1
|
Rajaeirad M, Karimpour M, Hairi Yazdi MR. Comparative finite element analysis of contact and stress distribution in tibiotalar articular cartilage: Healthy versus varus ankles. J Orthop 2024; 55:16-22. [PMID: 38646467 PMCID: PMC11026722 DOI: 10.1016/j.jor.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Background The distribution of forces within the ankle joint plays a crucial role in joint health and longevity. Loading disorders affecting the ankle joint can have significant detrimental effects on daily life and activity levels. This study aimed to enhance our understanding of the mechanical behavior of tibiotalar joint articular cartilages in the presence of varus deformity using finite element analysis (FEA) applied to patient-specific models. Methods Two personalized ankle models, one healthy and another with varus deformity, were created based on CT scan images. Four static loading scenarios were simulated at the center of pressure (COP), coupled to the hindfoot complex. The contact area, contact pressure, and von Mises stress were computed for each cartilage. Results It was found that the peak contact pressure increased by 54% in the ankle with varus deformity compared to the healthy ankle model. Furthermore, stress concentrations moving medially were observed, particularly beneath the medial malleolus, with an average peak contact pressure of 3.5 MPa and 4.7 MPa at the tibial and talar articular cartilages, respectively. Conclusion Varus deformities in the ankle region have been consistently linked to elevated contact pressure, increasing the risk of thinning, degeneration, and eventual onset of osteoarthritis (OA), emphasizing the need for prompt interventions aimed at mitigating complications.
Collapse
Affiliation(s)
- Mohadese Rajaeirad
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
- Department of Biomedical Engineering, University of Isfahan, Isfahan, Iran
| | - Morad Karimpour
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
2
|
Jyoti, Ghosh R. Printable functionally graded tibial implant for TAR: FE study comparing implant materials, FGM properties, and implant designs. Comput Biol Med 2024; 177:108645. [PMID: 38796883 DOI: 10.1016/j.compbiomed.2024.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Tibial implants with functionally graded material (FGM) for total ankle replacement (TAR) can provide stiffness similar to the host tibia bone. The FGM implants with low stiffness reduce stress shielding but may increase implant-bone micromotion. A trade-off between stress shielding and implant-bone micromotion is required if FGMs are to substitute traditionally used Ti and CoCr metal implants. The FGM properties such as material gradation law and volume fraction index may influence the performance of FGM implants. Along with the FGM properties, the design of FGM implants may also have a role to play. The objective of this study was to examine FGM tibial implants for TAR, by comparing implant materials, FGM properties, and implant designs. For this purpose, finite element analysis (FEA) was conducted on 3D FE models of the intact and the implanted tibia bone. The tibial implants were composed of CoCr and Ti, besides them, the FGM of Ti and HA was developed. The FGM implants were modelled using exponential, power, and sigmoid laws. Additionally, for power and sigmoid laws, different volume fraction indices were taken. The effect of implant design was observed by using keel type and stem type TAR fixation designs. The results indicated that FGM implants are better than traditional metal implants. The power law is most suitable for developing FGM implants because it reduces stress shielding. For both power law and sigmoid law, low values of the volume fraction index are preferrable. Therefore, FGM implant developed using power law with 0.1 vol fraction index is ideal with the lowest stress shielding and marginally increased implant-bone micromotion. FGM implants are more useful for keel type fixation design than stem type design. To conclude, with FGMs the major complication of stress shielding can be solved and the longevity and durability of TAR implants can be enhanced.
