1
|
Montaser MMS, Elsokkary NH, Shararah AEAI. Effect of botulinum toxin type A on masticatory function and musculoskeletal structure in rabbits. Sci Rep 2025; 15:15323. [PMID: 40312522 PMCID: PMC12045985 DOI: 10.1038/s41598-025-97919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025] Open
Abstract
Botulinum toxin (BTX) injection could relieve many disorders in the maxillofacial regions. Although it could have some side effects on bones and muscles. This study investigated the effects of a single Botulinum Toxin Type A (BoNT-A) injection on masticatory function and musculoskeletal structure in rabbits. Twenty rabbits were divided into two groups: one received BoNT-A (10 units), and the other received saline. The study periodically monitored electromyography (EMG), compound action potential (CAP), food intake, and body weight, along with histological and immunohistochemical analyses after four weeks. Revealed significant reductions in body weight, EMG, and CAP in the BoNT-A group during the first two weeks, but no notable differences in the following two weeks. Histological examination showed thinning of the alveolar bone trabecula, while ultrastructural changes in the masseter muscle included swollen mitochondria, disorganized Z bands, and heterochromatic nuclei. Light microscopy revealed increased fibrous tissue, muscle fiber breakdown, and vacuolations. Desmin expression was significantly reduced in the BoNT-A group. The findings indicate that a single BoNT-A injection temporarily reduces masticatory function and causes degenerative changes in muscle tissue and bone structure, including alveolar bone resorption, lasting at least four weeks.
Collapse
Affiliation(s)
- Maha Mohamed Shehata Montaser
- Arab Academy for Science, Technology and Maritime Transport- College of Dentistry- Alamein Campus, Alexandria, Egypt.
| | - Nahed H Elsokkary
- Alexandria University, faculty of Medicine, Azarita, Alexandria, Egypt
| | | |
Collapse
|
2
|
Shopova D. Digital Occlusion Tracking by T-Scan Novus System in Bruxism Patients Treated With 3D Printed Occlusal Splints. Int J Dent 2025; 2025:8842498. [PMID: 40309058 PMCID: PMC12041642 DOI: 10.1155/ijod/8842498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Bruxism is a chronic pathological condition with significant clinical implications, necessitating meticulous monitoring for comprehensive treatment. The primary aim of this study was to conduct a digital measurement-based comparative analysis of occlusal alterations in occlusal splints over a 3-month period. Methods: This investigation involved 32 patients with natural dentition, fixed dental restorations, implant treatments, and a minimum of second molars. Intraoral scanning was executed using the 3DISK OVO imaging system. Digital models generated from these scans were employed to design occlusal splints using the 3Shape design software in conjunction with its splint studio module. The splints were subsequently fabricated using 3D printing technology and a biocompatible resin, Ortho Rigid (Nextdent). The assessment of occlusion was carried out using the T-Scan Novus system (Tekscan, 2018) and subjected to analysis with licensed software version 10.0.40 (T-Scan 10). Student's t-test for independent samples and a paired-sample t-test were used to detect the statistically significant difference in the distribution of occlusal force. Results: Initial digital occlusal measurements revealed statistically significant disparities in two specific regions between male and female subjects-the right first molar (t(31) = 2.04, p < 0.05) and left second molar (t(31) = 1.95, p < 0.05). Following a 3-month follow-up, significant differences in occlusal splint wear were discerned among male subjects (p < 0.01), whereas such differences were not observed among female subjects (p > 0.01). Conclusion: The digital design of occlusal splints facilitates the development of uniform contact areas across the entire occlusal surface. Nonetheless, the examination with T-Scan Novus unveiled that uniformity in contact area does not necessarily correspond to uniformity in force distribution.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University, Plovdiv, Bulgaria
| |
Collapse
|
3
|
Matias C, Yamada C, Movila A, Brault JJ. Optimizing Confocal Imaging Protocols for Muscle Fiber Typing in the Mouse Masseter Muscle. Bio Protoc 2025; 15:e5267. [PMID: 40224663 PMCID: PMC11986697 DOI: 10.21769/bioprotoc.5267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
The masseter muscle, a key orofacial muscle, demonstrates unique anatomical and functional properties, including sexual dimorphism in myosin heavy chain (MyHC) expression and complex fiber architecture. Despite its importance in mastication and relevance to various disorders, phenotypic characterization of the masseter remains limited. Conventional fluorescence microscopy has been a cornerstone in muscle fiber typing, reliably identifying MyHC isoforms and measuring fiber cross-sectional areas. Building on this foundation, confocal microscopy offers complementary advantages, such as enhanced resolution, increased flexibility for multiplexing, and the ability to visualize complex structures in three dimensions. This study presents a detailed protocol for using confocal microscopy to achieve high-resolution imaging and molecular characterization of masseter muscle cryosections. By leveraging advanced technologies such as white light lasers and extended z-length imaging, this method ensures precise spectral separation, simultaneous multichannel fluorescence detection, and the ability to capture muscle architecture in three dimensions. The protocol includes tissue preparation, immunostaining for MyHC isoforms, and postprocessing for fiber segmentation and quantification. The imaging setup was optimized for minimizing signal bleed through, improving the signal-to-noise ratio, and enabling detailed visualization of muscle fibers and molecular markers. Image postprocessing allows for quantification of the cross-sectional area of individual fibers, nuclei location measurements, and identification of MyHC isoforms within each fiber. This confocal microscopy-based protocol provides similar resolution and contrast compared to conventional techniques, enabling robust multiplexed imaging and 3D reconstruction of muscle structures. These advantages make it a valuable tool for studying complex muscle architecture, offering broad applications in muscle physiology and pathology research. Key features • Enables high-resolution imaging of muscle fiber architecture, capturing detailed spatial relationships using extended z-length and advanced spectral separation techniques. • Supports simultaneous detection of multiple molecular markers for robust muscle fiber typing and molecular localization. • Allows for the generation of three-dimensional models to analyze muscle structures such as neuromuscular junctions, extracellular matrix, and mitochondrial organization. • Adaptable to various skeletal muscles and species, providing valuable insights into muscle physiology, regeneration, and disease processes. Graphical overview Analyzing muscle fiber composition and morphology in mice's masseter muscle using confocal microscopy. Workflow for characterizing rodent masseter muscle fibers using advanced confocal microscopy. Confocal microscopy, equipped with white light laser technology and optimized z-stack imaging, allows precise spectral unmixing to reduce bleed through and enhance signal detection. The z-length is extended beyond the physical thickness of the sample to account for potential variations in tissue flatness and ensure complete imaging of all focal planes. The resulting high-resolution images provide detailed insights into fiber architecture, molecular composition, and cross-sectional areas, ensuring robust and reproducible data for analyzing the complex phenotypic characteristics of the masseter and other muscles.
Collapse
Affiliation(s)
- Catalina Matias
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiaki Yamada
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Alexandru Movila
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Yaylacı EA, Onem Ozbilen E, Aslan BT, Polat T. Investigation of the Relationship Between ACTN3 rs1815739 Polymorphism and Openbite Cases: A Prospective Study. Orthod Craniofac Res 2025; 28:365-370. [PMID: 39692277 DOI: 10.1111/ocr.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/20/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE The aim of this study was to examine whether ACTN3 rs1815739 polymorphism, which causes the deficiency of the alpha-actinin-3 muscle protein, is related to the formation of open bite malocclusion. MATERIALS AND METHODS Fifty-eight participants (18.5 ± 3.6 years old) with anterior open bite (n = 29) and normal overbite (n = 29) who presented to Marmara University, Department of Orthodontics for treatment were included in the study. Initial cephalometric radiographs were used for the diagnosis of malocclusion. The case group was divided into three subgroups according to degree of open bite. For DNA isolation, oral epithelial cells were collected with buccal swabs (Van Allen Way, Carlsbad, USA), and the real-time PCR method was used for the genotyping of all polymorphisms. The results were statistically analysed, and the threshold for statistical significance was set at p < 0.05. RESULTS The frequencies of RR, RX and XX genotypes of ACTN3 rs1815739 polymorphism were found as 6 (20.7%), 14 (48.3%) and 9 (31.0%) in the control group and 8 (8%), 9 (31.0%) and 12 (41.4%) in the case group, respectively. There was no statistically significant difference between the groups in terms of the presence of the examined polymorphism (p > 0.05). However, the intra-group evaluation of case group revealed a significant difference in the prevalence of XX genotype (83.3%) for the subgroup with an open bite of -5 mm or above. CONCLUSION Although no significant difference was observed between the case and control groups, a possible association was identified between ACTN3 rs1815739 polymorphism and an increased severity of open bite malocclusion.
