
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (E.O.); (M.W.); (M.W.)
| | - Josep Maria de Anta
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus de Bellvitge, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.M.d.A.); (M.C.M.-C.)
| | - Melanie Woelflick
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (E.O.); (M.W.); (M.W.)
| | - Kerstin Galler
- Department of Conservative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - María Cristina Manzanares-Cespedes
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus de Bellvitge, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.M.d.A.); (M.C.M.-C.)
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (E.O.); (M.W.); (M.W.)
| |
Collapse
|
12
|
Molecular Biological Comparison of Dental Pulp- and Apical Papilla-Derived Stem Cells. Int J Mol Sci 2022; 23:ijms23052615. [PMID: 35269758 PMCID: PMC8910327 DOI: 10.3390/ijms23052615] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Both the dental pulp and the apical papilla represent a promising source of mesenchymal stem cells for regenerative endodontic protocols. The aim of this study was to outline molecular biological conformities and differences between dental pulp stem cells (DPSC) and stem cells from the apical papilla (SCAP). Thus, cells were isolated from the pulp and the apical papilla of an extracted molar and analyzed for mesenchymal stem cell markers as well as multi-lineage differentiation. During induced osteogenic differentiation, viability, proliferation, and wound healing assays were performed, and secreted signaling molecules were quantified by enzyme-linked immunosorbent assays (ELISA). Transcriptome-wide gene expression was profiled by microarrays and validated by quantitative reverse transcription PCR (qRT-PCR). Gene regulation was evaluated in the context of culture parameters and functionality. Both cell types expressed mesenchymal stem cell markers and were able to enter various lineages. DPSC and SCAP showed no significant differences in cell viability, proliferation, or migration; however, variations were observed in the profile of secreted molecules. Transcriptome analysis revealed the most significant gene regulation during the differentiation period, and 13 biomarkers were identified whose regulation was essential for both cell types. DPSC and SCAP share many features and their differentiation follows similar patterns. From a molecular biological perspective, both seem to be equally suitable for dental pulp tissue engineering.
Collapse
|
13
|
Biomolecule-Mediated Therapeutics of the Dentin–Pulp Complex: A Systematic Review. Biomolecules 2022; 12:biom12020285. [PMID: 35204786 PMCID: PMC8961586 DOI: 10.3390/biom12020285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/09/2022] Open
Abstract
The aim of this systematic review was to evaluate the application of potential therapeutic signaling molecules on complete dentin-pulp complex and pulp tissue regeneration in orthotopic and ectopic animal studies. A search strategy was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement in the MEDLINE/PubMed database. Animal studies evaluating the application of signaling molecules to pulpectomized teeth for pulp tissue or dentin-pulp complex regeneration were included. From 2530 identified records, 18 fulfilled the eligibility criteria and were subjected to detailed qualitative analysis. Among the applied molecules, basic fibroblast growth factor, vascular endothelial growth factor, bone morphogenetic factor-7, nerve growth factor, and platelet-derived growth factor were the most frequently studied. The clinical, radiographical and histological outcome measures included healing of periapical lesions, root development, and apical closure, cellular recolonization of the pulp space, ingrowth of pulp-like connective tissue (vascularization and innervation), mineralized dentin-like tissue formation along the internal dentin walls, and odontoblast-like cells in contact with the internal dentin walls. The results indicate that signaling molecules play an important role in dentin/pulp regeneration. However, further studies are needed to determine a more specific subset combination of molecules to achieve greater efficiency towards the desired tissue engineering applications.