Collapse
Affiliation(s)
- Jyoti
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Rajesh Ghosh
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
3
|
Minku, Mukherjee K, Ghosh R. Assessment of bone ingrowth around beaded coated tibial implant for total ankle replacement using mechanoregulatory algorithm. Comput Biol Med 2024; 175:108551. [PMID: 38703546 DOI: 10.1016/j.compbiomed.2024.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
The long-term performance of porous coated tibial implants for total ankle replacement (TAR) primarily depends on the extent of bone ingrowth at the bone-implant interface. Although attempts were made for primary fixation for immediate post-operative stability, no investigation was conducted on secondary fixation. The aim of this study is to assess bone ingrowth around the porous beaded coated tibial implant for TAR using a mechanoregulatory algorithm. A realistic macroscale finite element (FE) model of the implanted tibia was developed based on computer tomography (CT) data to assess implant-bone micromotions and coupled with microscale FE models of the implant-bone interface to predict bone ingrowth around tibial implant for TAR. The macroscale FE model was subjected to three near physiological loading conditions to evaluate the site-specific implant-bone micromotion, which were then incorporated into the corresponding microscale model to mimic the near physiological loading conditions. Results of the study demonstrated that the implant experienced tangential micromotion ranged from 0 to 71 μm with a mean of 3.871 μm. Tissue differentiation results revealed that bone ingrowth across the implant ranged from 44 to 96 %, with a mean of around 70 %. The average Young's modulus of the inter-bead tissue layer varied from 1444 to 4180 MPa around the different regions of the implant. The analysis postulates that when peak micromotion touches 30 μm around different regions of the implant, it leads to pronounced fibrous tissues on the implant surface. The highest amount of bone ingrowth was observed in the central regions, and poor bone ingrowth was seen in the anterior parts of the implant, which indicate improper osseointegration around this region. This macro-micro mechanical FE framework can be extended to improve the implant design to enhance the bone ingrowth and in future to develop porous lattice-structured implants to predict and enhance osseointegration around the implant.
Collapse
Affiliation(s)
- Minku
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Kaushik Mukherjee
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rajesh Ghosh
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
4
|
Minku, Ghosh R. A macro-micro FE and ANN framework to assess site-specific bone ingrowth around the porous beaded-coated implant: an example with BOX® tibial implant for total ankle replacement. Med Biol Eng Comput 2024; 62:1639-1654. [PMID: 38321323 DOI: 10.1007/s11517-024-03034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
The use of mechanoregulatory schemes based on finite element (FE) analysis for the evaluation of bone ingrowth around porous surfaces is a viable approach but requires significant computational time and effort. The aim of this study is to develop a combined macro-micro FE and artificial neural network (ANN) framework for rapid and accurate prediction of the site-specific bone ingrowth around the porous beaded-coated tibial implant for total ankle replacement (TAR). A macroscale FE model of the implanted tibia was developed based on CT data. Subsequently, a microscale FE model of the implant-bone interface was created for performing bone ingrowth simulations using mechanoregulatory algorithms. An ANN was trained for rapid and accurate prediction of bone ingrowth. The results predicted by ANN are well comparable to FE-predicted results. Predicted site-specific bone ingrowth using ANN around the implant ranges from 43.04 to 98.24%, with a mean bone ingrowth of around 74.24%. Results suggested that the central region exhibited the highest bone ingrowth, which is also well corroborated with the recent explanted study on BOX®. The proposed methodology has the potential to simulate bone ingrowth rapidly and effectively at any given site over any implant surface.
Collapse
Affiliation(s)
- Minku
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Rajesh Ghosh
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
5
|
Sakai T, Fujii M, Kitamura K, Tanaka H, Mawatari M. Biomechanical Effect of Distal Tibial Oblique Osteotomy: A Preliminary Finite-Element Analysis. Cureus 2024; 16:e53803. [PMID: 38465079 PMCID: PMC10924635 DOI: 10.7759/cureus.53803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The biomechanical effect of distal tibial oblique osteotomy (DTOO) on osteoarthritic ankles has not been investigated. Using finite element (FE) models, we aimed to elucidate the effect of DTOO on the ankle contact pressure (CP) distribution. METHODS This study included two patients with ankle osteoarthritis who underwent DTOO and one asymptomatic control. Patient-specific FE models were reconstructed by matching standing radiographs with supine computed tomography scans. The joint contact area (CA) and maximum CP on the articular surface of the talus were calculated before and after DTOO and compared with those of the control. RESULTS In the control, the CA was 584 mm2 and the maximum CP was 2.6 MPa. In case 1, the CA increased by 125% from 166 mm2 preoperatively to 375 mm2 postoperatively, accompanied by a 36% decrease in the maximum CP from 9.8 MPa to 6.3 MPa. Similarly, in case 2, the CA increased by 46% from 301 mm2 to 439 mm2, accompanied by a 27% decrease in the maximum CP from 6.7 MPa to 4.9 MPa. CONCLUSIONS This study suggests DTOO improves the biomechanics of the ankle, but not sufficiently compared to the control. This analytical approach may enhance understanding of ankle pathophysiology and assist in the design of the ideal corrective osteotomy.