Collapse
Affiliation(s)
- Elif Aslıhan Yaylacı
- Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Elvan Onem Ozbilen
- Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Beste Tacal Aslan
- Department of Medical Biology and Genetics, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Tolga Polat
- Department of Medical Biology and Genetics, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Abudurezake A, Kakehi S, Umemura F, Kaga H, Someya Y, Tabata H, Yoshizawa Y, Naito H, Tajima T, Ito N, Otsuka H, Shi H, Sugimoto M, Sakamoto S, Muroga Y, Wakabayashi H, Kawamori R, Watada H, Tamura Y. Masseter Muscle Volume, Sarcopenia, and Muscle Determinants: Insights from ACTN3 Polymorphism in Elderly Japanese in the Bunkyo Health Study. Arch Med Res 2025; 56:103095. [PMID: 39405919 DOI: 10.1016/j.arcmed.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/05/2024] [Accepted: 09/25/2024] [Indexed: 01/25/2025]
Abstract
AIM Sarcopenia has been with a decrease in masseter muscle (MM) thickness in high-risk older populations. However, the relationship between sarcopenia and determinants of MM volume (MMV) in the general elderly population remains unclear. METHOD In a cross-sectional study of 1,484 older adults in Tokyo, we evaluated MMV using 3D MRI scanning, appendicular skeletal muscle mass (ASMM), handgrip strength, dietary intake, smoking, insulin-like growth factor 1 (IGF-1) levels, and the ACTN3 R577X polymorphism. Participants were divided into quintiles based on MMV (Q1-5). RESULTS Participants in our study had a mean age of 73.0 ± 5.3 years and their MMV (Men: 35.3 ± 7.8 mL, Women: 25.0 ± 5.1 mL) was significantly higher in men than in women. A significant association between MMV and sarcopenia was observed, with the lowest quintile (Q1) showing a higher risk compared to the highest quintile (Q5) in both sexes. Body mass index (BMI) and age were independent determinants of ASMM in both sexes, whereas BMI, but interestingly not age, was a determinant of MMV. Moreover, IGF-1 was positively correlated with MMV in both sexes; smoking was negatively correlated with MMV in women. The ACTN3 577XX genotype was only associated with smaller MMV in men. CONCLUSION Low MMV increased the risk of sarcopenia, particularly in men. BMI and age strongly influenced ASMM, while MMV was only weakly associated with BMI and not with age. Notably, IGF-1 level was positively associated with MMV only, and ACTN3 genotype was associated to reduced MMV only in men.
Collapse
Affiliation(s)
- Abulaiti Abudurezake
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Saori Kakehi
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan.
| | - Futaba Umemura
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hideyoshi Kaga
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Yuki Someya
- Graduate School of Health and Sports Science, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hiroki Tabata
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Yasuyo Yoshizawa
- Center for Healthy Life Expectancy, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hitoshi Naito
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Tsubasa Tajima
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Naoaki Ito
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hikaru Otsuka
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Huicong Shi
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Mari Sugimoto
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Shota Sakamoto
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Yukiko Muroga
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hidetaka Wakabayashi
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Ryuzo Kawamori
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hirotaka Watada
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Graduate School of Health and Sports Science, Juntendo University, Bunkyo, Tokyo, Japan
| | - Yoshifumi Tamura
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Center for Healthy Life Expectancy, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Bunkyo, Tokyo, Japan
| |
Collapse
|
6
|
da Silva AP, Sassi FC, de Andrade CRF. The effects of treatment timing on the management of patients with multiple facial fractures and on the self-perception of TMD recovery. Cranio 2024; 42:699-710. [PMID: 35257636 DOI: 10.1080/08869634.2022.2046910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate the effects of time on the orofacial functions and on the self-perception of temporomandibular disorders (TMD) recovery in a population of patients with multiple facial fractures. METHODS Orofacial functions and self-perception of TMD recovery was verified in patients with midface and/or lower face fractures. Patients were divided according to the time between fracture reduction and the clinical assessments: 0-1 month (Group 1), 1-3 months (Group 2), and 15 >3 months (Group 3). RESULTS Patients in Group 1 presented a greater compromise of swallowing and mastication when compared to patients with older fractures (p = 0.015), whereas patients in Group 3 presented a poorer TMD recovery (TMJ pain: p = 0.010 and tinnitus: p = 0.004). CONCLUSION Delays in functional treatments involving the myofunctional orofacial system have a negative impact on the recovery of essential orofacial functions and on TMD symptoms..
Collapse
Affiliation(s)
- Amanda Pagliotto da Silva
- Division of Orofacial Myology, Hospital Das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fernanda Chiarion Sassi
- Department of Physiotherapy, Speech-language and Hearing Science and Occupational Therapy, School of Medicine, University of São Paulo, Brazil
| | - Claudia Regina Furquim de Andrade
- Department of Physiotherapy, Speech-language and Hearing Science and Occupational Therapy, School of Medicine, University of São Paulo, Brazil
| |
Collapse
|
7
|
Guignardat JF, Raoul G, Ferri J, Sciote JJ, Nicot R. Systematic review of the histological and functional effects of botulinum toxin A on masticatory muscles: Consideration in dentofacial orthopedics and orthognathic surgery. Ann Anat 2024; 256:152302. [PMID: 39038690 DOI: 10.1016/j.aanat.2024.152302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Botulinum toxin type A causes muscle paralysis and is widely used in the masticatory muscle for stomatognathic diseases, such as temporomandibular disorder, bruxism, or masseteric hypertrophy. Nonetheless, its muscular effect remains unclear. Better understanding could aid improved use and perhaps new indications, particularly in dentofacial orthopaedics and orthognathic surgery. METHODS This systematic review explored the histologic and functional effects of botulinum toxin in animal and human masticatory muscles and was conducted in accordance with the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The MEDLINE, Web of Science, and Cochrane Library electronic databases were searched for relevant articles. The inclusion criteria were human or animal masticatory muscle analysis after botulinum toxin injection(s) AND histological structural/ultrastructural analysis by optical or electronic microscopy OR functional effect analysis by bite force evaluation (occlusal force analyzer) and muscle activity (electromyography). RESULTS Of an initial 1578 articles, 44 studies were eventually included. Botulinum toxin injection in the masticatory muscle altered its histological structure and functional properties. The human and animal studies revealed ultrastructural change, atrophy, and fiber type modifications of the masticatory muscles after one injection. Botulinum toxin decreased bite force and muscle activity, but recovery was uncertain. CONCLUSIONS Muscle forces applied on the skeleton is a key feature of facial growth. Masticatory muscle paralysis changes mechanical stress on bones, which rebalances the force applied on facial bones. This new balance could benefit dental deformity or surgical relapse. Therefore, botulinum toxin could limit the orthognathic effect of the masticatory muscles in such patients. Given the uncertain recovery, multiple injections should be avoided, and usage should not deviate from established consensus.
Collapse
Affiliation(s)
| | - Gwénaël Raoul
- Univ. Lille, Inserm, CHU Lille, U1008 - Advanced Drug Delivery Systems, Department of Oral and Maxillofacial Surgery, F-59000 Lille, France
| | - Joël Ferri
- Univ. Lille, Inserm, CHU Lille, U1008 - Advanced Drug Delivery Systems, Department of Oral and Maxillofacial Surgery, F-59000 Lille, France
| | - James J Sciote
- Department of Orthodontics, Temple University, Philadelphia, Pennsylvania, USA
| | - Romain Nicot
- Univ. Lille, Inserm, CHU Lille, U1008 - Advanced Drug Delivery Systems, Department of Oral and Maxillofacial Surgery, F-59000 Lille, France.
| |
Collapse
|
8
|
Togninalli D, Antonarakis GS, Papadopoulou AK. Relationship between craniofacial skeletal patterns and anatomic characteristics of masticatory muscles: a systematic review and meta-analysis. Prog Orthod 2024; 25:36. [PMID: 39245691 PMCID: PMC11381490 DOI: 10.1186/s40510-024-00534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND The anatomic characteristics of the masticatory muscles differ across craniofacial skeletal patterns. OBJECTIVE To identify differences in the anatomic characteristics of masticatory muscles across different sagittal and vertical craniofacial skeletal patterns. ELIGIBILITY CRITERIA Studies measuring the thickness, width, cross-sectional area (CSA), volume and orientation of masticatory muscles in healthy patients of different sagittal (Class I, Class II, and Class III) and/or vertical (normodivergent, hypodivergent, and hyperdivergent) patterns. INFORMATION SOURCES Unrestricted literature searches in 8 electronic databases/registers until December 2023. RISK OF BIAS AND SYNTHESIS OF RESULTS Study selection, data extraction, and risk of bias assessment with a customised tool were performed independently in duplicate. Random-effects meta-analysis and assessment of the certainty of clinical recommendations with the GRADE approach were conducted. RESULTS 34 studies (37 publications) were selected with a total of 2047 participants and data from 16 studies were pulled in the meta-analysis. Masseter muscle thickness in relaxation was significantly greater by 1.14 mm (95% CI 0.74-1.53 mm) in hypodivergent compared to normodivergent patients while it was significantly decreased in hyperdivergent patients by - 1.14 mm (95% CI - 1.56 to - 0.73 mm) and - 2.28 mm (95% CI - 2.71 to - 1.85 mm) compared to normodivergent and hypodivergent patients respectively. Similar significant differences were seen between these groups in masseter muscle thickness during contraction as well as masseter muscle CSA and volume. Meta-analyses could not be performed for sagittal categorizations due to insufficient number of studies. CONCLUSIONS Considerable differences in masseter muscle thickness, CSA and volume were found across vertical skeletal configurations being significantly reduced in hyperdivergent patients; however, results should be interpreted with caution due to the high risk of bias of the included studies. These variations in the anatomic characteristics of masticatory muscles among different craniofacial patterns could be part of the orthodontic diagnosis and treatment planning process. REGISTRATION PROSPERO CRD42022371187 .
