1
|
Sun H, Huang L, Huang J. Sparteine Thiourea: The Synthesis of an N Chiral Bispidine-Quinolizidine-Derived Organocatalyst and Applications in Asymmetric Synthesis of Dihydropyrano[ c]chromenes. J Org Chem 2024; 89:7225-7232. [PMID: 38712792 DOI: 10.1021/acs.joc.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Bispidine, a bridged bicyclic diamine, has been widely utilized as a rigid scaffold in chiral chelating ligands in asymmetric synthesis. In particular, a chiral bispidine-quinolizidine hybrid, such as sparteine, was utilized in asymmetric synthesis involving a metal, exhibiting superior catalytic activity. In this study, we report the design and synthesis of a series of sparteine-derived organocatalysts and the utilization of these catalysts in tandem Michael addition-cyclization reactions. These catalysts have shown excellent catalytic reactivity and enantioselectivity, and the corresponding dihydropyrano[c]chromenes have been prepared in ≤99% yield and ≤99% ee with a low catalyst loading. The recycled catalysts maintain a good catalytic performance even after four cycles, and a gram-scale reaction with a 1% catalyst loading is also performed, providing the product in 96% yield and 98% ee.
Collapse
Affiliation(s)
- Hexin Sun
- School of Pharmaceutical Science and Technology (SPST), Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- International Joint Research Centre for Molecular Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Lin Huang
- School of Pharmaceutical Science and Technology (SPST), Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- International Joint Research Centre for Molecular Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology (SPST), Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- International Joint Research Centre for Molecular Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Đorđević Zlatković MR, Radulović NS, Dangalov M, Vassilev NG. Conformation Analysis and Stereodynamics of Symmetrically ortho-Disubstituted Carvacrol Derivatives. Molecules 2024; 29:1962. [PMID: 38731453 PMCID: PMC11085911 DOI: 10.3390/molecules29091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The design and synthesis of analogs of natural products can be a valuable source of medicinal preparations for the pharmaceutical industry. In the present study, the structural elucidation of eleven derivatives of 2,4-dihalogeno substituted synthetic analogues of the natural compound carvacrol was carried out by means of NMR experiments, and of another thirteen by DFT calculations. By selective NOE experiments and the irradiation of CH signals of the isopropyl group, individual conformers were assigned as syn and anti. By comparing GIAO/B3LYP/6-311++G(d,p)-calculated and experimentally measured vicinal 3JCH spin-spin constants, this assignment was confirmed. An unusual relationship is reported for proton-carbon vicinal couplings: 3JCH (180°) < 3JCH (0°). The conformational mobility of carvacrols was studied by 2D EXSY spectra. The application of homonuclear decoupling technique (HOBS) to these spectra simplifies the spectra, improves resolution without reducing the sensitivity, and allows a systematic examination of the rotational barrier of all compounds via their CH signals of the isopropyl group in a wider temperature interval. The rate constants of the isopropyl rotation between syn and anti conformers were determined and the corresponding energy barriers (14-17 kcal/mol) were calculated. DFT calculations of the energy barriers in carvacrol derivatives allowed the determination of the steric origin of the restricted isopropyl rotation. The barrier height depends on the size of the 2- and 4-position substituents, and is independent of the derivatization of the OH group.
Collapse
Affiliation(s)
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia;
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| | - Nikolay G. Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| |
Collapse
|
3
|
Dobrikov GM, Nikolova Y, Slavchev I, Dangalov M, Deneva V, Antonov L, Vassilev NG. Structure and Conformational Mobility of OLED-Relevant 1,3,5-Triazine Derivatives. Molecules 2023; 28:molecules28031248. [PMID: 36770913 PMCID: PMC9921695 DOI: 10.3390/molecules28031248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
A series of OLED-relevant compounds, consisting of 1,3,5-triazine core linked to various aromatic arms by amino group, has been synthesized and characterized. The studied compounds exist in solution as a mixture of two conformers, a symmetric propeller and asymmetric conformer, in which one of the aromatic arms is rotated around the C-N bond. At temperatures below -40 °C, the VT NMR spectra in DMF-d7 are in a slow exchange regime, and the signals of two conformers can be elucidated. At temperatures above 100 °C, the VT NMR spectra in DMSO-d6 are in a fast exchange regime, and the averaged spectra can be measured. The ratio of symmetric and asymmetric conformers in DMF-d7 varies from 14:86 to 50:50 depending on the substituents. The rotational barriers of symmetric and asymmetric conformers in DMF-d7 were measured for all compounds and are in the interval from 11.7 to 14.7 kcal/mol. The ground-state energy landscapes of the studied compounds, obtained by DFT calculations, show good agreement with the experimental rotational barriers. The DFT calculations reveal that the observed chemical exchange occurs by the rotation around the C(1,3,5-triazine)-N bond. Although some of the compounds are potentially tautomeric, the measured absorption and emission spectra do not indicate proton transfer neither in the ground nor in the excited state.