Collapse
Affiliation(s)
| | | | - Kenji Kitamura
- Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, JPN
| | - Hirofumi Tanaka
- Orthopedic Surgery, Hyakutake Orthopedics and Sports Clinic, Saga, JPN
| | | |
Collapse
|
6
|
Talbott H, Jha S, Gulati A, Brockett C, Mangwani J, Pegg EC. Clinically useful finite element models of the natural ankle - A review. Clin Biomech (Bristol, Avon) 2023; 106:106006. [PMID: 37245282 DOI: 10.1016/j.clinbiomech.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Biomechanical simulation of the foot and ankle complex is a growing research area but compared to simulation of joints such as hip and knee, it has been under investigated and lacks consistency in research methodology. The methodology is variable, data is heterogenous and there are no clear output criteria. Therefore, it is very difficult to correlate clinically and draw meaningful inferences. METHODS The focus of this review is finite element simulation of the native ankle joint and we will explore: the different research questions asked, the model designs used, ways the model rigour has been ensured, the different output parameters of interest and the clinical impact and relevance of these studies. FINDINGS The 72 published studies explored in this review demonstrate wide variability in approach. Many studies demonstrated a preference for simplicity when representing different tissues, with the majority using linear isotropic material properties to represent the bone, cartilage and ligaments; this allows the models to be complex in another way such as to include more bones or complex loading. Most studies were validated against experimental or in vivo data, but a large proportion (40%) of studies were not validated at all, which is an area of concern. INTERPRETATION Finite element simulation of the ankle shows promise as a clinical tool for improving outcomes. Standardisation of model creation and standardisation of reporting would increase trust, and enable independent validation, through which successful clinical application of the research could be realised.
Collapse
Affiliation(s)
| | - Shilpa Jha
- University Hospitals of Leicester, Leicester, UK
| | - Aashish Gulati
- Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Claire Brockett
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | | | - Elise C Pegg
- Department of Mechanical Engineering, University of Bath, Bath, UK.
| |
Collapse
|
7
|
Ghosh R. A combined FE-hybrid MCDM framework for improving the performance of the conical stem tibial design for TAR with the addition of pegs. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 237:107574. [PMID: 37148636 DOI: 10.1016/j.cmpb.2023.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND OBJECTIVES The conical stemmed design of the tibial component for total ankle replacement (TAR) (example Mobility design) uses a single intramedullary stem for primary fixation. Tibial component loosening is a common mode of failure for TAR. Primary causes of loosening are lack of bone ingrowth due to excessive micromotion at the implant-bone interface and bone resorption due to stress shielding after implantation. The fixation feature of the conical stemmed design can be modified with the addition of small pegs to avoid loosening. The aim of the study is to select the improved design for conical stemmed TAR using a combined Finite Element (FE) hybrid Multi-Criteria Decision-Making (MCDM) framework. METHODS The geometry and material properties of the bone for FE modeling were extracted from the CT data. Thirty-two design alternatives with varying pegs in number (one, two, four, eight), location (anterior, posterior, medial, lateral, anterior-posterior, medial-lateral, equally spaced), and height (5 mm, 4 mm, 3 mm, 2 mm) were prepared. All models were analyzed for dorsiflexion, neutral, and plantarflexion loading. The proximal part of the tibia was fixed. The implant-bone interface coefficient of friction was taken as 0.5. The implant-bone micromotion, stress shielding, volume of bone resection, and surgical simplicity were the important criteria considered for evaluating the performance of TAR. The designs were compared using a hybrid MCDM method of WASPAS, TOPSIS, EDAS, and VIKOR. The weight calculations were based on fuzzy AHP and the final ranks on the Degree of Membership method. RESULTS The addition of pegs decreased the mean implant-bone micromotions and increased stress shielding. There was a marginal decrease in micromotion and a marginal increase in stress shielding when the peg heights were increased. The results of hybrid MCDM indicated that the most preferable alternative designs were two pegs of 4 mm height in the AP direction to the main stem, two pegs of 4 mm height in the ML direction, and one peg of 3 mm height in the A direction. CONCLUSIONS Outcomes of this study suggest that the addition of pegs can reduce the implant-bone micromotions. Modified three designs would be useful by considering implant-bone micromotions, stress shielding, volume of bone resection, and surgical simplicity.
