1
|
Limsuwan S, Awaeloh N, Na-Phatthalung P, Kaewmanee T, Chusri S. Exploring Antioxidant Properties of Standardized Extracts from Medicinal Plants Approved by the Thai FDA for Dietary Supplementation. Nutrients 2025; 17:898. [PMID: 40077768 PMCID: PMC11901555 DOI: 10.3390/nu17050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES There is a growing interest in plant-derived antioxidants as functional food ingredients, given their potential to address oxidative stress-related diseases, notably neurodegenerative disorders. This study aims to investigate the antioxidant properties of medicinal plants that have been approved by the Thai FDA for dietary supplementation, with the goal of further utilizing them as food-functional ingredients to prevent neurodegenerative conditions. METHODS A systematic review-based methodology was employed on a list of 211 medicinal plants, and 21 medicinal plants were chosen based on their documented antioxidant activity and acetylcholinesterase (AChE) inhibitory capacity. The 21 commercially available standardized extracts were subjected to evaluation for their phenolic and flavonoid content, as well as their antioxidant activities utilizing metal-chelating activity, DPPH, ABTS free radical scavenging, ferric-reducing antioxidant power (FRAP), and superoxide anion scavenging techniques. RESULTS Among the 21, six extracts-Bacopa monnieri, Camellia sinensis, Coffea arabica, Curcuma longa, Tagetes erecta, and Terminalia chebula-emerged as the most promising. These extracts exhibited elevated levels of phenolic (up to 1378.19 mg gallic acid equivalents per gram) and flavonoids, with Coffea arabica and Curcuma longa showing the strongest antioxidant and free radical scavenging activities, indicating their potential for use in functional foods aimed at delaying neurodegenerative diseases. CONCLUSIONS Due to their high levels of phenolic and flavonoid compounds, along with strong metal-chelating abilities and significant free radical scavenging activities, these standardized extracts show potential for functional food applications that may help delay the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surasak Limsuwan
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Nurulhusna Awaeloh
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| | - Pinanong Na-Phatthalung
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Thammarat Kaewmanee
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani 94000, Thailand
| | - Sasitorn Chusri
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| |
Collapse
|
2
|
Zhuo G, Xiong F, Ping-Ping W, Chin-Ping T, Chun C. Ultrasonic collaborative pulse extraction of sugarcane polyphenol with good antiaging and α-glucosidase inhibitory activity. Int J Biol Macromol 2025; 297:139930. [PMID: 39824408 DOI: 10.1016/j.ijbiomac.2025.139930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Sugarcane, as one important and heavily planted industrial crop, is meaningful to develop its byproducts. In this paper, the ultrasonic collaborative pulse was beneficial for the yield improvement and good bioactivity protection. The sugarcane polyphenol extract (SPE) yield reached 2.42 ± 0.08 mg/g DW at the optimized conditions: pulse time of 60 s, pulse intensity of 2 kV/cm, ultrasonic time of 90 min, and ultrasonic power of 120 W. The SPE contained the total phenolic content of 6.01 ± 0.12 mg GAE/g extract and total flavonoids content of 7.15 ± 0.24 mg RE/g extract. The SPE was mainly composed of chlorogenic acid, schaftoside, hyperoside, quercitrin, and trans-3-hydroxycinnamic acid with 10.24 %, 14.92 %, 4.22 %, 12.05 %, 25.54 %, respectively. The SPE showed good radical scavenging activity with ORAC value of 134.57 μmol/g. The SPE could reduce the oxidative stress and extend the mean lifespan of nematodes by 7.19 % in vivo through increasing the activity of SOD and CAT to decrease the ROS level and MDA content. In addition, the SPE showed strong α-glucosidase inhibitory activity with IC50 of 0.53 mg/mL in a mixed inhibition type, which suggested that the SPE had good hypoglycemic potential.