Collapse
Affiliation(s)
- Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Yana Nikolova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Vera Deneva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Nikolay G. Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
4
|
Ng SS, Chen Z, Yuen OY, So CM. An indole-amide-based phosphine ligand enabling a general palladium-catalyzed sterically hindered Suzuki-Miyaura cross-coupling reaction. Org Biomol Chem 2022; 20:1373-1378. [PMID: 35080549 DOI: 10.1039/d1ob02294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel family of indole-amide-based phosphine ligands was designed and synthesized. The Pd/InAm-phos (L1) catalytic system exhibited excellent efficiency in the Suzuki-Miyaura cross-coupling of sterically hindered (hetero)aryl chlorides to synthesize tri-ortho-substituted biaryls. Excellent product yields were obtained in a short reaction time (e.g., 10 min), and a Pd catalyst loading down to 50 ppm was also achieved. The oxidative addition adduct of Pd-L1 with 2-chlorotoluene was also well-characterized by single-crystal X-ray crystallography and showed a κ2-P,O-coordination of L1 with palladium.
Collapse
Affiliation(s)
- Shan Shan Ng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Zicong Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - On Ying Yuen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
5
|
Nichols AL, Blumenfeld Z, Fan C, Luebbert L, Blom AEM, Cohen BN, Marvin JS, Borden PM, Kim CH, Muthusamy AK, Shivange AV, Knox HJ, Campello HR, Wang JH, Dougherty DA, Looger LL, Gallagher T, Rees DC, Lester HA. Fluorescence activation mechanism and imaging of drug permeation with new sensors for smoking-cessation ligands. eLife 2022; 11:e74648. [PMID: 34982029 PMCID: PMC8820738 DOI: 10.7554/elife.74648] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Nicotinic partial agonists provide an accepted aid for smoking cessation and thus contribute to decreasing tobacco-related disease. Improved drugs constitute a continued area of study. However, there remains no reductionist method to examine the cellular and subcellular pharmacokinetic properties of these compounds in living cells. Here, we developed new intensity-based drug-sensing fluorescent reporters (iDrugSnFRs) for the nicotinic partial agonists dianicline, cytisine, and two cytisine derivatives - 10-fluorocytisine and 9-bromo-10-ethylcytisine. We report the first atomic-scale structures of liganded periplasmic binding protein-based biosensors, accelerating development of iDrugSnFRs and also explaining the activation mechanism. The nicotinic iDrugSnFRs detect their drug partners in solution, as well as at the plasma membrane (PM) and in the endoplasmic reticulum (ER) of cell lines and mouse hippocampal neurons. At the PM, the speed of solution changes limits the growth and decay rates of the fluorescence response in almost all cases. In contrast, we found that rates of membrane crossing differ among these nicotinic drugs by >30-fold. The new nicotinic iDrugSnFRs provide insight into the real-time pharmacokinetic properties of nicotinic agonists and provide a methodology whereby iDrugSnFRs can inform both pharmaceutical neuroscience and addiction neuroscience.
Collapse
Affiliation(s)
- Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Zack Blumenfeld
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Chengcheng Fan
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Institute of Biology, Leiden UniversityLeidenNetherlands
| | - Annet EM Blom
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Philip M Borden
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Anand K Muthusamy
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Amol V Shivange
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Hailey J Knox
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | | | - Jonathan H Wang
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
6
|
Pokhodylo NT, Shyyka OY, Slyvka YI, Goreshnik EA, Obushak MD. Solvent-free synthesis of cytisine-thienopyrimidinone conjugates via transannulation of 1H-tetrazoles: Crystal and molecular structure, docking studies and screening for anticancer activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
8
|
Philipova I, Stavrakov G, Dimitrov V, Vassilev N. Galantamine derivatives: Synthesis, NMR study, DFT calculations and application in asymmetric catalysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Blom AE, Campello HR, Lester HA, Gallagher T, Dougherty DA. Probing Binding Interactions of Cytisine Derivatives to the α4β2 Nicotinic Acetylcholine Receptor. J Am Chem Soc 2019; 141:15840-15849. [DOI: 10.1021/jacs.9b06580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Hugo Rego Campello
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | - Timothy Gallagher
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | |
Collapse
|
10
|
Noreen S, Zahoor AF, Ahmad S, Shahzadi I, Irfan A, Faiz S. Novel Chiral Ligands for Palladium-catalyzed Asymmetric Allylic Alkylation/ Asymmetric Tsuji-Trost Reaction: A Review. CURR ORG CHEM 2019; 23:1168-1213. [DOI: 10.2174/1385272823666190624145039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Background:
Asymmetric catalysis holds a prestigious role in organic syntheses since a long
time and chiral inductors such as ligands have been used to achieve the utmost desired results
at this pitch. The asymmetric version of Tsuji-Trost allylation has played a crucial
role in enantioselective synthesis. Various chiral ligands have been known for Pdcatalyzed
Asymmetric Allylic Alkylation (AAA) reactions and exhibited excellent catalytic
potential. The use of chiral ligands as asymmetric inductors has widened the scope of
Tsuji-Trost allylic alkylation reactions.