Collapse
Affiliation(s)
- David Togninalli
- Division of Orthodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gregory S Antonarakis
- Division of Orthodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandra K Papadopoulou
- Division of Orthodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Discipline of Orthodontics and Paediatric Dentistry, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
9
|
Watted N, Lone IM, Zohud O, Midlej K, Proff P, Iraqi FA. Comprehensive Deciphering the Complexity of the Deep Bite: Insight from Animal Model to Human Subjects. J Pers Med 2023; 13:1472. [PMID: 37888083 PMCID: PMC10608509 DOI: 10.3390/jpm13101472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Deep bite is a malocclusion phenotype, defined as the misalignment in the vertical dimension of teeth and jaws and characterized by excessive overlap of the upper front teeth over the lower front teeth. Numerous factors, including genetics, environmental factors, and behavioral ones, might contribute to deep bite. In this study, we discuss the current clinical treatment strategies for deep bite, summarize the already published findings of genetic analysis associated with this complex phenotype, and their constraints. Finally, we propose a comprehensive roadmap to facilitate investigations for determining the genetic bases of this complex phenotype development. Initially, human deep bite phenotype, genetics of human deep bite, the prevalence of human deep bite, diagnosis, and treatment of human deep bite were the search terms for published publications. Here, we discuss these findings and their limitations and our view on future strategies for studying the genetic bases of this complex phenotype. New preventative and treatment methods for this widespread dental issue can be developed with the help of an understanding of the genetic and epigenetic variables that influence malocclusion. Additionally, malocclusion treatment may benefit from technological developments like 3D printing and computer-aided design and manufacture (CAD/CAM). These technologies enable the development of personalized surgical and orthodontic guidelines, enhancing the accuracy and effectiveness of treatment. Overall, the most significant results for the patient can only be achieved with a customized treatment plan created by an experienced orthodontic professional. To design a plan that meets the patient's specific requirements and expectations, open communication between the patient and the orthodontist is essential. Here, we propose to conduct a genome-wide association study (GWAS), RNAseq analysis, integrating GWAS and expression quantitative trait loci (eQTL), micro and small RNA, and long noncoding RNA analysis in tissues associated with deep bite malocclusion in human, and complement it by the same approaches in the collaborative cross (CC) mouse model which offer a novel platform for identifying genetic factors as a cause of deep bite in mice, and subsequently can then be translated to humans. An additional direct outcome of this study is discovering novel genetic elements to advance our knowledge of how this malocclusion phenotype develops and open the venue for early identification of patients carrying the susceptible genetic factors so that we can offer early prevention and treatment strategies, a step towards applying a personalized medicine approach.
Collapse
Affiliation(s)
- Nezar Watted
- Center for Dentistry Research and Aesthetics, Jatt 45911, Israel;
- Department of Orthodontics, Faculty of Dentistry, Arab America University, Jenin 919000, Palestine
- Gathering for Prosperity Initiative, Jatt 45911, Israel
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.)
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.)
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.)
| | - Peter Proff
- University Hospital of Regensburg, Department of Orthodontics, University of Regensburg, 93053 Regensburg, Germany
| | - Fuad A. Iraqi
- Gathering for Prosperity Initiative, Jatt 45911, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.)
- University Hospital of Regensburg, Department of Orthodontics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Nicot R, Raoul G, Vieira AR, Ferri J, Sciote JJ. ACTN3 genotype influences masseter muscle characteristics and self-reported bruxism. Oral Dis 2023; 29:232-244. [PMID: 34773324 PMCID: PMC9098697 DOI: 10.1111/odi.14075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Main aim of the study was to explore the association between genetic polymorphisms in ACTN3 and bruxism. Secondary objectives included masseter muscle phenotypes assessment between bruxers and non-bruxers and according to genetic polymorphisms in ACTN3. MATERIALS AND METHODS Fifty-four patients undergoing orthognathic surgery for correction of their malocclusion were enrolled. Self-reported bruxism and temporomandibular disorders status were preoperatively recorded. Saliva samples were used for ACTN3 genotyping. Masseter muscle samples were collected bilaterally at the time of orthognathic surgery to explore the muscle fiber characteristics. RESULTS There were significant differences in genotypes for rs1815739 (R577X nonsense) (p = 0.001), rs1671064 (Q523R missense) (p = 0.005), and rs678397 (intronic variant) (p = 0.001) between bruxers and non-bruxers. Patients with self-reported bruxism presented a larger mean fiber area for types IIA (p = 0.035). The mean fiber areas in individuals with the wild-type CC genotype for rs1815739 (R577X) were significantly larger for type IIA fibers (1394.33 μm2 [572.77 μm2 ]) than in those with the TC and TT genotypes (832.61 μm2 [602.43 μm2 ] and 526.58 μm2 [432.21 μm2 ] [p = 0.014]). Similar results for Q523R missense and intronic variants. CONCLUSIONS ACTN3 genotypes influence self-reported bruxism in patients with dentofacial deformity through specific masseter muscle fiber characteristics.
Collapse
Affiliation(s)
- Romain Nicot
- Department of Oral and Maxillofacial Surgery, University of Lille, CHU Lille, INSERM U 1008: Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Gwénaël Raoul
- Department of Oral and Maxillofacial Surgery, University of Lille, CHU Lille, INSERM U 1008: Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Alexandre R. Vieira
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Joël Ferri
- Department of Oral and Maxillofacial Surgery, University of Lille, CHU Lille, INSERM U 1008: Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - James J. Sciote
- Department of Orthodontics, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Jokaji R, Ooi K, Yahata T, Nakade Y, Kawashiri S. Evaluation of factors related to morphological masseter muscle changes after preoperative orthodontic treatment in female patients with skeletal class III dentofacial deformities. BMC Oral Health 2022; 22:292. [PMID: 35843934 PMCID: PMC9288706 DOI: 10.1186/s12903-022-02319-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background The purpose of the current study was to investigate factors related to morphological changes in the masseter muscle after preoperative orthodontic treatment in patients with skeletal class III dentofacial deformities for analysis of muscle changes and malocclusions. Methods Twenty female patients with dentofacial deformities were included in the study. Computed tomography was performed before and after preoperative orthodontic treatment, and the lengths, widths, and cross-sectional areas of the masseter muscles were measured. Changes in these parameters were evaluated, and factors related to changes in masseter muscle area after preoperative orthodontic treatment were analyzed. Results The lengths, widths, and areas of masseter muscles were significantly smaller after preoperative orthodontic treatment. Smaller masseter muscle area was significantly associated with changes in overbite and pretreatment values of SNA angle. Conclusions Atrophy of the masseter muscle during preoperative orthodontic treatment was greater in patients with increased open bite due to improved dental compensation in patients with skeletal class III dentofacial deformities with maxillary retraction.
Collapse
|
12
|
Usseglio J, Pagès E, Touzet-Roumazeille S, Brie J, Salle L, Ferri J. Dental and maxillofacial manifestations of Steinert's myotonic dystrophy: A retrospective case series and therapeutic investigation. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e995-e1001. [PMID: 35752440 DOI: 10.1016/j.jormas.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
This retrospective study was performed to analyse the facial features and occlusal anomalies in 18 patients with Steinert's myotonic dystrophy (MD1). Medical and surgical management issues noted in this study may contribute to clinical decision-making. This series included 18 patients with MD1 who presented for maxillofacial consultations. For all patients, the following characteristics were assessed: sex, age, intellectual ability, oral condition, initial assessment of the occlusion and facial aspect. In total, 11 of 18 patients underwent surgery (10 achieved occlusion modification, whereas one did not). amongst patients who underwent surgery and achieved occlusion modification, six had stable class I results and four had unstable results or exhibited a slight degradation. Facial muscles play an important role in craniomaxillofacial development and facial aspects. A high prevalence of malocclusions is present in patients with MD1. Orthodontics and orthognathic surgery can improve the quality of life for affected patients. However, the long-term results of these treatments may be disappointing, and relapse can occur in patients with the most severe disease. Aspects of disease to consider while planning for surgery include oral health, risks of instability and relapse, and risks involving anaesthesia.