Collapse
|
14
|
Widbiller M, Rosendahl A, Wölflick M, Linnebank M, Welzenbach B, Hiller KA, Buchalla W, Galler KM. Isolation of Endogenous TGF-β1 from Root Canals for Pulp Tissue Engineering: A Translational Study. BIOLOGY 2022; 11:biology11020227. [PMID: 35205093 PMCID: PMC8869556 DOI: 10.3390/biology11020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
Abstract
Simple Summary Tissue engineering of the dental pulp has been a goal of dental research for years. In this translational study, a chairside protocol is designed using endogenous dentin matrix proteins as signaling molecules for pulp regeneration. These bioactive molecules can be isolated from root canals by ultrasonic-activated irrigation, further processed chairside, and mixed with a hydrogel. The scaffold material is to be injected into the root canal and effect cell homing, i.e., allowing stem cells from the periapical space to migrate into the root canal. The aim of this innovative approach is the formation of an innervated and vascularized connective tissue that resembles the pulp in form and function. Abstract Cell homing for dental pulp tissue engineering has been advocated as a feasible approach to regenerate dental pulp in a clinical setting. In order to develop a translational protocol for clinical application, we wanted to determine the effects of disinfectants on the availability of growth factors from the root canal, the amount that can be obtained in this context, and whether they can be processed for use in tissue engineering procedures. The extraction of growth factors should also be confirmed in a clinical setting. Root canals were prepared in 36 extracted mature teeth, and the amount of TGF-β1 in solution was quantified after different irrigation protocols (sodium hypochlorite, chlorhexidine) and after intracanal medication (calcium hydroxide). Centrifugal filters with a cut-off of 10,000 Da and 3000 Da were used for efficient concentration, and volumes and amounts of retained TGF-β1 were measured at different time points. During conventional endodontic treatment, ethylenediaminotetraacetic acid (EDTA) solution was collected after ultrasonic activation from the root canals of mature teeth of 38 patients, and growth factor content was quantified via enzyme-linked immunosorbent assay (ELISA). Irrigation with sodium hypochlorite reduced TGF-β1 release into EDTA. This effect was partially reversed by canal enlargement after the use of sodium hypochlorite and by subsequent use of calcium hydroxide. A few minutes of centrifugation with a cut-off of 10,000 Da reduced the initial volume of the irrigant by 90% and led to a continuous increase in concentration to the same extent. Furthermore, TGF-β1 was obtained from root canals of mature teeth during endodontic treatment in quantities that have been shown to elicit desirable cellular responses in a subsequent clinical application. A mixture with a suitable scaffold material and injection into the root canal has the potential to promote dental pulp regeneration.
Collapse
Affiliation(s)
- Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
- Correspondence:
| | - Andreas Rosendahl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
| | - Melanie Wölflick
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
| | - Moritz Linnebank
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
| | | | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (A.R.); (M.W.); (M.L.); (K.-A.H.); (W.B.)
| | - Kerstin M. Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
15
|
Bakhtiar H, Ashoori A, Rajabi S, Pezeshki-Modaress M, Ayati A, Mousavi MR, Ellini MR, Kamali A, Azarpazhooh A, Kishen A. Human amniotic membrane extracellular matrix scaffold for dental pulp regeneration in vitro and in vivo. Int Endod J 2021; 55:374-390. [PMID: 34923640 DOI: 10.1111/iej.13675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022]
Abstract
AIM In order to obtain a 3-dimentional scaffold with predictable clinical results for pulp regeneration, this study aims to fabricate and characterize a porous decellularized human amniotic membrane (HAM) extracellular matrix (ECM) scaffold, and evaluate its potential to promote pulp regeneration in vitro and in vivo. METHODOLOGY The HAM was decellularized, and its histology and DNA content were analysed to confirm decellularization. The scaffolds were synthesized with 15, 22.5 and 30 mg/ml concentrations. The porosity, pore size, phosphate-buffered saline (PBS) absorption and degradation rate of the scaffolds were assessed. In vitro experiments were performed on human dental pulp stem cells (hDPSCs) to assess their viability, proliferation, adhesion and migration on the scaffolds. The optimal group was selected for in vivo immunogenicity assessment and was also used as the cell-free or cell-loaded scaffold in root segment models to evaluate pulp regeneration. All nonparametric data were analysed with the Kruskal-Wallis test followed by Dunn's post hoc test, whilst quantitative data were analysed with one-way anova. RESULTS Decellularization of HAM was confirmed (p < .05). The porosity of all scaffolds was more than 95%, and the pore size decreased with an increase in ECM concentration (p < .01). PBS absorption was not significantly different amongst the groups, whilst 30 mg/ml ECM scaffold had the highest degradation rate (p < .01). The hDPSCs adhered to the scaffold, whilst their proliferation rate increased over time in all groups (p < .001). Cell migration was higher in 30 mg/ml ECM scaffold (p < .05). In vivo investigation with 30 mg/ml ECM scaffold revealed mild to moderate inflammatory response. In root segments, both cell-free and cell-loaded 30 mg/ml scaffolds were replaced with newly formed, pulp-like tissue with no significant difference between groups. Immunohistochemical assessments revealed high revascularization and collagen content with no significant difference amongst the groups. CONCLUSION The 30 mg/ml HAM ECM scaffold had optimal physical properties and better supported hDPSC migration. The HAM ECM scaffold did not interfere with formation of pulp-like tissue and revascularization within the root canal when employed as both cell-free and cell-loaded scaffold. These results highlight the potential of HAM ECM membrane for further investigations in regenerative endodontics.