Collapse
Affiliation(s)
- Rajesh Ghosh
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
8
|
Wronski S, Wit A, Tarasiuk J, Lipinski P. The impact of the parameters of the constitutive model on the distribution of strain in the femoral head. Biomech Model Mechanobiol 2023; 22:739-759. [PMID: 36539625 PMCID: PMC10097789 DOI: 10.1007/s10237-022-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/08/2022] [Indexed: 04/13/2023]
Abstract
The rapid spread of the finite element method has caused that it has become, among other methods, the standard tool for pre-clinical estimates of bone properties. This paper presents an application of this method for the calculation and prediction of strain and stress fields in the femoral head. The aim of the work is to study the influence of the considered anisotropy and heterogeneity of the modeled bone on the mechanical fields during a typical gait cycle. Three material models were tested with different properties of porous bone carried out in literature: a homogeneous isotropic model, a heterogeneous isotropic model, and a heterogeneous anisotropic model. In three cases studied, the elastic properties of the bone were determined basing on the Zysset-Curnier approach. The tensor of elastic constants defining the local properties of porous bone is correlated with a local porosity and a second order fabric tensor describing the bone microstructure. In the calculations, a model of the femoral head generated from high-resolution tomographic scans was used. Experimental data were drawn from publicly available database "Osteoporotic Virtual Physiological Human Project." To realistically reflect the load on the femoral head, main muscles were considered, and their contraction forces were determined based on inverse kinematics. For this purpose, the results from OpenSim packet were used. The simulations demonstrated that differences between the results predicted by these material models are significant. Only the anisotropic model allowed for the plausible distribution of stresses along the main trabecular groups. The outcomes also showed that the precise evaluation of the mechanical fields is critical in the context of bone tissue remodeling under mechanical stimulations.
Collapse
Affiliation(s)
- Sebastian Wronski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland.
| | - Adrian Wit
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Jacek Tarasiuk
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Pawel Lipinski
- Université de Lorraine, LEM3, 7 Rue Félix Savart, 57070, Metz, France
| |
Collapse
|
9
|
Mondal S, MacManus DB, Bonatti AF, De Maria C, Dalgarno K, Chatzinikolaidou M, De Acutis A, Vozzi G, Fiorilli S, Vitale-Brovarone C, Dunne N. A computational analysis of a novel therapeutic approach combining an advanced medicinal therapeutic device and a fracture fixation assembly for the treatment of osteoporotic fractures: Effects of physiological loading, interface conditions, and fracture. Med Eng Phys 2023; 114:103967. [PMID: 37030893 DOI: 10.1016/j.medengphy.2023.103967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
The occurrence of periprosthetic femoral fractures (PFF) has increased in people with osteoporosis due to decreased bone density, poor bone quality, and stress shielding from prosthetic implants. PFF treatment in the elderly is a genuine concern for orthopaedic surgeons as no effective solution currently exists. Therefore, the goal of this study was to determine whether the design of a novel advanced medicinal therapeutic device (AMTD) manufactured from a polymeric blend in combination with a fracture fixation plate in the femur is capable of withstanding physiological loads without failure during the bone regenerative process. This was achieved by developing a finite element (FE) model of the AMTD together with a fracture fixation assembly, and a femur with an implanted femoral stem. The response of both normal and osteoporotic bone was investigated by implementing their respective material properties in the model. Physiological loading simulating the peak load during standing, walking, and stair climbing was investigated. The results showed that the fixation assembly was the prime load bearing component for this configuration of devices. Within the fixation assembly, the bone screws were found to have the highest stresses in the fixation assembly for all the loading conditions. Whereas the stresses within the AMTD were significantly below the maximum yield strength of the device's polymeric blend material. Furthermore, this study also investigated the performance of different fixation assembly materials and found Ti-6Al-4V to be the optimal material choice from those included in this study.
