1
|
Garaev TM, Grebennikova TV, Lebedeva VV, Avdeeva VV, Larichev VF. Compounds based on Adamantyl-substituted Amino Acids and Peptides as Potential Antiviral Drugs Acting as Viroporin Inhibitors. Curr Pharm Des 2024; 30:912-920. [PMID: 38482627 DOI: 10.2174/0113816128286111240229074810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 06/21/2024]
Abstract
The discussion has revolved around the derivatives of amino acids and peptides containing carbocycles and their potential antiviral activity in vitro against influenza A, hepatitis C viruses, and coronavirus. Studies conducted on cell cultures reveal that aminoadamantane amino acid derivatives exhibit the capacity to hinder the replication of viruses containing viroporins. Furthermore, certain compounds demonstrate potent virucidal activity with respect to influenza A/H5N1 and hepatitis C virus particles. A conceptual framework for viroporin inhibitors has been introduced, incorporating carbocyclic motifs as membranotropic carriers in the structure, alongside a functional segment comprised of amino acids and peptides. These components correspond to the interaction with the inner surface of the channel's pore or another target protein.
Collapse
Affiliation(s)
- Timur M Garaev
- The Gamaleya National Center for Epidemiology and Microbiology, 18 Gamaleya St., Moscow 123098, Russia
| | - Tatyana V Grebennikova
- The Gamaleya National Center for Epidemiology and Microbiology, 18 Gamaleya St., Moscow 123098, Russia
| | - Varvara V Lebedeva
- The Gamaleya National Center for Epidemiology and Microbiology, 18 Gamaleya St., Moscow 123098, Russia
| | - Varvara V Avdeeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Viktor F Larichev
- The Gamaleya National Center for Epidemiology and Microbiology, 18 Gamaleya St., Moscow 123098, Russia
| |
Collapse
|
2
|
Gruzdev DA, Telegina AA, Ol’shevskaya VA, Andronova VL, Galegov GA, Zarubaev VV, Levit GL, Krasnov VP. New nido-carborane-containing conjugates of purine: synthesis and antiviral activity. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
New type of RNA virus replication inhibitor based on decahydro-closo-decaborate anion containing amino acid ester pendant group. J Biol Inorg Chem 2022; 27:421-429. [PMID: 35332377 PMCID: PMC8948040 DOI: 10.1007/s00775-022-01937-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/03/2022] [Indexed: 12/04/2022]
Abstract
In this work, a synthetic approach to prepare an example of new class of the derivatives of the closo-decaborate anion with amino acids detached from the boron cluster by pendant group has been proposed and implemented. Compound Na2[B10H9–O(CH2)4C(O)–His–OMe] was isolated and characterized. This compound has an inorganic hydrophobic core which is the 10-vertex boron cage and the –O(CH2)4C(O)–His–OMe organic substituent. It has been shown to possess strong antiviral activity in vitro against modern strains of A/H1N1 virus at 10 and 5 µg/mL. The compound has been found to be non-cytotoxic up to 160 µg/mL. At the same time, the compound has been found to be inactive against SARS-CoV-2, indicating specific activity against RNA virus replication. Molecular docking of the target derivative of the closo-decaborate anion with a model of the transmembrane region of the M2 protein has been performed and the mechanism of its antiviral action is discussed.
Collapse
|
4
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
5
|
Avdeeva VV, Garaev TM, Malinina EA, Zhizhin KY, Kuznetsov NT. Physiologically Active Compounds Based on Membranotropic Cage Carriers–Derivatives of Adamantane and Polyhedral Boron Clusters (Review). RUSS J INORG CHEM+ 2022. [PMCID: PMC8824546 DOI: 10.1134/s0036023622010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Data on compounds based on cage structures―boron clusters (polyhedral boron hydrides, carboranes, metallacarboranes) and compounds of the adamantane series, which possess physiological activity, have been generalized. The main emphasis is placed on the antiviral activity of the compounds. The mechanism of the possible action of the replication inhibitors of influenza A virus strains is considered, the molecular model of viroporin inhibitors is discussed. The proposed model consists of a cage hydrophobic core that performs the function of a membranotropic carrier (a boron cluster or adamantane fragment), into which physiologically active functional groups are introduced. The relationship between the structure of the cage compound with the introduced substitute and the biologically active properties of this molecular structure has been analyzed.