Collapse
Affiliation(s)
- Hengameh Bakhtiar
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azin Ashoori
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Alireza Ayati
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Mousavi
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Ellini
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | - Amir Azarpazhooh
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Department of Dentistry, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Department of Dentistry, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines 2021; 9:biomedicines9091085. [PMID: 34572271 PMCID: PMC8469189 DOI: 10.3390/biomedicines9091085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for regenerative purposes has become common in a large variety of diseases. In the dental and maxillofacial field, there are emerging clinical needs that could benefit from MSC-based therapeutic approaches. Even though MSCs can be isolated from different tissues, such as bone marrow, adipose tissue, etc., and are known for their multilineage differentiation, their different anatomical origin can affect the capability to differentiate into a specific tissue. For instance, MSCs isolated from the oral cavity might be more effective than adipose-derived stem cells (ASCs) for the treatment of dental defects. Indeed, in the oral cavity, there are different sources of MSCs that have been individually proposed as promising candidates for tissue engineering protocols. The therapeutic strategy based on MSCs can be direct, by using cells as components of the tissue to be regenerated, or indirect, aimed at delivering local growth factors, cytokines, and chemokines produced by the MSCs. Here, the authors outline the major sources of mesenchymal stem cells attainable from the oral cavity and discuss their possible usage in some of the most compelling therapeutic frontiers, such as periodontal disease and dental pulp regeneration.
Collapse
|
17
|
Scelza P, Gonçalves F, Caldas I, Nunes F, Lourenço ES, Tavares S, Magno M, Pintor A, Montemezzi P, Edoardo ED, Mourão CFDAB, Alves G, Scelza MZ. Prognosis of Regenerative Endodontic Procedures in Mature Teeth: A Systematic Review and Meta-Analysis of Clinical and Radiographic Parameters. MATERIALS 2021; 14:ma14164418. [PMID: 34442940 PMCID: PMC8398537 DOI: 10.3390/ma14164418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022]
Abstract
This work aimed to investigate the use of Regenerative Endodontic Procedures (REP) on the treatment of pulp necrosis in mature teeth through systematic review and meta-analysis of evidence on clinical and radiographic parameters before and after REP. A search was performed in different databases on 9 September 2020, including seven clinical studies and randomized controlled trials (RCT). The methodological quality was assessed using Revised Cochrane risk-of-bias (RoB 2) and Before-and-After tools. Meta-analyses were performed to evaluate the success incidences regarding the reduction of periapical lesion and recovery of sensitivity. The certainty of the evidence was assessed using GRADE. Meta-analysis showed a high overall success of 0.95 (0.92, 0.98) I2 = 6%, with high periapical lesion reduction at 12 months (0.93 (0.86, 0.96) I2 = 37%) and by the end of follow-up (0.91 (0.83, 0.96) I2 = 13%). Lower incidences of positive sensitivity response were identified for the electrical (0.58 (0.46, 0.70) I2 = 51%) and cold tests (0.70 (0.54, 0.84) I2 = 68%). The calculated levels of REP success were similar to those reported for immature teeth. With a very low certainty of evidence, the meta-analysis showed a high incidence of REP’s success for mature teeth with necrotic pulp evidenced by periapical lesion reduction and moderate positive responses to sensitivity tests.
Collapse
Affiliation(s)
- Pantaleo Scelza
- Geriatric Dentistry Department, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (P.S.); (I.C.); (F.N.)
| | - Fabiano Gonçalves
- Post-Graduate Program in Dentistry, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (F.G.); (E.S.L.); (S.T.)
| | - Isleine Caldas
- Geriatric Dentistry Department, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (P.S.); (I.C.); (F.N.)
| | - Fernanda Nunes
- Geriatric Dentistry Department, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (P.S.); (I.C.); (F.N.)
| | - Emanuelle Stellet Lourenço
- Post-Graduate Program in Dentistry, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (F.G.); (E.S.L.); (S.T.)
| | - Sandro Tavares
- Post-Graduate Program in Dentistry, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil; (F.G.); (E.S.L.); (S.T.)
| | - Marcela Magno
- Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (A.P.)
| | - Andrea Pintor
- Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (M.M.); (A.P.)
| | | | | | - Carlos Fernando de Almeida Barros Mourão
- Clinical Research Unit of the Antonio Pedro Hospital, Universidade Federal Fluminense, Niterói 24033-900, RJ, Brazil;
- Correspondence: (C.F.d.A.B.M.); (M.Z.S.); Tel.: +1-941-(830)-1302 (C.F.d.A.B.M.); +55-21-99984-0270 (M.Z.S.)
