1
|
Miyasaka N, Torii D, Satomi T, Sakurai K, Nakahara T, W Tsutsui T. Aspirin promotes odontogenic differentiation via a mechanism involving FOXC1, RUNX2, and MCAM expression. J Oral Biosci 2025; 67:100622. [PMID: 39892782 DOI: 10.1016/j.job.2025.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES This study aimed to investigate the effects of aspirin on the early stages of odontogenic differentiation. The roles of FOXC1, RUNX2, and MCAM gene expression in the mechanism of odontogenic differentiation were evaluated by examining the effects of downregulated FOXC1 or RUNX2 expression using small interfering RNAs (siRNAs). METHODS Dental pulp cells were treated with aspirin (0, 2.5, 50, 100 μg/ml) to assess its impact on mineralization. The gene expression levels of FOXC1, RUNX2, and MCAM were measured using digital polymerase chain reaction, and the effects of siRNA-mediated knockdown of FOXC1 and RUNX2 were analyzed. The mineralization potential was quantitatively assessed using Alizarin Red S staining and a calcium assay. RESULTS Analysis of cell growth curves and doubling times indicated that aspirin did not affect cell proliferation at 2.5 μg/ml and 50 μg/ml; however, 50 μg/ml aspirin promoted mineralization. In the FOXC1 and RUNX2 knockdown experiments, fluctuations in FOXC1, RUNX2, and MCAM gene expression were observed in the aspirin-treated group, suggesting the involvement of these genes in mineralization. Alizarin red S staining and calcium assays further demonstrated that aspirin enhanced mineralization. CONCLUSIONS These findings indicate that aspirin promotes odontogenic differentiation and regulates the expression of FOXC1, RUNX2, and MCAM. This suggests that aspirin may serve as a promising new therapeutic agent in dental pulp regenerative medicine.
Collapse
Affiliation(s)
- Naoki Miyasaka
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Daisuke Torii
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Takafumi Satomi
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Kenichi Sakurai
- Department of Surgery, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Takeo W Tsutsui
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| |
Collapse
|
2
|
Zhao T, Zhong Q, Sun Z, Yu X, Sun T, An Z. Decoding SFRP2 progenitors in sustaining tooth growth at single-cell resolution. Stem Cell Res Ther 2025; 16:58. [PMID: 39920788 PMCID: PMC11806734 DOI: 10.1186/s13287-025-04190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Single-cell transcriptomics has revolutionized tooth biology by uncovering previously unexplored areas. The mouse is a widely used model for studying human tissues and diseases, including dental pulp tissues. While human and mouse molars share many similarities, mouse incisors differ significantly from human teeth due to their continuous growth throughout their lifespan. The application of findings from mouse teeth to human disease remains insufficiently explored. METHODS Leveraging multiple single-cell datasets, we constructed a comprehensive dental pulp cell landscape to delineate tissue similarities and species-specific differences between humans and mice. RESULTS We identified a distinct cell population, Sfrp2hi fibroblast progenitors, found exclusively in mouse incisors and the developing tooth root of human molars. These cells play a crucial role in sustaining continuous tissue growth. Mechanistically, we found that the transcription factor Twist1, regulated via MAPK phosphorylation, binds to the Sfrp2 promoter and modulates Wnt signaling activation to maintain stem cell identity. CONCLUSIONS Our study reveals a previously unrecognized subset of dental mesenchymal stem cells critical for tooth growth. This distinct subset, evolutionarily conserved between humans and mice, provides valuable insights into translational approaches for dental tissue regeneration and repair.
Collapse
Affiliation(s)
- Tianyuan Zhao
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Qing Zhong
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zewen Sun
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoyi Yu
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tianmeng Sun
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengwen An
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China.
- Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Tong Z, Wu J, Gong Q, Yuan Y, Wang S, Jiang W. Insulin-like growth factor binding protein 7 identified in aged dental pulp by single-cell RNA sequencing. J Adv Res 2024:S2090-1232(24)00596-4. [PMID: 39674503 DOI: 10.1016/j.jare.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024] Open
Abstract
INTRODUCTION Aging influences the regenerative and reparative functions of dental pulp, and an in-depth and complete understanding of aged dental pulp is highly important. OBJECTIVE This study aimed to explore the heterogeneity of young and aged dental pulp tissue via single-cell RNA sequencing (scRNA-seq), search novel markers of aged dental pulp, and further explore their mechanism. METHODS ScRNA-seq was employed to analyze the heterogeneity of young and aged dental pulp tissue, and immunohistochemical staining was used to detect new marker Insulin-like Growth Factor Binding Protein 7 (IGFBP7) in aged dental pulp. Differentially expressed genes (DEGs) between young and aged dental pulp tissue related with senescence-associated secretory phenotype (SASP) were validated in aging model of H2O2-induced dental pulp fibroblast (DPF). The effect of IGFBP7 on cellular senescence were validated by SA-β-Gal, γ-H2AX, and F-actin cytoskeletal staining. RNA-seq was used to analyze the mechanism of IGFBP7 alleviating senescence of H2O2-induced DPFs. RESULTS A total of 32,012 cells were sequenced from 8 dental pulp samples and categorized into 8 main clusters, including fibroblasts (FB), endothelial cells, monocytes, T cells, B cells, mesenchymal stem cells, Schwann cells, and nonmyelinating ScCs. The ratio of fibroblasts was the highest, and FB1 was the largest subcluster of fibroblasts in the young group. In aged dental pulp, the ratio of fibroblasts was relatively low, and fibroblasts had more cellular communication with other cell types in fibroblast growth factor (FGF) and insulin-like growth factor (IGF) signal pathways. IGFBP7 was significantly upregulated in the aged group. Recombinant IGFBP7 reduced the senescence of H2O2-induced DPFs. CONCLUSIONS These findings offer insights into the mechanisms of dental pulp aging and enhance our understanding of dental pulp at the single-cell level. Further comprehensive studies are required to clarify the exact mechanisms through which IGFBP7 influences dental pulp aging.
Collapse
Affiliation(s)
- Zhongchun Tong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qimei Gong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yifang Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi 710032, China
| | - Shengchao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi 710032, China.
| | - Wenkai Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
4
|
Wang J, Fonseca GJ, Ding J. scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning. Nat Commun 2024; 15:5989. [PMID: 39013867 PMCID: PMC11252419 DOI: 10.1038/s41467-024-50150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Single-cell sequencing is a crucial tool for dissecting the cellular intricacies of complex diseases. Its prohibitive cost, however, hampers its application in expansive biomedical studies. Traditional cellular deconvolution approaches can infer cell type proportions from more affordable bulk sequencing data, yet they fall short in providing the detailed resolution required for single-cell-level analyses. To overcome this challenge, we introduce "scSemiProfiler", an innovative computational framework that marries deep generative models with active learning strategies. This method adeptly infers single-cell profiles across large cohorts by fusing bulk sequencing data with targeted single-cell sequencing from a few rigorously chosen representatives. Extensive validation across heterogeneous datasets verifies the precision of our semi-profiling approach, aligning closely with true single-cell profiling data and empowering refined cellular analyses. Originally developed for extensive disease cohorts, "scSemiProfiler" is adaptable for broad applications. It provides a scalable, cost-effective solution for single-cell profiling, facilitating in-depth cellular investigation in various biological domains.
Collapse
Affiliation(s)
- Jingtao Wang
- Meakins-Christe Laboratories, Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada
| | - Gregory J Fonseca
- Meakins-Christe Laboratories, Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada
- Quantitative Life Sciences, McGill University, 845 Rue Sherbrooke Ouest, Montreal, H3A 0G4, Quebec, Canada
| | - Jun Ding
- Meakins-Christe Laboratories, Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Blvd, Montreal, H4A 3J1, Quebec, Canada.
- Quantitative Life Sciences, McGill University, 845 Rue Sherbrooke Ouest, Montreal, H3A 0G4, Quebec, Canada.
- School of Computer Science, McGill University, 3480 Rue University, Montreal, H3A 2A7, Quebec, Canada.
- Mila-Quebec AI Institute, 6666 Rue Saint-Urbain, Montreal, H2S 3H1, Quebec, Canada.
| |
Collapse
|
5
|
Ding D, Li N, Ge Y, Wu H, Yu J, Qiu W, Fang F. Current status of superoxide dismutase 2 on oral disease progression by supervision of ROS. Biomed Pharmacother 2024; 175:116605. [PMID: 38688168 DOI: 10.1016/j.biopha.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
The recent Global Burden of Disease results have demonstrated that oral diseases are some of the most significant public health challenges facing the world. Owing to its specific localization advantage, superoxide dismutase 2 (SOD2 or MnSOD) has the ability to process the reactive oxygen species (ROS) produced by mitochondrial respiration before anything else, thereby impacting the occurrence and development of diseases. In this review, we summarize the processes of common oral diseases in which SOD2 is involved. SOD2 is upregulated in periodontitis to protect the tissue from the distant damage caused by excessive ROS and further reduce inflammatory progression. SOD2 also participates in the specific pathogenesis of oral cancers and dental diseases. The clinical application prospects of SOD2 in oral diseases will be discussed further, referencing the differences and relationship between oral diseases and other clinical systemic diseases.