Collapse
Affiliation(s)
- Julie Usseglio
- Department of Stomatology and Maxillo-Facial Surgery, CHU Dupuytren, 2 avenue Martin Luther King, 87042 Limoges, France.
| | - Esther Pagès
- Department of Stomatology and Maxillo-Facial Surgery, CHU Dupuytren, 2 avenue Martin Luther King, 87042 Limoges, France
| | | | - Joel Brie
- Department of Stomatology and Maxillo-Facial Surgery, CHU Dupuytren, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Laurence Salle
- Department of Endocrinology, CHU Dupuytren, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Joel Ferri
- Department of Stomatology and Maxillo-Facial Surgery, CHU Salengro, Rue Emile Laisne, 59037 Lille, France
| |
Collapse
|
13
|
A retrospective long-term comparison of early RME-facemask versus late Hybrid-Hyrax, alt-RAMEC and miniscrew-supported intraoral elastics in growing Class III patients. Int Orthod 2021; 20:100603. [PMID: 34972642 DOI: 10.1016/j.ortho.2021.100603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To compare the long-term dentoskeletal effects of early treatment with banded or bonded RME (Rapid Maxillary Expansion)-Face Mask (RME-FM) versus late treatment with bonded Hybrid-Hyrax, alt-RAMEC (Alternate Rapid Maxillary Expansion and Contraction) and intraoral Class III elastics anchored to miniscrew-reinforced-Lower-lingual-Arch (alt-RAMEC-HH-LLA) in growing, maxillary retrognathic patients. MATERIALS AND METHODS Two groups were matched at long-term follow-up retrospectively. Patients received either early RME-FM (n=16, 5 males, 11 females, age T1: 6.5±0.9 years, age T2: 15.8±2.5 years) or late alt-RAMEC-HH-LLA (n=15, 7 males, 8 females, age T1: 12.52±0.94 years, age T2: 16.8±0.9 years). Total follow-up was 9.2±2.3 years and 4.2±0.2 years respectively, including fixed appliances to compete treatment. RESULTS Both treatments resulted in Class III correction except one unsuccessful case of alt-RAMEC-HH-LLA. Active maxillary protraction was 1.6±0.5years with RME-FM and 0.5 years with alt-RAMEC-HH-LLA being significantly shorter (P<0.001). Values at T2 estimation with multivariate linear regression for correlated multiple outcomes, conditional on baseline estimates, age and sex showed alt-RAMEC-HH-LLA inducing significantly more retroclined lower incisors (mean: -6.11°; 95%CI: -10.66, -1.57; P=0.01), less overbite (mean: -1.28mm; 95%CI: -1.79, -0.761; P<0.001), less maxillo (Co-A)- (mean: -4.54mm; 95%CI: -7.91, -1.16; P=0.01) mandibular (Co-Gn) (mean: -10.5mm; 95%CI: -17.45, -3.55; P=0.003) projections/size, more open gonial angle (mean: 4.93°; 95%CI: 2.27, 7.59; P<0.001), and less S-N length (mean: -5.04mm; 95%CI: -6.57, -3.51; P<0.001). CONCLUSIONS Patients treated with either early RME-FM or late Alt-RAMEC-HH-LLA had comparable overall post-pubertal skeletal and overjet corrections. However, the late Alt-RAMEC-HH-LLA showed less correction of dentoalveolar compensations and in particular of the mandibular incisors. The overbite, maxillary and mandibular projection and size were lower and the gonial angle was more open.
Collapse
|
14
|
Arakawa M, Kitahara T, Inadomi D, Iikubo M, Hyakutake H, Yuasa K, Takahashi I. Molecular imaging in masseter muscle observed by muscle function magnetic resonance imaging and 31 P-magnetic resonance spectroscopy in patients with a jaw deformity. Clin Exp Dent Res 2021; 8:231-238. [PMID: 34623750 PMCID: PMC8874048 DOI: 10.1002/cre2.494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/03/2021] [Indexed: 11/12/2022] Open
Abstract
Background Skeletal mandibular protrusion would influence to the muscle fatigue of the masticatory muscles. Establishing a diagnostic procedures combining physiological and biochemical information is necessary for quantitative evaluation of masticatory muscle fatigue. Objective The transverse relaxation time (T2 time) of muscle functional magnetic resonance imaging (mfMRI), and 31P‐magnetic resonance spectroscopy (MRS) were used to investigate the reliability as parameters for measuring the masseter muscle in patients with skeletal mandibular prognathism. Method The subjects were 19 patients diagnosed as skeletal mandibular protrusions and 19 healthy subjects as a control group. Transverse relaxation time (T2 value) determined by mfMRI along with creatine phosphate (PCr) and inorganic phosphorus (Pi) determined by 31P‐MRS before, during, and after clenching were used for molecular imaging of muscle fatigue. Results The average T2 value of the patient group was significantly higher than that of the healthy control group at rest. Furthermore, the average T2 value transiently increased in both groups during experimental clenching. The PCr and Pi showed a tendency toward a transient decrease and increases, respectively. The pH in the masseter muscle showed a transient decrease in both groups prior to and following experimental clenching. The pH in the masseter muscle of the patient group was significantly lower than that in the healthy control group at rest and recovery. Conclusion We showed mfMRI and 31P‐MRS are useful for evaluating masseter fatigue during clenching, and the masseter muscle in the prognathic patients showed more severe fatigue than the healthy controls.
Collapse
Affiliation(s)
- Masahiro Arakawa
- Section of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Kyushu University, Fukuoka, Japan
| | - Toru Kitahara
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Daisuke Inadomi
- Radiology Center, Fukuoka Dental College Hospital, Fukuoka, Japan
| | - Masahiro Iikubo
- Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroto Hyakutake
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan
| | - Kenji Yuasa
- Section of Image Diagnosis, Department of Diagnostics and General Care, Fukuoka Dental College, Fukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Jin L, Tang Q, Hu S, Chen Z, Zhou X, Zeng B, Wang Y, He M, Li Y, Gui L, Shen L, Long K, Ma J, Wang X, Chen Z, Jiang Y, Tang G, Zhu L, Liu F, Zhang B, Huang Z, Li G, Li D, Gladyshev VN, Yin J, Gu Y, Li X, Li M. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nat Commun 2021; 12:3715. [PMID: 34140474 PMCID: PMC8211698 DOI: 10.1038/s41467-021-23560-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
A comprehensive transcriptomic survey of pigs can provide a mechanistic understanding of tissue specialization processes underlying economically valuable traits and accelerate their use as a biomedical model. Here we characterize four transcript types (lncRNAs, TUCPs, miRNAs, and circRNAs) and protein-coding genes in 31 adult pig tissues and two cell lines. We uncover the transcriptomic variability among 47 skeletal muscles, and six adipose depots linked to their different origins, metabolism, cell composition, physical activity, and mitochondrial pathways. We perform comparative analysis of the transcriptomes of seven tissues from pigs and nine other vertebrates to reveal that evolutionary divergence in transcription potentially contributes to lineage-specific biology. Long-range promoter–enhancer interaction analysis in subcutaneous adipose tissues across species suggests evolutionarily stable transcription patterns likely attributable to redundant enhancers buffering gene expression patterns against perturbations, thereby conferring robustness during speciation. This study can facilitate adoption of the pig as a biomedical model for human biology and disease and uncovers the molecular bases of valuable traits. A comprehensive transcriptomic survey of the pig could enable mechanistic understanding of tissue specialization and accelerate its use as a biomedical model. Here the authors characterize four distinct transcript types in 31 adult pig tissues to dissect their distinct structural and transcriptional features and uncover transcriptomic variability related to tissue physiology.
Collapse
Affiliation(s)
- Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan, China
| | - Xuming Zhou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuhao Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lixuan Gui
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan, China
| | - Linyuan Shen
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Guoqing Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fei Liu
- Information and Educational Technology Center, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zhang
- Ya'an Digital Economy Operation Company, Ya'an, Sichuan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guisen Li
- Renal Department and Nephrology Institute, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Harzer W, Augstein A, Olbert C, Juenger D, Keil C, Weiland B. Satellite cell capacity for functional adaptation of masseter muscle in Class II and Class III patients after orthognathic surgery-a pilot study. Eur J Orthod 2021; 43:234-240. [PMID: 32452521 DOI: 10.1093/ejo/cjaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM The aim of the prospective pilot study was to analyze the biomarkers CD34, Pax7, Myf5, and MyoD for stimulation of satellite cells (SCs), which are responsible for functional adaptation. SUBJECTS AND METHODS Forty-five Caucasian patients were consecutively recruited from the Maxillo-Facial-Surgery at TU Dresden. Eleven orthognathic Class III patients, 24 Class II patients, and 10 controls with Class I were involved in the study. Tissue samples from masseter muscle were taken from the patients pre-surgically (T1) and 7 months later (T2). Samples from controls were taken during the extraction of third molars in the mandible. Polymerase chain reaction (PCR) for relative quantification of gene expression was calculated with the delta delta cycle threshold (ΔΔCT) method. RESULTS The results show significant differences for the marker of SC stimulation between the controls, the patient groups, males, and females. The gene expression of CD34 was post-surgically upregulated for Class III (0.35-0.77, standard deviation [SD] = 0.39, P < 0.05) in comparison with controls. For Pax7, there was a significant difference shown between the retrognathic and the prognathic group because of downregulation in Class II patients (1.64-0.76, SD = 0.55, P < 0.05). In Class III patients, there was a significant upregulation for Myf5 (0.56-1.05, SD = 0.52, P < 0.05) after surgery too. CONCLUSIONS The significant decline of Pax7 in Class II patients indicates a deficiency of stimulated SC post-surgically. The expression of CD34 and Myf5 in Class II stayed unchanged. In contrast, there was an upregulation for all Class III patients, mainly in females, shown post-surgically. This may be one reason for weak functional adaptation and relapse in Class II patients.