Collapse
Affiliation(s)
- Subrata Mondal
- School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland
| | - David B MacManus
- School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland; Centre for Medical Engineering Research, Dublin City University, Ireland
| | - Amedeo Franco Bonatti
- Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa, Italy; Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa, Italy; Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, Italy
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Aurora De Acutis
- Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa, Italy; Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, Italy
| | - Giovanni Vozzi
- Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa, Italy; Department of Information Engineering, University of Pisa, Via G. Caruso 16, Pisa, Italy
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | | | - Nicholas Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland; Centre for Medical Engineering Research, Dublin City University, Ireland; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
10
|
Finite Element Analysis of the Biomechanical Effect of Bone Resection Depth in the Distal Tibia after Total Ankle Replacement. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Jyoti, Mondal S, Ghosh R. Biomechanical analysis of three popular tibial designs for TAR with different implant-bone interfacial conditions and bone qualities: A finite element study. Med Eng Phys 2022; 104:103812. [DOI: 10.1016/j.medengphy.2022.103812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
|
12
|
Ni M, Sun T, Zhang T, Jin J, Song Y. Quantitative initial safety range of early passive rehabilitation after ankle fracture surgery. Injury 2022; 53:2281-2286. [PMID: 35400487 DOI: 10.1016/j.injury.2022.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Early rehabilitation training after ankle fracture surgery is critical to healing and avoiding complications. Inappropriate or excessive motion may impede healing or even lead to secondary injury. Currently, there is a lack of scientific quantitative postoperative rehabilitation methods after ankle fracture. Our purpose was to develop a universal method of quantifying early passive rehabilitation training after surgery by finite element (FE) analysis. METHODS A three-dimensional (3D) FE model of normal ankle was reconstructed from a computed tomography scan of a healthy male adult. Six types of ankle fractures were considered based on AO classification. We exerted joint motion load to explore the effect of movement on ankle joint mechanics after surgery. The corresponding relationship between the Inter-bone displacement and range of motion was measured to quantifying the ankle range of motion. The 44A3.3 fracture was used as an example to describe the implementation process in detail. RESULTS During ankle movement, most of the stress was sustained by the internal fixation devices, and the ratio of stress borne by the implants ranged from 67.9 to 94.9%. Flexion/extension exercise did not cause extra stress on the ankle contact surfaces. Ligament traction was the reason for ankle load during flexion/extension motion. The range of early passive postoperative rehabilitation training for six types of ankle fractures (AO classification) were provided. CONCLUSION A quantitative method of early passive rehabilitation training after ankle fracture surgery was developed using FE analysis. This modeling method has universality for any fracture that can be reconstructed.
Collapse
Affiliation(s)
- Monan Ni
- Key Laboratory of Institutional Theory and Equipment Design, Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, China
| | - Tao Sun
- Key Laboratory of Institutional Theory and Equipment Design, Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, China.
| | - Tao Zhang
- Tianjin Hospital, Tianjin 300299, China
| | - Jiahao Jin
- Key Laboratory of Institutional Theory and Equipment Design, Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, China
| | - Yimin Song
- Key Laboratory of Institutional Theory and Equipment Design, Ministry of Education, School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300354, China
| |
Collapse
|
13
|
Zhu J, Forman J. A Review of Finite Element Models of Ligaments in the Foot and Considerations for Practical Application. J Biomech Eng 2022; 144:1133332. [PMID: 35079785 DOI: 10.1115/1.4053401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE Finite element (FE) modeling has been used as a research tool for investigating underlying ligaments biomechanics and orthopedic applications. However, FE models of the ligament in the foot have been developed with various configurations, mainly due to their complex 3D geometry, material properties, and boundary conditions. Therefore, the purpose of this review was to summarize the current state of finite element modeling approaches that have been used in the ?eld of ligament biomechanics, to discuss their applicability to foot ligament modeling in a practical setting, and also to acknowledge current limitations and challenges. METHODS A comprehensive literature search was performed. Each article was analyzed in terms of the methods used for: (a) ligament geometry, (b) material property, (c) boundary and loading condition related to its application, and (d) model verification and validation. RESULTS Of the reviewed studies, 80% of the studies used simplified representations of ligament geometry, the non-linear mechanical behavior of ligaments was taken into account in only 19.2% of the studies, 33% of included studies did not include any kind of validation of the FE model. CONCLUSION Further refinement in the functional modeling of ligaments, the micro-structure level characteristics, nonlinearity, and time-dependent response, may be warranted to ensure the predictive ability of the models.
