1
|
Sansores-Paredes MLG, Lutz M, Moret ME. Cooperative H 2 activation at a nickel(0)-olefin centre. Nat Chem 2024; 16:417-425. [PMID: 38052947 DOI: 10.1038/s41557-023-01380-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023]
Abstract
Catalytic olefin hydrogenation is ubiquitous in organic synthesis. In most proposed homogeneous catalytic cycles, reactive M-H bonds are generated either by oxidative addition of H2 to a metal centre or by deprotonation of a non-classical metal dihydrogen (M-H2) intermediate. Here we provide evidence for an alternative H2-activation mechanism that instead involves direct ligand-to-ligand hydrogen transfer (LLHT) from a metal-bound H2 molecule to a metal-coordinated olefin. An unusual pincer ligand that features two phosphine ligands and a central olefin supports the formation of a non-classical Ni-H2 complex and the Ni(alkyl)(hydrido) product of LLHT, in rapid equilibrium with dissolved H2. The usefulness of this cooperative H2-activation mechanism for catalysis is demonstrated in the semihydrogenation of diphenylacetylene. Experimental and computational mechanistic investigations support the central role of LLHT for H2 activation and catalytic semihydrogenation. The product distribution obtained is largely determined by the competition between (E)-(Z) isomerization and catalyst degradation by self-hydrogenation.
Collapse
Affiliation(s)
- María L G Sansores-Paredes
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marc-Etienne Moret
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Mujahed S, Hey‐Hawkins E, Gelman D. A High‐Valent Ru‐PCP Pincer Catalyst for Hydrogenation of Carbonyl and Carboxyl Compounds under Molecular Hydrogen. Chemistry 2022; 28:e202201098. [DOI: 10.1002/chem.202201098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shrouq Mujahed
- Institute of Chemistry Edmond J. Safra Campus The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Evamarie Hey‐Hawkins
- Faculty of Chemistry and Mineralogy Institute of Inorganic Chemistry Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Dmitri Gelman
- Institute of Chemistry Edmond J. Safra Campus The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
3
|
Kishino M, Takaoka S, Shibutani Y, Kusumoto S, Nozaki K. Synthesis and reactivity of PC(sp 3)P-pincer iridium complexes bearing a diborylmethyl anion. Dalton Trans 2022; 51:5009-5015. [PMID: 35296874 DOI: 10.1039/d2dt00513a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel PCP-pincer iridium complexes bearing a diborylmethyl anion were synthesized. Strong σ-electron-donation to the metal and significant π-backdonation from the metal to boron atoms at the β-position were observed both experimentally and computationally. H/D exchange of the aromatic C-H bond proceeded smoothly and, in addition, the α-methine-hydrogen between boron atoms was found to be replaced with deuterium in benzene-d6 solution possibly through diborylcarbene metal complexes as intermediates.
Collapse
Affiliation(s)
- Masamichi Kishino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Satoko Takaoka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yuki Shibutani
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shuhei Kusumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
4
|
Tan C, Tinnermann H, Sung S, Kat LH, Young RD. Nonpalindromic Rhodium PCcarbeneP Pincer Complexes Featuring Electron-Deficient Phosphino Substituents. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clarence Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Hendrik Tinnermann
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Simon Sung
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Li Heng Kat
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Rowan D. Young
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
5
|
Feichtner K, Scharf LT, Scherpf T, Mallick B, Boysen N, Gessner VH. Tuning Ruthenium Carbene Complexes for Selective P-H Activation through Metal-Ligand Cooperation. Chemistry 2021; 27:17351-17360. [PMID: 34705314 PMCID: PMC9299219 DOI: 10.1002/chem.202103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/14/2022]
Abstract
The use of iminophosphoryl-tethered ruthenium carbene complexes to activate secondary phosphine P-H bonds is reported. Complexes of type [(p-cymene)-RuC(SO2 Ph)(PPh2 NR)] (with R = SiMe3 or 4-C6 H4 -NO2 ) were found to exhibit different reactivities depending on the electronics of the applied phosphine and the substituent at the iminophosphoryl moiety. Hence, the electron-rich silyl-substituted complex undergoes cyclometallation or shift of the imine moiety after cooperative activation of the P-H bond across the M=C linkage, depending on the electronics of the applied phosphine. Deuteration experiments and computational studies proved that cyclometallation is initiated by the activation process at the M=C bond and triggered by the high electron density at the metal in the phosphido intermediates. Consistently, replacement of the trimethylsilyl (TMS) group by the electron-withdrawing 4-nitrophenyl substituent allowed the selective cooperative P-H activation to form stable activation products.