Collapse
Affiliation(s)
- Winfried Harzer
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Antje Augstein
- Center for Heart Diseases, Technical University of Dresden, Germany
| | - Christin Olbert
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Diana Juenger
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Germany
| | - Christiane Keil
- Department of Orthodontics, Technical University of Dresden, Germany
| | - Bernhard Weiland
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Germany
| |
Collapse
|
17
|
Botzenhart UU, Keil C, Tsagkari E, Zeidler-Rentzsch I, Gredes T, Gedrange T. Influence of botulinum toxin A on craniofacial morphology after injection into the right masseter muscle of dystrophin deficient (mdx-) mice. Ann Anat 2021; 236:151715. [PMID: 33675949 DOI: 10.1016/j.aanat.2021.151715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Severe craniofacial and dental abnormalities, typical for patients with progressive Duchenne muscular dystrophy (DMD), are an exellcent demonstration of Melvin L. Moss "functional matrix theory", highlighting the influence of muscle tissue on craniofacial growth and morphology. However, the currently best approved animal model for investigation of this interplay is the mdx-mouse, which offers only a limited time window for research, due to the ability of muscle regeneration, in contrast to the human course of the disease. The aim of this study was to evaluate craniofacial morphology after BTX-A induced muscle paralysis in C57Bl- and mdx-mice, to prove the suitability of BTX-A intervention to inhibit muscle regeneration in mdx-mice and thus, mimicking the human course of the DMD disease. METHODS Paralysis of the right masseter muscle was induced in 100 days old C57Bl- and mdx-mice by a single specific intramuscular BTX-A injection. Mice skulls were obtained at 21 days and 42 days after BTX-A injection and 3D radiological evaluation was performed in order to measure various craniofacial dimensions in the sagittal, transversal and vertical plane. Statstical analysis were performed using SigmaStat®Version 3.5. In case of normal distribution, unpaired t-test and otherwise the Mann-Whitney-U test was applied. A statistical significance was given in case of p ≤ 0.05. RESULTS In contrast to C57Bl-mice, in mdx-mice, three weeks after BTX-A treatment a significant decrease of skull dimensions was noted in most of the measurements followed by a significant increase at the second investigation period. CONCLUSIONS BTX-A can induce changes in craniofacial morphology and presumably partially inhibit muscle regeneration in mdx-mice, but cannot completely intensify craniofacial effects elicited by dystrophy. Further research is necessary in order to fully understand muscle-bone interplay after BTX-A injection into dystrophic muscles.
Collapse
Affiliation(s)
| | - Christiane Keil
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany; Department of Orthodontics, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Eirini Tsagkari
- Department of Orthodontics, Faculty of Dentistry School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ines Zeidler-Rentzsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Tomasz Gredes
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany; Department of Orthodontics, Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| | - Tomasz Gedrange
- Medical Faculty Carl Gustav Carus Campus, TU Dresden, 01307, Dresden, Germany
| |
Collapse
|
18
|
Harzer W, Augstein A, Juenger D, Keil C, Weiland B. Notch expression profile and satellite cell stimulation in masseter muscle before and after orthognathic surgery. J Craniomaxillofac Surg 2020; 49:93-97. [PMID: 33357968 DOI: 10.1016/j.jcms.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/19/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022] Open
Abstract
The aim of this prospective study was to compare the expression of the Notch receptor family with the biomarker for stimulation of satellite cells (SC), which are responsible for functional adaptation. Tissue samples from the masseter muscle were taken presurgically and 7 months later. Samples from controls came from the extraction of third molars. The expression of Notch 1 to 4 and the satellite cell markers CD34, Pax7, and MyoD1 were investigated. PCR was used for relative quantification of gene expression, which was calculated with the ΔΔCT method. The study involved 38 white patients - 10 prognathic, 18 retrognathic, and 10 orthognathic controls. The median value for Notch 1 was significantly reduced presurgically for prognathic (0.46, SD 0.45) and retrognathic (0.57, SD 0.35) patients compared with the controls. Postsurgically, Notch 2 was significantly upregulated in the prognathic group (0.55, SD 0.28/1.37, SD 0.85). Similarly, there was upregulation of Notch 3 in the prognathic group (0.33, SD 0.42/0.59, SD 1.37) and downregulation in retrognathic patients (0.59, SD 0.79/0.52, SD 0.97). Upregulations for the satellite cell markers CD34 and Pax7 were also found in prognathic patients. The significant upregulation of Notch 1-3 and CD34 in prognathics, but unchanged MyoD expression, signals high stimulation for SC and maintenance of the regeneration cell pool. A lower expression of Notch and SC in retrognathic patients could be responsible for weak functional adaptation.
Collapse
Affiliation(s)
- Winfried Harzer
- Department of Orthodontics, Technical University of Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Antje Augstein
- Center for Heart Diseases, Fetscherstr. 76, 01307, Dresden, Germany
| | - Diana Juenger
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Christiane Keil
- Department of Orthodontics, Technical University of Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Bernhard Weiland
- Department of Oral and Maxillofacial Surgery, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
19
|
Chaurand J, Godínez-Victoria M, Tellez-Girón A, Facio-Umaña JA, Jimenez-Ponce F. Incobotulinum toxin type A for treatment of chronic myofascial pain. J Oral Sci 2020; 63:37-40. [PMID: 33298638 DOI: 10.2334/josnusd.20-0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This study assessed the effectiveness of incobotulinum toxin type A (IBTx) for chronic myofascial pain affecting the masseter and temporal muscles. METHODS Twenty two patients who received a diagnosis of chronic masseter and temporalis myofascial pain were evaluated by using a visual analog pain scale (VAS), digital pressure algometry, and the SF-36 Health Survey at baseline (T0), before IBTx injection. Patients were again evaluated at 2 months (T1) and 7 months (T2) after IBTx injection. RESULTS VAS scores for pain significantly differed (P = 0.029, Friedman test). Post-hoc tests showed a significant reduction in pain at 2 months (T0-T1) and 7 months (T0-T2) (P = 0.011 and P = 0.028, respectively; Wilcoxon test) but not between 2 and 7 months (P = 0.676; Wilcoxon test). There was no significant difference in pressure algometry values (P = 0.385, Friedman test). Quality of life (QOL) assessment showed a significant difference (P = 0.002, Friedman test). Post-hoc tests showed a significant improvement in QOLat 2 months, but no significant difference at 7 months (P = 0.004 and P = 0.260, Wilcoxon test). CONCLUSION IBTx injection resulted in safe, effective short-term pain relief for patients with chronic facial pain affecting the masseter and temporalis muscles.