Collapse
Affiliation(s)
- Junjun Zhu
- School of Mechatronic Engineering and Automation, Shanghai University, 333 Nanchen Rd., Shanghai, China, 200444
| | - Jason Forman
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22911, USA
| |
Collapse
|
14
|
Yu J, Zhao D, Chen WM, Chu P, Wang S, Zhang C, Huang J, Wang X, Ma X. Finite element stress analysis of the bearing component and bone resected surfaces for total ankle replacement with different implant material combinations. BMC Musculoskelet Disord 2022; 23:70. [PMID: 35045842 PMCID: PMC8772082 DOI: 10.1186/s12891-021-04982-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background A proper combination of implant materials for Total Ankle Replacement (TAR) may reduce stress at the bearing component and the resected surfaces of the tibia and talus, thus avoiding implant failure of the bearing component or aseptic loosening at the bone-implant interface. Methods A comprehensive finite element foot model implanted with the INBONE II implant system was created and the loading at the second peak of ground reaction force was simulated. Twelve material combinations including four materials for tibial and talar components (Ceramic, CoCrMo, Ti6Al4V, CFR-PEEK) and three materials for bearing components (CFR-PEEK, PEEK, and UHMWPE) were analyzed. Von Mises stress at the top and articular surfaces of the bearing component and the resected surfaces of the tibia and talus were recorded. Results The stress at both the top and articular surfaces of the bearing component could be greatly reduced with more compliant bearing materials (44.76 to 72.77% difference of peak stress value), and to a lesser extent with more compliant materials for the tibial and talar components (0.94 to 28.09% difference of peak stress value). Peak stresses at both the tibial and talar bone-implant interface could be reduced more strongly by using tibial and talar component materials with smaller material stiffness (7.31 to 66.95% difference of peak stress value) compared with bearing materials with smaller material stiffness (1.11 to 24.77% difference of peak stress value). Conclusions Implant components with smaller material stiffness provided a stress reduction at the bearing component and resected surfaces of the tibia and talus. The selection of CFR-PEEK as the material of tibial and talar components and UHMWPE as the material of the bearing component seemed to be a promising material combination for TAR implants. Wear testing and long-term failure analysis of TAR implants with these materials should be included in future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04982-3.
Collapse
|
15
|
Macaluso B, Hassan CR, Swanson DR, Nazemi A, Zaverukha E, Paulus M, Qin YX, Komatsu DE. Biomechanical Comparison of Krackow Repair and Percutaneous Achilles Repair System for Achilles Tendon Rupture Fixation: A Cadaveric and Finite Element Analysis Study. FOOT & ANKLE ORTHOPAEDICS 2022; 7:24730114221088502. [PMID: 35386585 PMCID: PMC8978323 DOI: 10.1177/24730114221088502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Open and percutaneous repair surgeries are widely used for the Achilles tendon rupture. However, prior biomechanic studies of these 2 approaches have mixed conclusions; therefore, we designed a cadaver and finite element (FE) model biomechanical study to compare the mechanical differences between the percutaneous Achilles repair system (PARS) and Krackow open repair under tensile load and rotation. Methods Sixteen Achilles tendons were extracted from fresh-frozen cadaver ankles and the calcaneums were fixed in mortar. A force control dynamic tensile mechanical test was performed at 1 Hz with 30- and 100-N cyclic loads. Initial intact baseline testing was followed by an incision on all Achilles tendons, 4 cm from the calcaneus insertion, which were then repaired using the PARS (n = 8) or Krackow (n = 8) method. Recorded force-displacement values were used to calculate mechanical parameters, and statistical significance of differences was determined by unpaired (between repair techniques) and paired (intact vs repaired) t tests. Material properties of the Achilles tendon in the FE model were modified and a 10-Nm flexion was simulated for intact and surgical groups. Results No differences were found between intact tendons assigned to PARS or Krackow repairs in Young's modulus (P = .582) and stiffness (P = .323). Pre- and postoperative Young's modulus was significantly decreased for both groups (Intact 230.60±100.76 MPa vs PARS 142.44±37.37 MPa, P < .012; Intact 207.46±81.12 MPa vs Krackow109.43±27.63 MPa, P < .002). Stiffness decreased significantly after surgery for both groups (Intact 25.33±10.89 N/mm vs PARS 6.51±1.68 N/mm, P < .003; Intact 20.30±8.65 N/mm vs Krackow 5.97±1.30 N/mm, P < .003). PARS ultimate tensile strength was significantly higher than the Krackow (PARS 280.29±47.32 N vs Krackow 196.97±54.28 N, P < .003) but not significantly different in the ultimate tensile strain. PARS had a significantly lower postoperative gap compared to Krackow (PARS 9.75±5.87 mm vs Krackow 25.19±7.72 mm, P < .001). FE analysis predicted an increased talocalcaneal contact pressure, maximum principal stress, and rotation in the Krackow vs PARS models, respectively. Conclusion Biomechanical parameters observed in this study through mechanical testing and FE analysis favor the selection of PARS over the Krackow repair based on better strength, higher failure force, and lower gap generation.Clinical Relevance: The study has analyzed two Achilles tendon repair methods using cadaver and numerical estimation and may help clinicians gain insight into selection of tendon repair approaches to generate better clinical outcomes.