| | - Gutemberg Alves
- Clinical Research Unit of the Antonio Pedro Hospital, Universidade Federal Fluminense, Niterói 24033-900, RJ, Brazil;
| | - Miriam Zaccaro Scelza
- Laboratory of Experimental Culture Cell (LECCel), Department of Endodontics, Faculty of Dentistry, Universidade Federal Fluminense, Niterói 24020-140, RJ, Brazil
- Correspondence: (C.F.d.A.B.M.); (M.Z.S.); Tel.: +1-941-(830)-1302 (C.F.d.A.B.M.); +55-21-99984-0270 (M.Z.S.)
| |
Collapse
|
18
|
Platform technologies for regenerative endodontics from multifunctional biomaterials to tooth-on-a-chip strategies. Clin Oral Investig 2021; 25:4749-4779. [PMID: 34181097 DOI: 10.1007/s00784-021-04013-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this review is to highlight recent progress in the field of biomaterials-mediated dental pulp tissue engineering. Specifically, we aim to underscore the critical design criteria of biomaterial platforms that are advantageous for pulp tissue engineering, discuss models for preclinical evaluation, and present new and innovative multifunctional strategies that hold promise for clinical translation. MATERIALS AND METHODS The current article is a comprehensive overview of recent progress over the last 5 years. In detail, we surveyed the literature in regenerative pulp biology, including novel biologic and biomaterials approaches, and those that combined multiple strategies, towards more clinically relevant models. PubMed searches were performed using the keywords: "regenerative dentistry," "dental pulp regeneration," "regenerative endodontics," and "dental pulp therapy." RESULTS Significant contributions to the field of regenerative dentistry have been made in the last 5 years, as evidenced by a significant body of publications. We chose exemplary studies that we believe are progressive towards clinically translatable solutions. We close this review with an outlook towards the future of pulp regeneration strategies and their clinical translation. CONCLUSIONS Current clinical treatments lack functional and predictable pulp regeneration and are more focused on the treatment of the consequences of pulp exposure, rather than the restoration of healthy dental pulp. CLINICAL RELEVANCE Clinically, there is great demand for bioinspired biomaterial strategies that are safe, efficacious, and easy to use, and clinicians are eager for their clinical translation. In particular, we place emphasis on strategies that combine favorable angiogenesis, mineralization, and functional tissue formation, while limiting immune reaction, risk of microbial infection, and pulp necrosis.
Collapse
|
19
|
Ehlinger C, Mathieu E, Rabineau M, Ball V, Lavalle P, Haikel Y, Vautier D, Kocgozlu L. Insensitivity of dental pulp stem cells migration to substrate stiffness. Biomaterials 2021; 275:120969. [PMID: 34157563 DOI: 10.1016/j.biomaterials.2021.120969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022]
Abstract
Dental pulp stem cells (DPSCs) are a promising cell source for regeneration of dental pulp. Migration is a key event but influence of the microenvironment rigidity (5 kPa at the center of dental pulp to 20 GPa for the dentin) is largely unknown. Mechanical signals are transmitted from the extracellular matrix to the cytoskeleton, to the nuclei, and to the chromatin, potentially regulating gene expression. To identify the microenvironmental influence on migration, we analyzed motility on PDMS substrates with stiffness increasing from 1.5 kPa up to 2.5 MPa. We found that migration speed slightly increases as substrate stiffness decreases in correlation with decreasing focal adhesion size. Motility is relatively insensitive to substrate stiffness, even on a bi-rigidity PDMS substrate where DPSCs migrate without preferential direction. Migration is independent of both myosin II activity and YAP translocation after myosin II inhibition. Additionally, inhibition of Arp2/3 complex leads to significant speed decrease for all rigidities, suggesting contribution of the lamellipodia in the migration. Interestingly, the chromatin architecture remains stable after a 7-days exposure on the PDMS substrates for all rigidity. To design scaffold mimicking dental pulp environment, similar DPSCs migration for all rigidity, leaves field open to choose this mechanical parameter.