Collapse
Affiliation(s)
- Jorge Chaurand
- Maxillofacial Surgery Department, National Medical Center "20 de Noviembre" Institute for Social Security and Services for State Workers
| | | | - Aldo Tellez-Girón
- Maxillofacial Surgery Department, National Medical Center "20 de Noviembre" Institute for Social Security and Services for State Workers
| | | | - Fiacro Jimenez-Ponce
- Regulatory and Attention to Hospitals Department, Institute for Social Security and Services for State Workers
| |
Collapse
|
20
|
Nakashima A, Yamada T, Sugiyama G, Mizunoya W, Nakano H, Yasuda K, Takahashi I, Mori Y. Masseter Muscle Properties Differ between the Left and Right Sides in Mandibular Class III Patients with Asymmetry. J HARD TISSUE BIOL 2020. [DOI: 10.2485/jhtb.29.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Azusa Nakashima
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - Tomohiro Yamada
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - Goro Sugiyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - Wataru Mizunoya
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University
| | - Hiroyuki Nakano
- Department of Oral and Maxillofacial Surgery, School of Medicine, Osaka Medical University
| | - Kosuke Yasuda
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - Ichiro Takahashi
- Section of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| | - Yoshihide Mori
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| |
Collapse
|
21
|
Cunha A, Nelson-Filho P, Marañón-Vásquez GA, Ramos AGDC, Dantas B, Sebastiani AM, Silvério F, Omori MA, Rodrigues AS, Teixeira EC, Levy SC, Araújo MCD, Matsumoto MAN, Romano FL, Antunes LAA, Costa DJD, Scariot R, Antunes LS, Vieira AR, Küchler EC. Genetic variants in ACTN3 and MYO1H are associated with sagittal and vertical craniofacial skeletal patterns. Arch Oral Biol 2018; 97:85-90. [PMID: 30366217 DOI: 10.1016/j.archoralbio.2018.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE This study aimed to evaluate the association of genetic variants inACTN3 and MYO1H with craniofacial skeletal patterns in Brazilians. DESIGN This cross-sectional study enrolled orthodontic and orthognathic patients selected from 4 regions of Brazil. Lateral cephalograms were used and digital cephalometric tracings and analyzes were performed for craniofacial phenotype determination. Participants were classified according to the skeletal malocclusion in Class I, II or III; and according to the facial type in Mesofacial, Dolichofacial or Brachyfacial. Genomic DNA was extracted from saliva samples containing exfoliated buccal epithelial cells and analyzed for genetic variants inACTN3 (rs678397 and rs1815739) and MYO1H (rs10850110) by real-time PCR. Chi-square or Fisher's exact tests were used for statistical analysis (α = 5%). RESULTS A total of 646 patients were included in the present study. There was statistically significant association of the genotypes and/or alleles distributions with the skeletal malocclusion (sagittal skeletal pattern) and facial type (vertical pattern) for the variants assessed inACTN3 (P < 0.05). For the genetic variant evaluated in MYO1H, there was statistically significant difference between the genotypes frequencies for skeletal Class I and Class II (P < 0.05). The reported associations were different depending on the region evaluated. CONCLUSION ACTN3 and MYO1H are associated with sagittal and vertical craniofacial skeletal patterns in Brazilian populations.
Collapse
Affiliation(s)
- Arthur Cunha
- Department of Pediatric Dentistry, School of dentistry of Ribeirão Preto, University of São Paulo. Avenida do Café s/n - Campus da USP, Ribeirão Preto, SP, Brazil - CEP: 14040-904
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of dentistry of Ribeirão Preto, University of São Paulo. Avenida do Café s/n - Campus da USP, Ribeirão Preto, SP, Brazil - CEP: 14040-904
| | - Guido Artemio Marañón-Vásquez
- Department of Pediatric Dentistry, School of dentistry of Ribeirão Preto, University of São Paulo. Avenida do Café s/n - Campus da USP, Ribeirão Preto, SP, Brazil - CEP: 14040-904
| | - Alice Gomes de Carvalho Ramos
- Department of Pediatric Dentistry, School of dentistry of Ribeirão Preto, University of São Paulo. Avenida do Café s/n - Campus da USP, Ribeirão Preto, SP, Brazil - CEP: 14040-904; Amazonian Education Institute. Rua Maceió 861, Adrianópolis, Manaus, AM, Brazil - CEP: 69057-010
| | - Beatriz Dantas
- Department of Pediatric Dentistry, School of dentistry of Ribeirão Preto, University of São Paulo. Avenida do Café s/n - Campus da USP, Ribeirão Preto, SP, Brazil - CEP: 14040-904; Amazonian Education Institute. Rua Maceió 861, Adrianópolis, Manaus, AM, Brazil - CEP: 69057-010
| | - Aline Monise Sebastiani
- University. Rua Professor Pedro Viriato Parigot de Souza 5300 - Campo Comprido, Curitiba, PR, Brazil - CEP: 81200-452
| | - Felipe Silvério
- University. Rua Professor Pedro Viriato Parigot de Souza 5300 - Campo Comprido, Curitiba, PR, Brazil - CEP: 81200-452
| | - Marjorie Ayumi Omori
- Department of Pediatric Dentistry, School of dentistry of Ribeirão Preto, University of São Paulo. Avenida do Café s/n - Campus da USP, Ribeirão Preto, SP, Brazil - CEP: 14040-904
| | - Amanda Silva Rodrigues
- Professor, Department of Oral and Maxillofacial Surgery, Federal University of Paraná. Avenida Prefeito Lothário Meisser 632, Curitiba, PR, Brazil - CEP: 80210-170
| | - Ellen Cardoso Teixeira
- Program, School of Dentistry, Fluminense Federal University. Rua São Paulo 28, Campus do Valonguinho, Niterói, RJ, Brazil - CEP: 24020-150 and Rua Doutor Sílvio Henrique Braune 22, Nova Friburgo, RJ, Brazil - CEP: 28625-650
| | - Simone Carvalho Levy
- Program, School of Dentistry, Fluminense Federal University. Rua São Paulo 28, Campus do Valonguinho, Niterói, RJ, Brazil - CEP: 24020-150 and Rua Doutor Sílvio Henrique Braune 22, Nova Friburgo, RJ, Brazil - CEP: 28625-650
| | - Marcelo Calvo de Araújo
- Professor, Smile Graduate School and Clinic. Rua José Clemente 94, Centro, Niterói, RJ, Brazil. CEP: 24020-115
| | - Mírian Aiko Nakane Matsumoto
- Department of Pediatric Dentistry, School of dentistry of Ribeirão Preto, University of São Paulo. Avenida do Café s/n - Campus da USP, Ribeirão Preto, SP, Brazil - CEP: 14040-904
| | - Fábio Lourenço Romano
- Department of Pediatric Dentistry, School of dentistry of Ribeirão Preto, University of São Paulo. Avenida do Café s/n - Campus da USP, Ribeirão Preto, SP, Brazil - CEP: 14040-904
| | - Lívia Azeredo A Antunes
- Program, School of Dentistry, Fluminense Federal University. Rua São Paulo 28, Campus do Valonguinho, Niterói, RJ, Brazil - CEP: 24020-150 and Rua Doutor Sílvio Henrique Braune 22, Nova Friburgo, RJ, Brazil - CEP: 28625-650
| | - Delson João da Costa
- Professor, Department of Oral and Maxillofacial Surgery, Federal University of Paraná. Avenida Prefeito Lothário Meisser 632, Curitiba, PR, Brazil - CEP: 80210-170
| | - Rafaela Scariot
- Professor, Department of Oral and Maxillofacial Surgery, Federal University of Paraná. Avenida Prefeito Lothário Meisser 632, Curitiba, PR, Brazil - CEP: 80210-170; University. Rua Professor Pedro Viriato Parigot de Souza 5300 - Campo Comprido, Curitiba, PR, Brazil - CEP: 81200-452
| | - Leonardo Santos Antunes
- Program, School of Dentistry, Fluminense Federal University. Rua São Paulo 28, Campus do Valonguinho, Niterói, RJ, Brazil - CEP: 24020-150 and Rua Doutor Sílvio Henrique Braune 22, Nova Friburgo, RJ, Brazil - CEP: 28625-650
| | - Alexandre R Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh. 412 Salk Pavilion, 335 Sutherland Street, Pittsburgh, PA, USA. 15261
| | - Erika C Küchler
- Department of Pediatric Dentistry, School of dentistry of Ribeirão Preto, University of São Paulo. Avenida do Café s/n - Campus da USP, Ribeirão Preto, SP, Brazil - CEP: 14040-904; University. Rua Professor Pedro Viriato Parigot de Souza 5300 - Campo Comprido, Curitiba, PR, Brazil - CEP: 81200-452.
| |
Collapse
|
22
|
Hartsfield JK, Jacob GJ, Morford LA. Heredity, Genetics and Orthodontics - How Much Has This Research Really Helped? Semin Orthod 2017; 23:336-347. [PMID: 29290679 DOI: 10.1053/j.sodo.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Uncovering the genetic factors that correlate with a clinical deviation of previously unknown etiology helps to diminish the unknown variation influencing the phenotype. Clinical studies, particularly those that consider the effects of an appliance or treatment regimen on growth, need to be a part of these types of genetic investigations in the future. While the day-to-day utilization of "testing" for genetic factors is not ready for practice yet, genetic testing for monogenic traits such as Primary Failure of Eruption (PFE) and Class III malocclusion is showing more promise as knowledge and technology advances. Although the heterogeneous complexity of such things as facial and dental development, the physiology of tooth movement, and the occurrence of External Apical Root Resorption (EARR) make their precise prediction untenable, investigations into the genetic factors that influence different phenotypes, and how these factors may relate to or impact environmental factors (including orthodontic treatment) are becoming better understood. The most important "genetic test" the practitioner can do today is to gather the patient's individual and family history. This would greatly benefit the patient, and augment the usefulness of these families in future clinical research in which clinical findings, environmental, and genetic factors can be studied.