Collapse
Affiliation(s)
- Bonnie Macaluso
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Chaudhry R. Hassan
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - David R. Swanson
- Department of Orthopaedics, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Alireza Nazemi
- Department of Orthopaedics, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Eugene Zaverukha
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Megan Paulus
- Department of Orthopaedics, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Yi-Xian Qin
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - David E. Komatsu
- Department of Orthopaedics, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
16
|
Ramos A, Rocha C, Mesnard M. The effect of osteochondral lesion size and ankle joint position on cartilage behavior - numerical and in vitro experimental results. Med Eng Phys 2021; 98:73-82. [PMID: 34848041 DOI: 10.1016/j.medengphy.2021.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Osteochondral lesion of the talus is defined as damage in the cartilage that covers the talus bone, compromising the integrity of the joint in the long term. Due to the low incidence of this pathology, there are few studies to understand the importance of lesion size and position in cartilage strains. The purpose of this study is then to analyze the influence of the lesion size in joint behavior. A 3D virtual and in vitro model of a patient's injured ankle joint was developed. The models were built using CT scan and MRI images, to obtain the CAD models of intact and with 10 mm lesion size for 3D print models using additive manufacturing. The physical model was tested with 685N applied vertically to determine experimentally the principal strains and contact pressures in the cartilage. Five finite element models were developed with lesion dimensions (5 to 20 mm) and with 3 ankle joint positions. The numerical and experimental results were correlated with an R2 = 0.86 justified by the complexity of the model geometry. The maximum principal strain was 2566µε in the plantar flexion position without lesion. The experimental contact area between cartilages increased by 1.2% in the 10 mm lesion size for 431 mm2. The maximum stress in the cartilage was observed for a 20 mm lesion size with 2.5 MPa. The 5 and 10 mm sizes present similar results; the 15 mm lesion size presents a stress increase of 13% comparatively with 10 mm. Plantar flexion seems to be the most critical configuration; stress increases with an increase of lesion size around the cartilage.
Collapse
Affiliation(s)
- A Ramos
- Univ. of Aveiro, Biomechanics Research Group, Dept. of Mechanical Engineering, PT-3810-193 Aveiro, Portugal.
| | - C Rocha
- Univ. of Aveiro, Biomechanics Research Group, Dept. of Mechanical Engineering, PT-3810-193 Aveiro, Portugal
| | - M Mesnard
- Univ. de Bordeaux, Institut de Mécanique et d'Ingénierie, CNRS UMR 5295, FR-33405 Talence,Bordeaux, France
| |
Collapse
|
17
|
Mondal S, Ghosh R. Influence of cancellous bone material and dead zone on stress-strain, bone stimulus and bone remodelling around the tibia for total ankle replacement. Proc Inst Mech Eng H 2020; 235:185-196. [PMID: 33140692 DOI: 10.1177/0954411920967775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extreme bone resorption due to bone remodelling is one of the reasons for ankle component loosening. Finite element (FE) analysis has been effectively used nowadays for pre-clinical analysis of orthopaedic implants. For FE modelling, the selection of bone material and dead zone play a vital role to understand the bone remodelling. This study deals with the effects of different cancellous elastic modulus-density relationships and dead zone on bone remodelling around the tibia owing to total ankle replacement (TAR), using finite element analysis with physiological loading conditions. This study also investigated the bone stimulus distribution in the tibia to identify the initial indication of bone density changes due to bone remodelling. Additionally, the Hoffman failure criterion was used to investigate the chances of implant-bone interface failure due to different cancellous bone material modelling and bone remodelling. The present bone remodelling study consists of three different dead or lazy zones (±0.75, ±0.60 and ±0.35) to examine the influence of the dead zone on bone remodelling. Differences in stress/strain distribution were observed in the tibia bone due to different cancellous bone material modelling. Despite little variations, bone density changes due to bone remodelling were found to be almost similar for two FE models having different cancellous bone material. Similar to these results, the effect of different dead zone on bone density changes due to bone remodelling was found to be minimal. Bone stimulus distribution in the cancellous bone was found to be almost similar for FE models having different cancellous bone material modelling and different dead zones. To understand the stress/strain and interface related failure of the tibial component, cancellous bone material modelling plays a crucial role. However, cancellous bone material modelling and dead zone have minimal influence on bone remodelling around the tibia cancellous bone due to TAR.