Collapse
Affiliation(s)
- Claire Ehlinger
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Eric Mathieu
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Morgane Rabineau
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Vincent Ball
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Philippe Lavalle
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Youssef Haikel
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Dominique Vautier
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France.
| | - Leyla Kocgozlu
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France.
| |
Collapse
|
20
|
Caballero-Flores H, Nabeshima CK, Sarra G, Moreira MS, Arana-Chavez VE, Marques MM, Machado MEDL. Development and characterization of a new chitosan-based scaffold associated with gelatin, microparticulate dentin and genipin for endodontic regeneration. Dent Mater 2021; 37:e414-e425. [PMID: 33867170 DOI: 10.1016/j.dental.2021.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE An ideal scaffold for endodontic regeneration should allow the predictableness of the new tissue organization and limit the negative impact of residual bacteria. Therefore, composition and functionalization of the scaffold play an important role in tissue bioengineering. The objective of this study was to assess the morphological, physicochemical, biological and antimicrobial properties of a new solid chitosan-based scaffold associated with gelatin, microparticulate dentin and genipin. METHODS Scaffolds based on chitosan (Ch); chitosan associated with gelatin and genipin (ChGG); and chitosan associated with gelatin, microparticulate dentin and genipin (ChGDG) were prepared by using the freeze-drying method. The morphology of the scaffolds was analyzed by scanning electron microscopy (SEM). The physicochemical properties were assessed for biodegradation, swelling and total released proteins. The biological aspects of the scaffolds were assessed using human cells from the apical papilla (hCAPs). Cell morphology and adhesion to the scaffolds were evaluated by SEM, cytotoxicity and cell proliferation by MTT reduction-assay. Cell differentiation in scaffolds was assessed by using alizarin red assay. The antimicrobial effect of the scaffolds was evaluated by using the bacterial culture method, and bacterial adhesion to the scaffolds was observed by SEM. RESULTS All the scaffolds presented porous structures. The ChCDG had more protein release, adhesion, proliferation and differentiation of hCAPs, and bacteriostatic effect on Enterococcus faecalis than Ch and ChGG (p < 0.05). SIGNIFICANCE The chitosan associated with gelatin, microparticulate dentin and genipin has morphological, physicochemical, biological and antibacterial characteristics suitable for their potential use as scaffold in regenerative endodontics.
Collapse
Affiliation(s)
- Hector Caballero-Flores
- Discipline of Endodontic, Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil.
| | - Cleber Keiti Nabeshima
- Discipline of Endodontic, Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Giovanna Sarra
- Discipline of Endodontic, Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Stella Moreira
- Post Graduation Program, School of Dentistry, Ibirapuera University, São Paulo, SP, Brazil
| | - Victor Elias Arana-Chavez
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo. São Paulo, SP, Brazil
| | - Márcia Martins Marques
- Post Graduation Program, School of Dentistry, Ibirapuera University, São Paulo, SP, Brazil
| | - Manoel Eduardo de Lima Machado
- Discipline of Endodontic, Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
21
|
Abstract
A loss of organs or the destruction of tissue leaves wounds to which organisms and living things react differently. Their response depends on the extent of damage, the functional impairment and the biological potential of the organism. Some can completely regenerate lost body parts or tissues, whereas others react by forming scars in the sense of a tissue repair. Overall, the regenerative capacities of the human body are limited and only a few tissues are fully restored when injured. Dental tissues may suffer severe damage due to various influences such as caries or trauma; however, dental care aims at preserving unharmed structures and, thus, the functionality of the teeth. The dentin-pulp complex, a vital compound tissue that is enclosed by enamel, holds many important functions and is particularly worth protecting. It reacts physiologically to deleterious impacts with an interplay of regenerative and reparative processes to ensure its functionality and facilitate healing. While there were initially no biological treatment options available for the irreversible destruction of dentin or pulp, many promising approaches for endodontic regeneration based on the principles of tissue engineering have been developed in recent years. This review describes the regenerative and reparative processes of the dentin-pulp complex as well as the morphological criteria of possible healing results. Furthermore, it summarizes the current knowledge on tissue engineering of dentin and pulp, and potential future developments in this thriving field.