Collapse
Affiliation(s)
- James K Hartsfield
- E. Preston Hicks Professor of Orthodontics and Oral Health Research, University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, Hereditary Genetics/Genomics Core
| | - George Jeryn Jacob
- Craniofacial Genetics Fellow, University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, Hereditary Genetics/Genomics Core
| | - Lorri Ann Morford
- Research Assistant Professor, University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, Hereditary Genetics/Genomics CoreThe University of Kentucky College of Dentistry, 800 Rose Street, Lexington, Kentucky USA 40536-0297
| |
Collapse
|
23
|
da Silva AP, Sassi FC, Bastos E, Alonso N, de Andrade CRF. Oral motor and electromyographic characterization of adults with facial fractures: a comparison between different fracture severities. Clinics (Sao Paulo) 2017; 72:276-283. [PMID: 28591339 PMCID: PMC5439110 DOI: 10.6061/clinics/2017(05)04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/13/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES: To characterize the oral motor system of adults with facial injuries and to compare the oral motor performance/function between two different groups. METHODS: An observational, descriptive, cross-sectional study was conducted in 38 patients presenting with facial trauma who were assigned to the Division of Orofacial Myology of a Brazilian School Hospital. Patients were divided into two groups: Group 1 (G1) consisted of 19 patients who were submitted to open reduction of at least one facial fracture, and Group 2 (G2) consisted of 19 individuals who were submitted to closed fracture reduction with maxillomandibular fixation. For comparison purposes, a group of 19 healthy volunteers was recruited. All participants underwent a clinical assessment that included an oral motor evaluation, assessment of the mandibular range of motions, and electromyographic assessment of the masticatory muscles. RESULTS: Clinical assessment of the oral motor organs indicated that G1 and G2 presented deficits related to the posture, position, and mobility of the oral motor organs. Patients also presented limited mandibular ranges of movement. Deficits were greater for individuals in G1, especially for maximal incisor opening. Additionally, patients in G1 and G2 presented a similar electromyographic profile of the masticatory muscles (i.e., patients with facial fractures presented lower overall muscle activity and significant asymmetrical activity of the masseter muscle during maximum voluntary teeth clenching). CONCLUSION: Patients in G1 and G2 presented similar functional deficits after fracture treatment. The severity of facial fractures did not influence muscle function/performance 4 months after the correction of fractures.
Collapse
Affiliation(s)
- Amanda Pagliotto da Silva
- Divisao de Miologia Orofacial, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Fernanda Chiarion Sassi
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Endrigo Bastos
- Divisao de Cirurgia Plastica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, BR
| | - Nivaldo Alonso
- Divisao de Cirurgia Plastica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, BR
| | - Claudia Regina Furquim de Andrade
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, BR
- Corresponding author. E-mail:
| |
Collapse
|
24
|
Silva APD, Sassi FC, Andrade CRFD. Oral-motor and electromyographic characterization of patients submitted to open a nd closed reductions of mandibular condyle fracture. Codas 2016; 28:558-566. [PMID: 27812671 DOI: 10.1590/2317-1782/20162015186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/08/2015] [Indexed: 11/21/2022] Open
Abstract
Purpose To characterize the oral-motor system of adults with mandibular condyle facture comparing the performance of individuals submitted to open reduction with internal fixation (ORIF) and closed reduction with mandibulomaxillary fixation (CRMMF). Methods Study participants were 26 adults divided into three groups: G1 - eight individuals submitted to ORIF for correction of condyle fracture; G2 - nine individuals submitted to CRMMF for correction of condyle fracture; CG - nine healthy volunteers with no alterations of the orofacial myofunctional system. All participants underwent the same clinical protocol: assessment of the orofacial myofunctional system; evaluation of the mandibular range of motion; and surface electromyography (sEMG) of the masticatory muscles. Results Results indicated that patients with condyle fractures from both groups presented significant differences compared with those from the control group in terms of mobility of the oral-motor organs, mastication, and deglutition. Regarding the measures obtained for mandibular movements, participants with facial fractures from both groups showed significant differences compared with those from the control group, indicating greater restrictions in mandibular motion. As for the analysis of sEMG results, G1 patients presented more symmetrical masseter activation during the task of maximal voluntary teeth clenching. Conclusion Patients with mandibular condyle fractures present significant deficits in posture, mobility, and function of the oral-motor system. The type of medical treatment does not influence the results of muscle function during the first six months after fracture reduction. Individuals submitted to ORIF of the condyle fracture present more symmetrical activation of the masseter muscle.
Collapse
|
25
|
Nicot R, Hottenstein M, Raoul G, Ferri J, Horton M, Tobias JW, Barton E, Gelé P, Sciote JJ. Nodal pathway genes are down-regulated in facial asymmetry. J Craniofac Surg 2014; 25:e548-55. [PMID: 25364968 PMCID: PMC4224967 DOI: 10.1097/scs.0000000000001076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Facial asymmetry is a common comorbid condition in patients with jaw deformation malocclusion. Heritability of malocclusion is advancing rapidly, but very little is known regarding genetic contributions to asymmetry. This study identifies differences in expression of key asymmetry-producing genes that are down-regulated in patients with facial asymmetry. METHODS Masseter muscle samples were collected during bilateral sagittal split osteotomy orthognathic surgery to correct skeletal-based malocclusion. Patients were classified as class II or III and open or deep bite malocclusion with or without facial asymmetry. Muscle samples were analyzed for gene expression differences on Affymetrix HT2.0 microarray global expression chips. RESULTS Overall gene expression was different for asymmetric patients compared with other malocclusion classifications by principal component analysis (P < 0.05). We identified differences in the nodal signaling pathway, which promotes development of mesoderm and endoderm and left-right patterning during embryogenesis. Nodal and Lefty expression was 1.39- to 1.84-fold greater (P < 3.41 × 10), whereas integral membrane Nodal modulators Nomo1,2,3 were -5.63 to -5.81 (P < 3.05 × 10) less in asymmetry subjects. Fold differences among intracellular pathway members were negative in the range of -7.02 to -2.47 (P < 0.003). Finally Pitx2, an upstream effector of Nodal known to influence the size of type II skeletal muscle fibers was also significantly decreased in facial asymmetry (P < 0.05). CONCLUSIONS When facial asymmetry is part of skeletal malocclusion, there are decreases in nodal signaling pathway genes in masseter muscle. This data suggest that the nodal signaling pathway is down-regulated to help promote development of asymmetry. Pitx2 expression differences also contributed to both skeletal and muscle development in this condition.
Collapse
Affiliation(s)
- Romain Nicot
- From the *Oral and Maxillofacial Surgery, Université Lille Nord de France, UDSL, Controlled Drug Delivery Systems and Biomaterials, Lille France; †Department of Orthodontics, Temple University; and ‡Molecular Profiling Core, Pennsylvania Center for Musculoskeletal Disorders, Perelman School of Medicine, and §Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and ∥Biological Resources Centre, Clinical Investigation Centre, Regional Hospital Center, University of Lille, Lille France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zebrick B, Teeramongkolgul T, Nicot R, Horton MJ, Raoul G, Ferri J, Vieira AR, Sciote JJ. ACTN3 R577X genotypes associate with Class II and deepbite malocclusions. Am J Orthod Dentofacial Orthop 2014; 146:603-11. [PMID: 25439211 DOI: 10.1016/j.ajodo.2014.07.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 01/02/2023]
Abstract
INTRODUCTION α-Actinins are myofibril anchor proteins that influence the contractile properties of skeletal muscles. ACTN2 is expressed in slow type I and fast type II fibers, whereas ACTN3 is expressed only in fast fibers. ACTN3 homozygosity for the 577X stop codon (ie, changing 577RR to 577XX, the R577X polymorphism) results in the absence of α-actinin-3 in about 18% of Europeans, diminishes fast contractile ability, enhances endurance performance, and reduces bone mass or bone mineral density. We have examined ACTN3 expression and genetic variation in the masseter muscle of orthognathic surgery patients to determine the genotype associations with malocclusion. METHODS Clinical information, masseter muscle biopsies, and saliva samples were obtained from 60 subjects. Genotyping for ACTN3 single nucleotide polymorphisms, real-time polymerase chain reaction quantitation of muscle gene message, and muscle morphometric fiber type properties were compared to determine statistical differences between genotype and phenotype. RESULTS Muscle mRNA expression level was significantly different for ACTN3 single nucleotide polymorphism genotypes (P <0.01). The frequency of ACTN3 genotypes was significantly different for the sagittal and vertical classifications of malocclusion, with the clearest association being elevated 577XX genotype in skeletal Class II malocclusion (P = 0.003). This genotype also resulted in significantly smaller diameters of fast type II fibers in masseter muscles (P = 0.002). CONCLUSION ACTN3 577XX is overrepresented in subjects with skeletal Class II malocclusion, suggesting a biologic influence during bone growth. ACTN3 577XX is underrepresented in subjects with deepbite malocclusion, suggesting that muscle differences contribute to variations in vertical facial dimensions.