Collapse
Affiliation(s)
- V. V. Avdeeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - T. M. Garaev
- Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of Russian Federation, 123098 Moscow, Russia
| | - E. A. Malinina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - K. Yu. Zhizhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - N. T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Duttwyler S, Liu F, Chen T, Zhang K, Jiang T, Liu J. Sonogashira Coupling of the Ethynyl Monocarborane [CB11H11-12-CCH]–. Dalton Trans 2022; 51:10880-10886. [DOI: 10.1039/d2dt01048h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Sonogashira cross coupling between the monocarborane cluster 12-ethynylmonocarba-closo-dodecaborate [CB11H11-12-CCH]– and bromoarenes under Pd catalysis has been developed, providing access to aryl carboranyl alkynes in yields of 42–95%. The transformations...
Collapse
|
7
|
Bednarska-Szczepaniak K, Mieczkowski A, Kierozalska A, Pavlović Saftić D, Głąbała K, Przygodzki T, Stańczyk L, Karolczak K, Watała C, Rao H, Gao ZG, Jacobson KA, Leśnikowski ZJ. Synthesis and evaluation of adenosine derivatives as A 1, A 2A, A 2B and A 3 adenosine receptor ligands containing boron clusters as phenyl isosteres and selective A 3 agonists. Eur J Med Chem 2021; 223:113607. [PMID: 34171656 PMCID: PMC8448983 DOI: 10.1016/j.ejmech.2021.113607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/30/2023]
Abstract
A series of adenosine and 2'-deoxyadenosine pairs modified with a 1,12-dicarba-closo-dodecaborane cluster or alternatively with a phenyl group at the same position was synthesized, and their affinity was determined at A1, A2A, A2B and A3 adenosine receptors (ARs). While AR affinity differences were noted, a general tendency to preferentially bind A3 AR over other ARs was observed for most tested ligands. In particular, 5'-ethylcarbamoyl-N6-(3-phenylpropyl)adenosine (18), N6-(3-phenylpropyl)-2-chloroadenosine (24) and N6-(3-phenylpropyl)adenosine (40) showed nanomolar A3 affinity (Ki 4.5, 6.4 and 7.5 nM, respectively). Among the boron cluster-containing compounds, the highest A3 affinity (Ki 206 nM) was for adenosine derivative 41 modified at C2. In the matched molecular pairs, analogs bearing boron clusters were found to show lower binding affinity for adenosine receptors than the corresponding phenyl analogs. Nevertheless, interestingly, several boron cluster modified adenosine ligands showed significantly higher A3 receptor selectivity than the corresponding phenyl analogs: 7vs. 8, 15vs. 16, 17vs. 18.
Collapse
Affiliation(s)
| | - Adam Mieczkowski
- Laboratory of Biological Chemistry of Metal Ions, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Aleksandra Kierozalska
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland
| | - Dijana Pavlović Saftić
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland
| | - Konrad Głąbała
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland
| | - Tomasz Przygodzki
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Lidia Stańczyk
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Cezary Watała
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Harsha Rao
- Laboratory of Bioorganic Chemistry and Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, 20892-0810, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry and Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, 20892-0810, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry and Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, 20892-0810, USA
| | - Zbigniew J Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland.
| |
Collapse
|
8
|
Anionic polyhedral boron clusters conjugates with 7-diethylamino-4-hydroxycoumarin. Synthesis and lipophilicity determination. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Comparative study of the effects of ortho-, meta- and para-carboranes (C2B10H12) on the physicochemical properties, cytotoxicity and antiviral activity of uridine and 2′-deoxyuridine boron cluster conjugates. Bioorg Chem 2020; 94:103466. [DOI: 10.1016/j.bioorg.2019.103466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
|
10
|
Shanmugasundaram M, Senthilvelan A, Kore AR. C-5 Substituted Pyrimidine Nucleotides/Nucleosides: Recent Progress in Synthesis, Functionalization, and Applications. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190809124310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chemistry of C5 substituted pyrimidine nucleotide serves as a versatile molecular
biology probe for the incorporation of DNA/RNA that has been involved in various
molecular biology applications such as gene expression, chromosome, and mRNA
fluorescence in situ hybridization (FISH) experiment, mutation detection on arrays and
microarrays, in situ RT-PCR, and PCR. In addition to C5 substituted pyrimidine nucleotide,
C5 substituted pyrimidine nucleoside displays a broad spectrum of biological applications
such as antibacterial, antiviral and anticancer activities. This review focusses on
the recent development in the synthesis of aminoallyl pyrimidine nucleotide, aminopropargyl
pyrimidine nucleotide, fluorescent probes containing C5 substituted pyrimidine nucleotide,
2′-deoxycytidine nucleoside containing vinylsulfonamide and acrylamide modification,
C5 alkenyl, C5 alkynyl, and C5 aryl pyrimidine nucleosides through palladium-catalyzed reaction,
pyrimidine nucleoside containing triazole moiety through Click reaction, 5-isoxazol-3-yl-pyrimidine nucleoside,
C5 azide modified pyrimidine nucleoside, 2′-deoxycytidine nucleotide containing photocleavable moiety,
and uridine nucleoside containing germane and their biological applications are outlined.