Collapse
|
22
|
Bakopoulou A. Prospects of Advanced Therapy Medicinal Products-Based Therapies in Regenerative Dentistry: Current Status, Comparison with Global Trends in Medicine, and Future Perspectives. J Endod 2020; 46:S175-S188. [PMID: 32950189 DOI: 10.1016/j.joen.2020.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Regenerative medicine offers innovative approaches to restore damaged tissues on the basis of tissue engineering (TE). Although research on advanced therapy medicinal products (ATMPs) has been very active in recent years, the number of licensed products remains surprisingly low and restricted to the treatment of severe, incurable diseases. METHODS This paper provides a critical review of current literature on the regulatory, clinical, and commercial status of ATMP-based therapies in the EU and worldwide and the hurdles to overcome for their broader application in Regenerative Dentistry. RESULTS Competent authorities have focused on developing regulatory pathways to address unmet patient needs. Oncology represents the dominating field, followed by cardiovascular, musculoskeletal, neurodegenerative, immunologic, and inherited diseases. Yet, the status remains in early development, and scientific, regulatory, and cost-effectiveness issues impose considerable hurdles toward marketing authorization, technology adoption, and patient accessibility. In this context, although regenerative dentistry has achieved breakthrough innovations in TE of several dental/oral tissues in preclinical models, it has hardly harnessed research progress to integrate innovative regenerative treatments into clinical practice. CONCLUSION Global demographic changes, which demonstrate a steady increase of the aging population, highlight the societal need for the application of ATMP-based therapies in the treatment of noncommunicable diseases (NCDs). Although oral diseases, as an integral part of NCDs, are not life-threatening and largely preventable, they sustain high prevalence, with severe burden on economy and quality of life. In this perspective, the urgent request to ultimately translate draining research in dental TE conducted during the last decades into innovative treatments brought safely and cost-effectively into society at large still holds the stage. This review provides an overview of the regulatory, clinical, and commercial status of ATMP-based therapies in the European Union and worldwide and the hurdles to overcome for their broader application in regenerative dentistry.
Collapse
Affiliation(s)
- Athina Bakopoulou
- Faculty of Health Sciences, Department of Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece.
| |
Collapse
|
23
|
|
24
|
|
25
|
Girija K, Kavitha M. Comparative evaluation of platelet-rich fibrin, platelet-rich fibrin + 50 wt% nanohydroxyapatite, platelet-rich fibrin + 50 wt% dentin chips on odontoblastic differentiation - An in vitro study-part 2. J Conserv Dent 2020; 23:354-358. [PMID: 33623235 PMCID: PMC7883785 DOI: 10.4103/jcd.jcd_3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/27/2020] [Accepted: 07/16/2020] [Indexed: 12/01/2022] Open
Abstract
AIM The purpose of this study was to investigate the effects of platelet-rich fibrin (PRF) modified with bioactive radiopacifiers-nanohydroxyapatite (nHA) and dentin chips (DC) on odontoblastic differentiation in human dental pulp cells (HDPCs). SUBJECTS AND METHODS PRF was modified with 50wt% of nHA (G bone-SHAG31, Surgiwear Company) and 50 wt% of DC. HDPSCs differentiation and mineralization by the groups ([Group A - Control (Dimethyl sulfoxide), Group B - PRF, Group C - PRF + nHA, Group D - PRF + DC]) were assessed. ELISA was done to quantify the interleukin (IL)-6 and IL-8 cytokine expression. The odontoblastic differentiation was determined by the expression of odontogenesis-related genes and the extent of mineralization using alizarin red S staining. STATISTICAL ANALYSIS USED One-way ANOVA with post hoc Tukey-honestly significant difference tests were applied to assess the significance among various groups. RESULTS The level of inflammatory cytokines (IL-6 and IL-8) expression by Group D (PRF + 50 wt% DC) was higher compared to Group B (PRF) and Group C (PRF + 50 wt% DC). Group C (PRF + 50 wt% nHA) induced more mineralization nodules compared to other groups. The integrated density value for the DSPP and DMP-1 protein expression by Group C (PRF + 50 wt% nHA) and Group D (PRF + 50 wt% DC) was higher compared to Group B (PRF). CONCLUSIONS The results suggest that the addition of bioactive radiopacifiers into PRF has a synergistic effect on the stimulation of odontoblastic differentiation of HDPCs, hence inducing mineralization.
Collapse
Affiliation(s)
- Kottuppallil Girija
- Department of Conservative Dentistry and Endodontics, Tamil Nadu Government Dental College and Hospital, Tamil Nadu Dr. M.G.R Medical University, Chennai, Tamil Nadu, India
| | - Mahendran Kavitha
- Department of Conservative Dentistry and Endodontics, Tamil Nadu Government Dental College and Hospital, Tamil Nadu Dr. M.G.R Medical University, Chennai, Tamil Nadu, India
| |
Collapse
|
26
|
Jazayeri HE, Lee SM, Kuhn L, Fahimipour F, Tahriri M, Tayebi L. Polymeric scaffolds for dental pulp tissue engineering: A review. Dent Mater 2019; 36:e47-e58. [PMID: 31791734 DOI: 10.1016/j.dental.2019.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The purpose of this review is to describe recent developments in pulp tissue engineering using scaffolds and/or stem cells. It is crucial to understand how this approach can revitalize damaged dentin-pulp tissue. Widespread scaffold materials, both natural and synthetic, and their fabrication methods, and stem-progenitor cells with the potential of pulp regeneration will be discussed. DATA AND SOURCES A review of literature was conducted through online databases, including MEDLINE by using the PubMed search engine, Scopus, and the Cochrane Library. STUDY SELECTION Studies were selected based on relevance, with a preference given to recent research, particularly from the past decade. CONCLUSIONS The use of biomaterial scaffolds and stem cells can be safe and potent for the regeneration of pulp tissue and re-establishment of tooth vitality. Natural and synthetic polymers have distinct advantages and limitations and in vitro and in vivo testing have produced positive results for cell attachment, proliferation, and angiogenesis. The type of biomaterial used for scaffold fabrication also facilitates stem cell differentiation into odontoblasts and the resulting biochemistry of tissue repair for each polymer and cell type was discussed. Multiple methods of scaffold design exist for pulp tissue engineering, which demonstrates the variability in tissue engineering applications in endodontics. This review explains the potential of evidence-based tissue engineering strategies and outcomes in pulp regeneration.