Collapse
Affiliation(s)
- Subrata Mondal
- School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
18
|
Mondal S, Ghosh R. Experimental and finite element investigation of total ankle replacement: A review of literature and recommendations. J Orthop 2019; 18:41-49. [PMID: 32189882 DOI: 10.1016/j.jor.2019.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/11/2019] [Indexed: 11/28/2022] Open
Abstract
This paper briefly reviews the different methodology, technology, challenges, and outcomes of various studies related to TAR prosthesis based on numerical and experimental techniques. Very less in-vitro experimental studies on TAR have been found than finite element (FE) studies. Due to the invasive nature of the experimental approach, inadequacy and less clinical information, computational modelling has been widely used by the researchers. This paper critically examines the part related to FE modelling and experimental analysis. Some recommendation related to modelling of bones, cartilages, ligaments, muscles, and implant-bone interface condition were discussed for better understanding the results and better clinical significance.
Collapse
Affiliation(s)
- Subrata Mondal
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| |
Collapse
|
19
|
Mondal S, Ghosh R. Bone remodelling around the tibia due to total ankle replacement: effects of implant material and implant-bone interfacial conditions. Comput Methods Biomech Biomed Engin 2019; 22:1247-1257. [PMID: 31497997 DOI: 10.1080/10255842.2019.1661385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
One of the major causes of implant loosening is due to excessive bone resorption surrounding the implant due to bone remodelling. The objective of the study is to investigate the effects of implant material and implant-bone interface conditions on bone remodelling around tibia bone due to total ankle replacement. Finite element models of intact and implanted ankles were developed using CT scan data sets. Bone remodelling algorithm was used in combination with FE analysis to predict the bone density changes around the ankle joint. Dorsiflexion, neutral, and plantar flexion positions were considered, along with muscle force and ligaments. Implant-bone interfacial conditions were assumed as debonded and bonded to represent non-osseointegration and fully osseointegration at the porous coated surface of the implant. To investigate the effect of implant material, three finite element models having different material combinations of the implant were developed. For model 1, tibial and talar components were made of Co-Cr-Mo, and meniscal bearing was made of UHMWPE. For model 2, tibial and talar components were made of ceramic and meniscal bearing was made of UHMWPE. For model 3, tibial and talar components were made of ceramic and meniscal bearing was made of CFR-PEEK. Changes in implant material showed no significant changes in bone density due to bone remodelling. Therefore, ceramic appears to be a viable alternative to metal and CFR-PEEK can be used in place of UHMWPE. This study also indicates that proper bonding between implant and bone is essential for long-term survival of the prosthetic components.
Collapse
Affiliation(s)
- Subrata Mondal
- School of Engineering, Indian Institute of Technology Mandi , Mandi , India
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology Mandi , Mandi , India
| |
Collapse
|
20
|
Mondal S, Ghosh R. Effects of implant orientation and implant material on tibia bone strain, implant–bone micromotion, contact pressure, and wear depth due to total ankle replacement. Proc Inst Mech Eng H 2019; 233:318-331. [DOI: 10.1177/0954411918823811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study is to investigate the effects of implant orientation and implant material on tibia bone strain, implant–bone micromotion, maximum contact pressure, and wear depth at the articulating surface due to total ankle replacement. Three-dimensional finite element models of intact and implanted ankle were developed from computed tomography scan data. Four implanted models were developed having varus and valgus orientations of 5° and 10°, respectively. In order to determine the effect of implant material combination on tibia bone strain, micromotion, contact pressure, and wear depth, three other finite element models were developed having a different material combination of the implant. Dorsiflexion, neutral, and plantarflexion positions were considered as applied loading condition, along with muscle force and ligaments. Implant orientation alters the strain distribution in tibia bone. Strain shielding was found to be less in the case of the optimally positioned implant. Apart from the strain, implant orientation also affects implant–bone micromotion, contact pressure, and wear depth. Implant materials have less influence on tibia bone strain and micromotion. However, wear depth was reduced when ceramic and carbon fibre–reinforced polyetheretherketone material combination was used. Proper orientation of the implant is important to reduce the strain shielding. The present result suggested that ceramic can be used as an alternative to metal and carbon fibre–reinforced polyetheretherketone as an alternative to ultra-high molecular weight polyethylene to reduce wear, which would be beneficial for long-term success and fixation of the implant.
Collapse
Affiliation(s)
- Subrata Mondal
- School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
21
|
Mondal S, Ghosh R. The Effects of Implant Orientations and Implant–Bone Interfacial Conditions on Potential Causes of Failure of Tibial Component Due to Total Ankle Replacement. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0435-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|