Collapse
Affiliation(s)
- Gu Zhuo
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Wang Ping-Ping
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tan Chin-Ping
- Univ Putra Malaysia, Fac Food Sci & Technol, Dept Food Technol, Serdang 43400, Selangor, Malaysia
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
3
|
Xiao Y, Zhou L, Tao W, Yang X, Li J, Wang R, Zhao Y, Peng C, Zhang C. Preparation of paeoniflorin-glycyrrhizic acid complex transethosome gel and its preventive and therapeutic effects on melasma. Eur J Pharm Sci 2024; 192:106664. [PMID: 38061662 DOI: 10.1016/j.ejps.2023.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Paeoniflorin (PF) and glycyrrhizic acid (GL) have skin beautifying effects of anti-inflammation, anti-oxidation, inhibition of melanin formation, and reduction of skin pigmentation. To improve the transdermal permeability of PF and GL in transdermal drug delivery system (TDDS) and enhance their anti-melasma efficacy, PF-GL transethosome (PF-GL-TE) was prepared by ethanol injection method, and finally gelled with carbomer-940 to form PF-GL-TE gel. Consequently, the obtained PF-GL-TE is small and uniform, with an average particle size and a PDI value of about 167.9 nm and 0.102. PF-GL-TE gel showed sustained release behavior and high transdermal permeability in vitro release and transdermal tests. Meanwhile, PF-GL-TE gel played significant preventive effects on melasma induced by progesterone injection and ultraviolet radiation B (UVB) irradiation. According to the results of H&E staining and Masson staining of rat skin, PF-GL-TE gel can alleviate the skin inflammation of and reduce the loss of collagen fibers of back skin in the melasma model rats. Compared with the PF-GL mixture gel, PF-GL-TE gel significantly attenuated the oxidative damage of liver and skin by increasing the activity of SOD and reducing the content of MDA. The results of Western blot showed that PF-GL-TE gel might down-regulate melanin-related proteins expressions of MITF/TYR/TRP1 and TRP2 to prevent and treat melasma. These findings indicate that PF-GL-TE gel is an effective TDDS for delivering PF and GL into the skin, providing a promising preparation for effective prevention and treatment of melasma.
Collapse
Affiliation(s)
- Yaoyao Xiao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Lele Zhou
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Wenkang Tao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Xuan Yang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Junying Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Rulin Wang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China
| | - Yanan Zhao
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230000, China.
| | - Can Peng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China.
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Department of Education, Engineering Technology Research Center of Modern Pharmaceutical Preparation, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Innovation Collaborative Center, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of Compound Chinese Materia Medica, Hefei 230012, China.
| |
Collapse
|
4
|
Li C, Xu W, Zhang X, Cui X, Tsopmo A, Li J. Antioxidant Peptides Derived from Millet Bran Promote Longevity and Stress Resistance in Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:790-795. [PMID: 37656398 DOI: 10.1007/s11130-023-01100-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Millet bran as a by-product of millet grain processing remains a reservoir of active substances. In this study, functional millet bran peptides (MBPE) were obtained from bran proteins after alcalase hydrolysis and ultrafiltration. The activity of MBPE was assessed in vitro and in the model organism Caenorhabditis elegans (C. elegans). In vitro, compared to unhydrolyzed proteins, MBPE significantly enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) and hydroxyl radicals scavenging activity, and the scavenging rate of MBPE with 15,000 U/g alcalase reached 42.79 ± 0.31%, 61.38 ± 0.41 and 45.69 ± 0.84%, respectively. In C. elegans, MBPE at 12.5 µg/mL significantly prolonged the lifespan by reducing lipid oxidation, oxidative stress, and lipofuscin levels. Furthermore, MBPE increased the activities of the antioxidant enzymes. Genetic analyses showed that MBPE-mediated longevity was due to a significant increase in the expression of daf-16 and skn-1, which are also involved in xenobiotic and oxidative stress responses. In conclusion, this study found that MBPE had antioxidant and life-prolonging effects, which are important for the development and utilization of millet bran proteins as resources of active ingredients.
Collapse
Affiliation(s)
- Chen Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Wenjing Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiangyu Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Jiao Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
5
|
Zhang Z, Chen Z, Zhang C, Kang W. Physicochemical properties and biological activities of Tremella hydrocolloids. Food Chem 2023; 407:135164. [PMID: 36508868 DOI: 10.1016/j.foodchem.2022.135164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/19/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
In this paper, the physicochemical properties, antioxidant and anti-aging abilities of three new Tremella hydrocolloids were studied. The physicochemical properties were characterized by Fourier transform infrared spectroscopy, differential scanning calorimeter, X-ray diffractometry etc. The antioxidant activities of Tremella hydrocolloids were determined by ABTS radical, DPPH radical scavenging activity. The anti-aging ability of Tremella hydrocolloids was also investigated by using the organism model of Caenorhabditis elegans (C. elegans). The results showed that the ES-THD displayed the highest radical scavenging capacity and the best anti-aging abilities. The ability of ES-THD to scavenge ABTS radicals reached 100 % at 2 mg/mL, the ability of ES-THD to scavenge DPPH radicals reached 45.55 %. Compared with the control group, the average lifespan was 29.17 % longer fed with ES-THD. These results provide the evidence basis for the use of Tremella hydrocolloids as food texture modifiers, antioxidants, and anti-aging agents in the food industries.