Collapse
Affiliation(s)
- Hossein E Jazayeri
- School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104, United States
| | - Su-Min Lee
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104, United States
| | - Lauren Kuhn
- Department of Oral Rehabilitation, Division of Endodontics, Medical University of South Carolina, 29 Bee Street, Charleston, SC 29403, United States.
| | - Farahnaz Fahimipour
- Department of Developmental Sciences, Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, United States
| | - Mohammadreza Tahriri
- Department of Developmental Sciences, Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, United States
| | - Lobat Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, United States
| |
Collapse
|
27
|
Xiao M, Yao B, Zhang BD, Bai Y, Sui W, Wang W, Yu Q. Stromal-derived Factor-1α signaling is involved in bone morphogenetic protein-2-induced odontogenic differentiation of stem cells from apical papilla via the Smad and Erk signaling pathways. Exp Cell Res 2019; 381:39-49. [DOI: 10.1016/j.yexcr.2019.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
|
28
|
Bucchi C, Marcé‐Nogué J, Galler KM, Widbiller M. Biomechanical performance of an immature maxillary central incisor after revitalization: a finite element analysis. Int Endod J 2019; 52:1508-1518. [DOI: 10.1111/iej.13159] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022]
Affiliation(s)
- C. Bucchi
- Department of Pathology and Experimental Therapy Universitat de Barcelona Barcelona Spain
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences Universidad de La Frontera Temuco Chile
| | - J. Marcé‐Nogué
- Center of Natural History University of Hamburg Hamburg Germany
- Institut Català de Paleontologia Miquel Crusafont Universitat Autònoma de Barcelona Barcelona Spain
| | - K. M. Galler
- Department of Conservative Dentistry and Periodontology University Hospital Regensburg Regensburg Germany
| | - M. Widbiller
- Department of Conservative Dentistry and Periodontology University Hospital Regensburg Regensburg Germany
| |
Collapse
|
29
|
Orti V, Collart-Dutilleul PY, Piglionico S, Pall O, Cuisinier F, Panayotov I. Pulp Regeneration Concepts for Nonvital Teeth: From Tissue Engineering to Clinical Approaches. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:419-442. [PMID: 29724156 DOI: 10.1089/ten.teb.2018.0073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Following the basis of tissue engineering (Cells-Scaffold-Bioactive molecules), regenerative endodontic has emerged as a new concept of dental treatment. Clinical procedures have been proposed by endodontic practitioners willing to promote regenerative therapy. Preserving pulp vitality was a first approach. Later procedures aimed to regenerate a vascularized pulp in necrotic root canals. However, there is still no protocol allowing an effective regeneration of necrotic pulp tissue either in immature or mature teeth. This review explores in vitro and preclinical concepts developed during the last decade, especially the potential use of stem cells, bioactive molecules, and scaffolds, and makes a comparison with the goals achieved so far in clinical practice. Regeneration of pulp-like tissue has been shown in various experimental conditions. However, the appropriate techniques are currently in a developmental stage. The ideal combination of scaffolds and growth factors to obtain a complete regeneration of the pulp-dentin complex is still unknown. The use of stem cells, especially from pulp origin, sounds promising for pulp regeneration therapy, but it has not been applied so far for clinical endodontics, in case of necrotic teeth. The gap observed between the hope raised from in vitro experiments and the reality of endodontic treatments suggests that clinical success may be achieved without external stem cell application. Therefore, procedures using the concept of cell homing, through evoked bleeding that permit to recreate a living tissue that mimics the original pulp has been proposed. Perspectives for pulp tissue engineering in the near future include a better control of clinical parameters and pragmatic approach of the experimental results (autologous stem cells from cell homing, controlled release of growth factors). In the coming years, this therapeutic strategy will probably become a clinical reality, even for mature necrotic teeth.