Collapse
Affiliation(s)
- Muthian Shanmugasundaram
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, TX 78744-1832, United States
| | - Annamalai Senthilvelan
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, TX 78744-1832, United States
| | - Anilkumar R. Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, TX 78744-1832, United States
| |
Collapse
|
11
|
Mochizuki M, Sato S, Asatyas S, Leśnikowski ZJ, Hayashi T, Nakamura H. Raman cell imaging with boron cluster molecules conjugated with biomolecules. RSC Adv 2019; 9:23973-23978. [PMID: 35530627 PMCID: PMC9069464 DOI: 10.1039/c9ra04228h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
Raman spectroscopic measurements and theoretical calculation revealed that the Raman bands corresponding to the B–H stretching vibrations of two types of simple icosahedral boron clusters, ortho-carborane 3 and closo-dodecaborate 4 appeared at approximately 2450–2700 cm−1, and did not overlap with those of cellular components. Although ortho-carborane 3 possesses a possible property as a Raman probe, it was difficult to measure Raman imaging in the cell due to its poor water solubility. In fact, ortho-carborane derivative 6, which internally has an alkyne moiety, exhibited very weak Raman signals of the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C stretching and the B–H stretching vibrations were barely detected at a 400 ppm boron concentration in HeLa cells. In contrast, closo-dodecaborate derivatives such as BSH (5) were found to be a potential Raman imaging probe cluster for target molecules in the cell. BSH-conjugated cholesterol 7 (BSH-Chol) was synthesized and used in Raman imaging in cells. Raman imaging and spectral analysis revealed that BSH-based Raman tags provide a versatile platform for quantitative Raman imaging. We performed Raman cell imaging using boron clusters.![]()
Collapse
Affiliation(s)
- Masahito Mochizuki
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Shinichi Sato
- Laboratory of Chemical and Life Science Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
| | - Syifa Asatyas
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | | | - Tomohiro Hayashi
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
- JST-PRESTO
| | - Hiroyuki Nakamura
- Laboratory of Chemical and Life Science Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
| |
Collapse
|
12
|
Azab ME, Abdel-Wahab SS, Mahmoud NF, Elsayed GA. Novel Bridgehead Thiadiazolopyrimidine Derivatives with Antimicrobial and Antitumor Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mohammad E. Azab
- Synthetic Organic Lab, Chemistry Department, Faculty of Science; Ain Shams University; Abbassia Cairo 11566 Egypt
| | - Salwa S. Abdel-Wahab
- Faculty of Pharmaceutical Sciences and Pharmaceutical Industries; Future University in Egypt; New Cairo 11835 Egypt
| | - Naglaa F. Mahmoud
- Synthetic Organic Lab, Chemistry Department, Faculty of Science; Ain Shams University; Abbassia Cairo 11566 Egypt
| | - Galal A. Elsayed
- Synthetic Organic Lab, Chemistry Department, Faculty of Science; Ain Shams University; Abbassia Cairo 11566 Egypt
| |
Collapse
|
13
|
Vincenzi M, Bednarska K, Leśnikowski ZJ. Comparative Study of Carborane- and Phenyl-Modified Adenosine Derivatives as Ligands for the A2A and A3 Adenosine Receptors Based on a Rigid in Silico Docking and Radioligand Replacement Assay. Molecules 2018; 23:E1846. [PMID: 30044380 PMCID: PMC6222516 DOI: 10.3390/molecules23081846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022] Open
Abstract
Adenosine receptors are involved in many physiological processes and pathological conditions and are therefore attractive therapeutic targets. To identify new types of effective ligands for these receptors, a library of adenosine derivatives bearing a boron cluster or phenyl group in the same position was designed. The ligands were screened in silico to determine their calculated affinities for the A2A and A3 adenosine receptors. An virtual screening protocol based on the PatchDock web server was developed. In the first screening phase, the effects of the functional group (organic or inorganic modulator) on the adenosine ligand affinity for the receptors were determined. Then, the lead compounds were identified for each receptor in the second virtual screening phase. Two pairs of the most promising ligands, compounds 3 and 4, and two ligands with lower affinity scores (compounds 11 and 12, one with a boron cluster and one with a phenyl group) were synthesized and tested in a radioligand replacement assay for affinity to the A2A and A3 receptors. A reasonable correlation of in silico and biological assay results was observed. In addition, the effects of a phenyl group and boron cluster, which is new adenosine modifiers, on the adenosine ligand binding were compared.