Collapse
Affiliation(s)
- Zhiguo Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| | - Zhaoshi Chen
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Chen Zhang
- School of Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
In Vitro, In Vivo, and In Silico Analyses of Molecular Anti-Pigmentation Mechanisms of Selected Thai Rejuvenating Remedy and Bioactive Metabolites. Molecules 2023; 28:molecules28030958. [PMID: 36770624 PMCID: PMC9920523 DOI: 10.3390/molecules28030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Thai rejuvenating remedies are mixed herbal formulas promoting longevity. Due to the complexity, the biological activities of these remedies are minimal. Therefore, in this study, the authors evaluated the anti-pigmentation effect at the molecular level of the selected Thai rejuvenating remedy to fulfill the knowledge gap. First, the authors found that the selected remedy showed promising activity against the tyrosinase enzyme with an IC50 value of 9.41 µg/mL. In the comparison, kojic acid (positive control) exhibited an IC50 value of 3.92 µg/mL against the same enzyme. Later, the authors identified glabridin as a bioactive molecule against tyrosinase with an IC50 value of 0.08 µg/mL. However, ethyl p-methoxycinnamate was the most abundant metabolite found in the remedy. The authors also found that the selected remedy and glabridin reduced the melanin content in the cell-based assay (B16F1) but not in the zebrafish larvae experiment. Finally, the authors conducted a computational investigation through molecular docking proposing a theoretical molecular interplay between glabridin, ethyl p-methoxycinnamate, and target proteins (tyrosinase and melanocortin-1 receptor, MC1R). Hence, in this study, the authors reported the molecular anti-pigmentation mechanism of the selected Thai rejuvenating remedy for the first time by combining the results from in silico, in vitro, and in vivo experiments.
Collapse
|
7
|
Liu S, Wu Q, Zhong Y, He Z, Wang Z, Li R, Wang M. Fosthiazate exposure induces oxidative stress, nerve damage, and reproductive disorders in nontarget nematodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12522-12531. [PMID: 36112285 DOI: 10.1007/s11356-022-23010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
As a forceful nematicide, fosthiazate has been largely applied in the management of root-knot nematodes and other herbivorous nematodes. However, the toxicity of fosthiazate to nontarget nematodes is unclear. To explore the toxicity and the mechanisms of fosthiazate in nontarget nematodes, Caenorhabditis elegans was exposed to 0.01-10 mg/L fosthiazate. The results implied that treatment with fosthiazate at doses above 0.01 mg/L could cause injury to the growth, locomotion behavior, and reproduction of the nematodes. Moreover, L1 larvae were more vulnerable to fosthiazate exposure than L4 larvae. Reactive oxygen species (ROS) production and lipofuscin accumulation were fairly increased in 1 mg/L fosthiazate-exposed nematodes. Treatment with 0.1 mg/L fosthiazate significantly inhibited the activity of acetylcholinesterase (p < 0.01). Furthermore, subacute exposure to 10 mg/L fosthiazate strongly influenced the expression of genes related to oxidative stress, reproduction, and nerve function (e.g., gst-1, sod-1, puf-8, wee-1.3, and ace-1 genes). These findings suggested that oxidative stress, reproduction and nerve disorders could serve as key endpoints of toxicity induced by fosthiazate. The cyp-35a family gene was the main metabolic fosthiazate in C. elegans, and the cyp-35a5 subtype was the most sensitive, with a change in expression level of 2.11-fold compared with the control. These results indicate that oxidative stress and neurological and reproductive disorders played fundamental roles in the toxicity of fosthiazate in C. elegans and may affect the abundance and function of soil nematodes.
Collapse
Affiliation(s)
- Shiling Liu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Qiqi Wu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Yanru Zhong
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China.
| |
Collapse
|
8
|
Shibu MA, Lin YJ, Chiang CY, Lu CY, Goswami D, Sundhar N, Agarwal S, Islam MN, Lin PY, Lin SZ, Ho TJ, Tsai WT, Kuo WW, Huang CY. Novel anti-aging herbal formulation Jing Si displays pleiotropic effects against aging associated disorders. Pharmacotherapy 2022; 146:112427. [DOI: 10.1016/j.biopha.2021.112427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023]
|