Collapse
Affiliation(s)
- Valérie Orti
- LBN, Université de Montpellier , Montpellier, France
| | | | | | - Orsolya Pall
- LBN, Université de Montpellier , Montpellier, France
| | | | | |
Collapse
|
30
|
Metlerska J, Fagogeni I, Nowicka A. Efficacy of Autologous Platelet Concentrates in Regenerative Endodontic Treatment: A Systematic Review of Human Studies. J Endod 2018; 45:20-30.e1. [PMID: 30446403 DOI: 10.1016/j.joen.2018.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/26/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The latest research concerns the use of platelet concentrates, which are introduced into the root canal. The aim of this study was to examine the effectiveness of platelet-rich fibrin and platelet-rich plasma in regenerative endodontics. METHODS This literature review was developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The literature search included all publications without a year limit. The last search was performed on January 31, 2018. An electronic search was performed using MEDLINE (PubMed), Cochrane, and Scopus. Articles were selected that addressed the following research question: Is the use of platelet concentrates effective in regenerative endodontics? The necessary information was extracted by 2 authors independently using a standardized form. RESULTS The search resulted in 426 titles from all databases, and 26 studies met the inclusion criteria. Five were randomized trials, and the others were case reports. All described cases were asymptomatic. Only 3 cases from randomized trials were unsuccessful. Ten of the case reports found positive results for pulp vitality. In randomized trials, the teeth treated with platelet concentrates showed better results for pulp vitality. In almost all cases, they also described thickening and lengthening of the root wall and closure of the apical foramen, which are important for successful treatment of permanent teeth. CONCLUSIONS This review showed that procedures using autologous platelet concentrates were successful in treating permanent teeth with root development. However, more long-term clinical studies are needed.
Collapse
Affiliation(s)
- Joanna Metlerska
- Doctoral Studies of the Faculty of Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Irini Fagogeni
- Doctoral Studies of the Faculty of Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Alicja Nowicka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
31
|
Meschi N, EzEldeen M, Torres Garcia AE, Jacobs R, Lambrechts P. A Retrospective Case Series in Regenerative Endodontics: Trend Analysis Based on Clinical Evaluation and 2- and 3-dimensional Radiology. J Endod 2018; 44:1517-1525. [DOI: 10.1016/j.joen.2018.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
|
32
|
Widbiller M, Driesen RB, Eidt A, Lambrichts I, Hiller KA, Buchalla W, Schmalz G, Galler KM. Cell Homing for Pulp Tissue Engineering with Endogenous Dentin Matrix Proteins. J Endod 2018; 44:956-962.e2. [DOI: 10.1016/j.joen.2018.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
|
33
|
Eramo S, Natali A, Pinna R, Milia E. Dental pulp regeneration via cell homing. Int Endod J 2017; 51:405-419. [PMID: 29047120 DOI: 10.1111/iej.12868] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/14/2017] [Indexed: 12/11/2022]
Abstract
The typical treatment for irreversibly inflamed/necrotic pulp tissue is root canal treatment. As an alternative approach, regenerative endodontics aims to regenerate dental pulp-like tissues using two possible strategies: cell transplantation and cell homing. The former requires exogenously transplanted stem cells, complex procedures and high costs; the latter employs the host's endogenous cells to achieve tissue repair/regeneration, which is more clinically translatable. This systematic review examines cell homing for dental pulp regeneration, selecting articles on in vitro experiments, in vivo ectopic transplantation models and in situ pulp revascularization. MEDLINE/PubMed and Scopus databases were electronically searched for articles without limits in publication date. Two reviewers independently screened and included papers according to the predefined selection criteria. The electronic searches identified 46 studies. After title, abstract and full-text examination, 10 articles met the inclusion criteria. In vitro data highlighted that multiple cytokines have the capacity to induce migration, proliferation and differentiation of dental pulp stem/progenitor cells. The majority of the in vivo studies obtained regenerated connective pulp-like tissues with neovascularization. In some cases, the samples showed new innervation and new dentine deposition. The in situ pulp revascularization regenerated intracanal pulp-like tissues with neovascularization, innervation and dentine formation. Cell homing strategies for pulp regeneration need further understanding and improvement if they are to become a reliable and effective approach in endodontics. Nevertheless, cell homing currently represents the most clinically viable pathway for dental pulp regeneration.
Collapse
Affiliation(s)
- S Eramo
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - A Natali
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - R Pinna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - E Milia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|