Collapse
Affiliation(s)
- Brian Zebrick
- Resident, Department of Orthodontics, Temple University, Philadelphia, Pa
| | | | - Romain Nicot
- Resident, Oral and Maxillofacial Department, Université Lille Nord de France, Lille, France
| | - Michael J Horton
- Research assistant professor, Department of Orthodontics, Temple University, Philadelphia, Pa
| | - Gwenael Raoul
- Professor, Department of Oral and Maxillofacial, Université Lille Nord de France, Lille, France; UDSL, Roger Salengro Hospital, CHU; and INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Joel Ferri
- Professor and head, Department of Oral and Maxillofacial Surgery, Université Lille Nord de France, Lille, France; UDSL, Roger Salengro Hospital, CHU; and INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Alexandre R Vieira
- Associate professor, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - James J Sciote
- Professor, Department of Orthodontics, Temple University, Philadelphia, Pa.
| |
Collapse
|
27
|
Desh H, Gray SL, Horton MJ, Raoul G, Rowlerson AM, Ferri J, Vieira AR, Sciote JJ. Molecular motor MYO1C, acetyltransferase KAT6B and osteogenetic transcription factor RUNX2 expression in human masseter muscle contributes to development of malocclusion. Arch Oral Biol 2014; 59:601-7. [PMID: 24698832 DOI: 10.1016/j.archoralbio.2014.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/20/2013] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Type I myosins are molecular motors necessary for glucose transport in the cytoplasm and initiation of transcription in the nucleus. Two of these, MYO1H and MYO1C, are paralogs which may be important in the development of malocclusion. The objective of this study was to investigate their gene expression in the masseter muscle of malocclusion subjects. Two functionally related proteins known to contribute to malocclusion were also investigated: KAT6B (a chromatin remodelling epigenetic enzyme which is activated by MYO1C) and RUNX2 (a transcription factor regulating osteogenesis which is activated by KAT6B). DESIGN Masseter muscle samples and malocclusion classifications were obtained from orthognathic surgery subjects. Muscle was sectioned and immunostained to determine fibre type properties. RNA was isolated from the remaining sample to determine expression levels for the four genes by TaqMan(®) RT-PCR. Fibre type properties, gene expression quantities and malocclusion classification were compared. RESULTS There were very significant associations (P<0.0000001) between MYO1C and KAT6B expressions. There were also significant associations (P<0.005) between RUNX2 expression and masseter muscle type II fibre properties. Very few significant associations were identified between MYO1C and masseter muscle fibre type properties. CONCLUSIONS The relationship between MYO1C and KAT6B suggests that the two are interacting in chromatin remodelling for gene expression. This is the nuclear myosin1 (NM1) function of MYO1C. A surprising finding is the relationship between RUNX2 and type II masseter muscle fibres, since RUNX2 expression in mature muscle was previously unknown. Further investigations are necessary to elucidate the role of RUNX2 in adult masseter muscle.
Collapse
Affiliation(s)
- Heather Desh
- Orthodontic Private Practice,1649 Bluebird Canyon Drive, Laguna Beach, CA, United States
| | - S Lauren Gray
- Orthodontic Department, Temple University, 3223 North Broad Street, Philadelphia, PA, United States
| | - Michael J Horton
- Orthodontic Department, Temple University, 3223 North Broad Street, Philadelphia, PA, United States
| | - Gwenael Raoul
- Oral and Maxillofacial Surgery, Université Lille Nord de France, UDSL, Roger Salengro Hospital, CHU, and INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Anthea M Rowlerson
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | - Joel Ferri
- Oral and Maxillofacial Surgery, Université Lille Nord de France, UDSL, Roger Salengro Hospital, CHU, and INSERM U 1008, Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Alexandre R Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, United States
| | - James J Sciote
- Orthodontic Department, Temple University, 3223 North Broad Street, Philadelphia, PA, United States.
| |
Collapse
|
28
|
Konopnicki S, Nicot R, Sauvé C, Raoul G, Ferri J. [Naso-ethmoido-maxillary protrusion (NEMP): a specific dysmorphosis]. ACTA ACUST UNITED AC 2014; 115:94-9. [PMID: 24630318 DOI: 10.1016/j.revsto.2014.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 11/24/2013] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Naso-ethmoido-maxillary protrusion (NEMP) is a rare dental and facial dysmorphosis, with excessive growth of basicranium, ethmoid, maxillary, and nasal bones. The clinical presentation includes nasal and upper lip protrusion, telecanthus, a class 2 malocclusion with maxillary protrusion and exoclusion. The craniofacial field is increased in Delaire's analysis. Contrary to isolated maxillary protrusion secondary to membranous ossification dysfunction, NEMP is a constitutional anomaly resulting from an excessive primary growth of the chondrocranium. The therapeutic management of NEMP should take into account these specificities.
Collapse
Affiliation(s)
- S Konopnicki
- Service de chirurgie maxillo-faciale et stomatologie, hôpital Salengro, CHRU de Lille, avenue Émile-Laine, 59037 Lille cedex, France.
| | - R Nicot
- Service de chirurgie maxillo-faciale et stomatologie, hôpital Salengro, CHRU de Lille, avenue Émile-Laine, 59037 Lille cedex, France
| | - C Sauvé
- Service de chirurgie maxillo-faciale et stomatologie, hôpital Salengro, CHRU de Lille, avenue Émile-Laine, 59037 Lille cedex, France
| | - G Raoul
- Service de chirurgie maxillo-faciale et stomatologie, hôpital Salengro, CHRU de Lille, avenue Émile-Laine, 59037 Lille cedex, France
| | - J Ferri
- Service de chirurgie maxillo-faciale et stomatologie, hôpital Salengro, CHRU de Lille, avenue Émile-Laine, 59037 Lille cedex, France
| |
Collapse
|
29
|
Huh A, Horton MJ, Cuenco KT, Raoul G, Rowlerson AM, Ferri J, Sciote JJ. Epigenetic influence of KAT6B and HDAC4 in the development of skeletal malocclusion. Am J Orthod Dentofacial Orthop 2013; 144:568-76. [PMID: 24075665 DOI: 10.1016/j.ajodo.2013.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/01/2013] [Accepted: 06/01/2013] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Genetic influences on the development of malocclusion include heritable effects on both masticatory muscles and jaw skeletal morphology. Beyond genetic variations, however, the characteristics of muscle and bone are also influenced by epigenetic mechanisms that produce differences in gene expression. We studied 2 enzymes known to change gene expressions through histone modifications, chromatin-modifying histone acetyltransferase KAT6B and deacetylase HDAC4, to determine their associations with musculoskeletal variations in jaw deformation malocclusions. METHODS Samples of masseter muscle were obtained from subjects undergoing orthognathic surgery from 6 malocclusion classes based on skeletal sagittal and vertical dysplasia. The muscles were characterized for fiber type properties by immunohistochemistry, and their total RNA was isolated for gene expression studies by microarray analysis and quantitative real-time polymerase chain reaction. RESULTS Gene expressions for fast isoforms of myosins and contractile regulatory proteins and for KAT6B and HDAC4 were severalfold greater in masseter muscles from a patient with a deepbite compared with one with an open bite, and genes related to exercise and activity did not differ substantially. In the total population, expressions of HDAC4 (P = 0.03) and KAT6B (P = 0.004) were significantly greater in subjects with sagittal Class III than in Class II malocclusion, whereas HDAC4 tended to correlate negatively with slow myosin type I and positively with fast myosin gene, especially type IIX. CONCLUSIONS These data support other published reports of epigenetic regulation in the determination of skeletal muscle fiber phenotypes and bone growth. Further investigations are needed to elucidate how this regulatory model might apply to musculoskeletal development and malocclusion.
Collapse
|
30
|
Sciote JJ, Raoul G, Ferri J, Close J, Horton MJ, Rowlerson A. Masseter function and skeletal malocclusion. ACTA ACUST UNITED AC 2013; 114:79-85. [PMID: 23838245 DOI: 10.1016/j.revsto.2013.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/14/2012] [Accepted: 01/28/2013] [Indexed: 01/18/2023]
Abstract
The aim of this work is to review the relationship between the function of the masseter muscle and the occurrence of malocclusions. An analysis was made of the masseter muscle samples from subjects who underwent mandibular osteotomies. The size and proportion of type-II fibers (fast) decreases as facial height increases. Patients with mandibular asymmetry have more type-II fibers on the side of their deviation. The insulin-like growth factor and myostatin are expressed differently depending on the sex and fiber diameter. These differences in the distribution of fiber types and gene expression of this growth factor may be involved in long-term postoperative stability and require additional investigations. Muscle strength and bone length are two genetically determined factors in facial growth. Myosin 1H (MYOH1) is associated with prognathia in Caucasians. As future objectives, we propose to characterize genetic variations using "Genome Wide Association Studies" data and their relationships with malocclusions.
Collapse
Affiliation(s)
- J J Sciote
- Department of Orthodontics, Temple University, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Danz JC, Greuter C, Sifakakis I, Fayed M, Pandis N, Katsaros C. Stability and relapse after orthodontic treatment of deep bite cases--a long-term follow-up study. Eur J Orthod 2012. [DOI: 10.1093/ejo/cjs079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|