Conclusion:
Therefore, in this review article, a variety of chiral inductors or ligands have been focused
for palladium catalyzed asymmetric allylic alkylation (Tsuji-Trost allylation) and in this
regard, recently reported literature (2013-2017) has been described. The use of ligands
causes the induction of enantiodiscrimination to the allylated products, therefore, the syntheses of various kinds
of ligands have been targeted by many research groups to employ in Pd-catalyzed AAA reactions.
Collapse
Affiliation(s)
- Samar Noreen
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad-38000, Pakistan
| | - Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Sadia Faiz
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| |
Collapse
|
11
|
Bonandi E, Marzullo P, Foschi F, Perdicchia D, Presti LL, Sironi M, Pieraccini S, Gambacorta G, Saupe J, Dalla Via L, Passarella D. Stereodivergent Diversity-Oriented Synthesis: Exploiting the Versatility of 2-Piperidine Ethanol. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elisa Bonandi
- Dipartimento di Chimica - Università degli Studi di Milano; Via Golgi, 19 20133 Milano Italy
| | - Paola Marzullo
- Dipartimento di Chimica - Università degli Studi di Milano; Via Golgi, 19 20133 Milano Italy
| | - Francesca Foschi
- Dipartimento di Chimica - Università degli Studi di Milano; Via Golgi, 19 20133 Milano Italy
| | - Dario Perdicchia
- Dipartimento di Chimica - Università degli Studi di Milano; Via Golgi, 19 20133 Milano Italy
| | - Leonardo Lo Presti
- Dipartimento di Chimica - Università degli Studi di Milano; Via Golgi, 19 20133 Milano Italy
| | - Maurizio Sironi
- Dipartimento di Chimica - Università degli Studi di Milano; Via Golgi, 19 20133 Milano Italy
| | - Stefano Pieraccini
- Dipartimento di Chimica - Università degli Studi di Milano; Via Golgi, 19 20133 Milano Italy
| | - Guido Gambacorta
- Dipartimento di Chimica - Università degli Studi di Milano; Via Golgi, 19 20133 Milano Italy
| | - Joern Saupe
- AnalytiCon Discovery GmbH; Hermannswerder Haus 17 14473 Potsdam Germany
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Via F. Marzolo, 5 35131 Padova Italy
| | - Daniele Passarella
- Dipartimento di Chimica - Università degli Studi di Milano; Via Golgi, 19 20133 Milano Italy
| |
Collapse
|
12
|
Niwetmarin W, Rego Campello H, Sparkes HA, Aggarwal VK, Gallagher T. (−)-Cytisine: Access to a stereochemically defined and functionally flexible piperidine scaffold. Org Biomol Chem 2018; 16:5823-5832. [DOI: 10.1039/c8ob01456f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cytisine undergoes ready fragmentation to provide a highly flexible (and “privileged”) piperidine scaffold capable of exploring a diversity of chemical space.
Collapse
|
13
|
Schulz J, Vosáhlo P, Uhlík F, Císařová I, Štěpnička P. Probing the Influence of Phosphine Substituents on the Donor and Catalytic Properties of Phosphinoferrocene Carboxamides: A Combined Experimental and Theoretical Study. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jiří Schulz
- Department
of Inorganic Chemistry and ‡Department of Physical and Macromolecular
Chemistry, Faculty of Science, Charles University; Hlavova 2030, 128 40 Prague, Czech Republic
| | - Petr Vosáhlo
- Department
of Inorganic Chemistry and ‡Department of Physical and Macromolecular
Chemistry, Faculty of Science, Charles University; Hlavova 2030, 128 40 Prague, Czech Republic
| | - Filip Uhlík
- Department
of Inorganic Chemistry and ‡Department of Physical and Macromolecular
Chemistry, Faculty of Science, Charles University; Hlavova 2030, 128 40 Prague, Czech Republic
| | - Ivana Císařová
- Department
of Inorganic Chemistry and ‡Department of Physical and Macromolecular
Chemistry, Faculty of Science, Charles University; Hlavova 2030, 128 40 Prague, Czech Republic
| | - Petr Štěpnička
- Department
of Inorganic Chemistry and ‡Department of Physical and Macromolecular
Chemistry, Faculty of Science, Charles University; Hlavova 2030, 128 40 Prague, Czech Republic
| |
Collapse
|
14
|
Dangalov M, Petrov P, Vassilev NG. Fluxional allyl Pd(II) and Pt(II) complexes of NHC ligands derived from substituted 1,8-naphthalimides - Synthesis and structure elucidation. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Dangalov M, Stoyanova M, Petrov P, Putala M, Vassilev NG. Fluxional Pd(II) NHC complexes – Synthesis, structure elucidation and catalytic studies. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|