Collapse
Affiliation(s)
- Dian Ding
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Na Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yihong Ge
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongle Wu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jinzhao Yu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Wang C, Liu X, Zhou J, Zhang Q. The Role of Sensory Nerves in Dental Pulp Homeostasis: Histological Changes and Cellular Consequences after Sensory Denervation. Int J Mol Sci 2024; 25:1126. [PMID: 38256202 PMCID: PMC10815945 DOI: 10.3390/ijms25021126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Homeostatic maintenance is essential for pulp function. Disrupting pulp homeostasis may lead to pulp degeneration, such as fibrosis and calcifications. Sensory nerves constitute a crucial component of the dental pulp. However, the precise involvement of sensory nerves in pulp homeostasis remains uncertain. In this study, we observed the short-term and long-term histological changes in the dental pulp after inferior alveolar nerve transection. Additionally, we cultured primary dental pulp cells (DPCs) from the innervated and denervated groups and compared indicators of cellular senescence and cellular function. The results revealed that pulp fibrosis occurred at 2 w after the operation. Furthermore, the pulp area, as well as the height and width of the pulp cavity, showed accelerated reductions after sensory denervation. Notably, the pulp area at 16 w after the operation was comparable to that of 56 w old rats. Sensory denervation induced excessive extracellular matrix (ECM) deposition and increased predisposition to mineralization. Furthermore, sensory denervation promoted the senescence of DPCs. Denervated DPCs exhibited decelerated cell proliferation, arrest in the G2/M phase of the cell cycle, imbalance in the synthesis and degradation of ECM, and enhanced mineralization. These findings indicate that sensory nerves play an essential role in pulp homeostasis maintenance and dental pulp cell fate decisions, which may provide novel insights into the prevention of pulp degeneration.
Collapse
Affiliation(s)
| | | | | | - Qi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing’an District, Shanghai 200072, China
| |
Collapse
|
7
|
López-García S, Rodríguez-Lozano FJ, Sanz JL, Forner L, Pecci-Lloret MP, Lozano A, Murcia L, Sánchez-Bautista S, Oñate-Sánchez RE. Biological properties of Ceraputty as a retrograde filling material: an in vitro study on hPDLSCs. Clin Oral Investig 2023; 27:4233-4243. [PMID: 37126146 PMCID: PMC10415505 DOI: 10.1007/s00784-023-05040-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
OBJECTIVES To assess the cytocompatibility and bioactive potential of the new calcium silicate-based cement Ceraputty on human periodontal ligament stem cells (hPDLSCs) compared to Biodentine and Endosequence BC root repair material (ERRM). MATERIALS AND METHODS hPDLSCs were isolated from extracted third molars from healthy donors. Standardized sample discs and 1:1, 1:2, and 1:4 eluates of the tested materials were prepared. The following assays were performed: surface element distribution via SEM-EDX, cell attachment and morphology via SEM, cell viability via a MTT assay, osteo/cemento/odontogenic marker expression via RT-qPCR, and cell calcified nodule formation via Alizarin Red S staining. hPDLSCs cultured in unconditioned or osteogenic media were used as negative and positive control groups, respectively. Statistical analysis was performed using one-way ANOVA or two-way ANOVA and Tukey's post hoc test. Statistical significance was established at p < 0.05. RESULTS The highest Ca2+ peak was detected from Biodentine samples, followed by ERRM and Ceraputty. hPDLSC viability was significantly reduced in Ceraputty samples (p < 0.001), while 1:2 and 1:4 Biodentine and ERRM samples similar results to that of the negative control (p > 0.05). Biodentine and ERRM exhibited an upregulation of at least one cemento/odonto/osteogenic marker compared to the negative and positive control groups. Cells cultured with Biodentine produced a significantly higher calcified nodule formation than ERRM and Ceraputty (p < 0.001), which were also higher than the control groups (p < 0.001). CONCLUSION Ceraputty evidenced a reduced cytocompatibility towards hPDLSCs on its lowest dilutions compared to the other tested cements and the control group. Biodentine and ERRM promoted a significantly higher mineralization and osteo/cementogenic marker expression on hPDLSCs compared with Ceraputty. Further studies are necessary to verify the biological properties of this new material and its adequacy as a retrograde filling material. CLINICAL RELEVANCE This is the first study to elucidate the adequate biological properties of Ceraputty for its use as a retrograde filling material.
Collapse
Affiliation(s)
- Sergio López-García
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010, Valencia, Spain
| | - Francisco J Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008, Murcia, Spain
| | - José Luis Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010, Valencia, Spain.
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, C/ Gascó Oliag 1, 46010, Valencia, Spain.
| | - Leopoldo Forner
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010, Valencia, Spain
| | - María Pilar Pecci-Lloret
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008, Murcia, Spain
| | - Adrián Lozano
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, 46010, Valencia, Spain
| | - Laura Murcia
- Department of Health Sciences, Catholic University San Antonio of Murcia, 30107, Murcia, Spain
| | - Sonia Sánchez-Bautista
- Department of Health Sciences, Catholic University San Antonio of Murcia, 30107, Murcia, Spain
| | - Ricardo E Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008, Murcia, Spain
| |
Collapse
|