Collapse
Affiliation(s)
- Marian Vincenzi
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland.
| | - Katarzyna Bednarska
- Laboratory of Experimental Immunology, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland.
| | - Zbigniew J Leśnikowski
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland.
| |
Collapse
|
14
|
|
15
|
Synthesis, susceptibility to enzymatic phosphorylation, cytotoxicity and in vitro antiviral activity of lipophilic pyrimidine nucleoside/carborane conjugates. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Disubstituted cobalt bis(1,2-dicarbollide)(-I) terminal alkynes: Synthesis, reactivity in the Sonogashira reaction and application in the synthesis of cobalt bis(1,2-dicarbollide)(-I) nucleoside conjugates. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Balintová J, Simonova A, Białek-Pietras M, Olejniczak A, Lesnikowski ZJ, Hocek M. Carborane-linked 2'-deoxyuridine 5'-O-triphosphate as building block for polymerase synthesis of carborane-modified DNA. Bioorg Med Chem Lett 2017; 27:4786-4788. [PMID: 29017785 DOI: 10.1016/j.bmcl.2017.09.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/13/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022]
Abstract
5-[(p-Carborane-2-yl)ethynyl]-2'-deoxyuridine 5'-O-triphosphate was synthesized and used as a good substrate in enzymatic construction of carborane-modified DNA or oligonucleotides containing up to 21 carborane moieties in primer extension reactions by DNA polymerases.
Collapse
Affiliation(s)
- Jana Balintová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Magdalena Białek-Pietras
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland
| | - Agnieszka Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland
| | - Zbigniew J Lesnikowski
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.
| |
Collapse
|
18
|
Gozzi M, Schwarze B, Sárosi MB, Lönnecke P, Drača D, Maksimović-Ivanić D, Mijatović S, Hey-Hawkins E. Antiproliferative activity of (η 6-arene)ruthenacarborane sandwich complexes against HCT116 and MCF7 cell lines. Dalton Trans 2017; 46:12067-12080. [PMID: 28799598 DOI: 10.1039/c7dt02027a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three [(η6-arene)RuC2B9H11] complexes (arene = p-cymene (2), biphenyl (3) and 1-Me-4-COOEt-C6H4 (4)) were synthesised according to modified literature procedures and fully characterised. 2-4 were found to be moderately active against two types of tumour cell lines (HCT116 and MCF7), with IC50 values in the low micromolar range. However, viability of normal, healthy cells (MRC-5 cell line, MLEC and mouse macrophages) was not affected by treatment with 2-4, indicating high selectivity of the metallacarborane complexes towards tumour cell lines, compared to the unselective antitumour agent cisplatin and other potential RuII drugs. Moreover, flow cytometric analysis suggested that 4 induces cell death via a caspase-dependent apoptotic mechanism. DFT calculations of the frontier molecular orbitals showed that the HOMO-LUMO gap in 2-4 is smaller than in the corresponding cyclopentadienyl complexes 2-Cp-4-Cp (e.g. 5.47 (2) vs. 6.31 eV (2-Cp)). In order to assess the stability of 2-4, particularly the ruthenium-dicarbollide bond, energy decomposition analysis (EDA) of 2-4, together with the respective cyclopentadienyl analogues 2-Cp-4-Cp, was performed. EDA suggests that the ruthenium(ii)-dicarbollide bond in the three complexes is mostly ionic and far stronger than the ruthenium(ii)-arene bond.
Collapse
Affiliation(s)
- Marta Gozzi
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Benedikt Schwarze
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Menyhárt-Botond Sárosi
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Peter Lönnecke
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Dijana Drača
- University of Belgrade, Institute of Biological Research "Siniša Stanković", Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- University of Belgrade, Institute of Biological Research "Siniša Stanković", Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- University of Belgrade, Institute of Biological Research "Siniša Stanković", Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
19
|
Jagadale S, Sawant A, Deshmukh M. Synthesis and Antimicrobial Evaluation of Novel Dibenzo-18-Crown-6-Ether Functionalized Pyrimidines. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- S.D. Jagadale
- School of Nanoscience and Biotechnology; Shivaji University; Kolhapur Maharashtra 416 004 India
| | - A.D. Sawant
- Department of Chemistry; Sanjay Ghodawat Institute; Atigre Kolhapur Maharashtra 416 118 India
| | - M.B. Deshmukh
- Department of Chemistry; Shivaji University; Kolhapur Maharashtra 416 004 India
| |
Collapse
|
20
|
Laskova J, Kozlova A, Ananyev I, Bregadze V, Semioshkin A. 2-Hydroxyethoxy-closo-undecahydrododecaborate(12)([B12H11CH2CH2OH]2−) as a new prospective reagent for the preparation of closo-dodecaborate building blocks and thymidine and 2-deoxyuridine conjugates linked via short spacer. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Leśnikowski ZJ. Challenges and Opportunities for the Application of Boron Clusters in Drug Design. J Med Chem 2016; 59:7738-58. [PMID: 27124656 DOI: 10.1021/acs.jmedchem.5b01932] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There are two branches in boron medicinal chemistry: the first focuses on single boron atom compounds, and the second utilizes boron clusters. Boron clusters and their heteroatom counterparts belong to the family of cage compounds. A subset of this extensive class of compounds includes dicarbadodecaboranes, which have the general formula C2B10H12, and their metal biscarboranyl complexes, metallacarboranes, with the formula [M(C2B10H12)2(-2)]. The unique properties of boron clusters have resulted in their utilization in applications such as in pharmacophores, as scaffolds in molecular construction, and as modulators of bioactive compounds. This Perspective presents an overview of the properties of boron clusters that are pertinent for drug discovery, recent applications in the design of various classes of drugs, and the potential use of boron clusters in the construction of new pharmaceuticals.
Collapse
Affiliation(s)
- Zbigniew J Leśnikowski
- Institute of Medical Biology, Polish Academy of Sciences , Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland
| |
Collapse
|
22
|
Abstract
INTRODUCTION After decades of development, the medicinal chemistry of compounds that contain a single boron atom has matured to the present status of having equal rights with other branches of drug discovery, although it remains a relative newcomer. In contrast, the medicinal chemistry of boron clusters is less advanced, but it is expanding and may soon become a productive area of drug discovery. AREAS COVERED The author reviews the current developments of medicinal chemistry of boron and its applications in drug design. First generation boron drugs that bear a single boron atom and second generation boron drugs that utilize boron clusters as pharmacophores or modulators of bioactive molecules are discussed. The advantages and gaps in our current understanding of boron medicinal chemistry, with a special focus on boron clusters, are highlighted. EXPERT OPINION Boron is not a panacea for every drug discovery problem, but there is a good chance that it will become a useful addition to the medicinal chemistry tool box. The present status of boron resembles the medicinal chemistry status of fluorine three decades ago; indeed, currently, approximately 20% of pharmaceuticals on the market contain fluorine. The fact that novel boron compounds, especially those based on abiotic polyhedral boron hydrides, are currently unfamiliar could be advantageous because organisms may be less prone to developing resistance against boron cluster-based drugs.
Collapse
Affiliation(s)
- Zbigniew J Leśnikowski
- a Institute of Medical Biology, Polish Academy of Sciences , Laboratory of Molecular Virology and Biological Chemistry , Lodz , Poland
| |
Collapse
|
23
|
Laskova J, Kozlova A, Białek-Pietras M, Studzińska M, Paradowska E, Bregadze V, Leśnikowski ZJ, Semioshkin A. Reactions of closo-dodecaborate amines. Towards novel bis-(closo-dodecaborates) and closo-dodecaborate conjugates with lipids and non-natural nucleosides. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|