Collapse
Affiliation(s)
- Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Lennart T. Scharf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Bert Mallick
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Nils Boysen
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
6
|
|
7
|
Karimzadeh‐Younjali M, Wendt OF. α‐ and β‐Eliminations in Transition Metal Complexes: Strategies to Cleave Unstrained C−C and C−F Bonds. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ola F. Wendt
- Centre for Analysis and Synthesis Department of Chemistry Lund University PO Box 124 SE-22100 Lund Sweden
| |
Collapse
|
8
|
Wang Q, Manzano RA, Tinnermann H, Sung S, Leforestier B, Krämer T, Young RD. Access to and Reactivity of Fe
0
, Fe
−I
, Fe
I
, and Fe
II
PC
carbene
P Pincer Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qingyang Wang
- Department of Chemistry National University of Singapore Singapore
| | | | | | - Simon Sung
- Department of Chemistry National University of Singapore Singapore
| | - Baptiste Leforestier
- Department of Chemistry University of Warwick UK
- Department of Chemistry Maynooth University Ireland
| | | | - Rowan D. Young
- Department of Chemistry National University of Singapore Singapore
| |
Collapse
|
9
|
Wiedmaier NR, Schubert H, Mayer HA, Wesemann L. Carbocyclic pincer carbene complexes of ruthenium: syntheses and reversible hydrogenation. Dalton Trans 2021; 50:11814-11820. [PMID: 34369545 DOI: 10.1039/d1dt02266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ruthenium carbene pincer complex 2 was synthesized treating the benzo annulated cycloheptatriene bisphosphine 1 with RuCl3. Addition of three equivalents of hydrogen to the carbocyclic carbene complex 2 was achieved in reaction of 2 with hydrogen at elevated temperatures. Hydrogenated complex 4, exhibiting a rigid chair conformation in solution, was dehydrogenated by heating a toluene solution of complex 4 to reflux for 5-7 d. In reaction with ethylene, complex 4 transfers one equivalent of hydrogen, forming ethane and alkyl complex 5.
Collapse
Affiliation(s)
- Nicholas R Wiedmaier
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
10
|
Wang Q, Manzano RA, Tinnermann H, Sung S, Leforestier B, Krämer T, Young RD. Access to and Reactivity of Fe 0 , Fe -I , Fe I , and Fe II PC carbene P Pincer Complexes. Angew Chem Int Ed Engl 2021; 60:18168-18177. [PMID: 34145715 DOI: 10.1002/anie.202104130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Despite their promising metal-ligand cooperative reactivity, PCcarbene P pincer ligands are rarely reported for first-row transition-metal centres. Using a dehydration methodology, we report access to an Fe0 PCcarbene P pincer complex (1) that proceeds via an isolated α-hydroxylalkyl hydrido complex (3). Reversible carbonyl migration to the carbene position in 1 is found to allow coordination chemistry and E-H bond addition (E=H, B, Cl) across the iron-carbene linkage, representing a unique mechanism for metal-ligand cooperativity. The PCcarbene P pincer ligand is also found to stabilize formal FeII , FeI , and Fe-I oxidation states, as demonstrated with synthesis and characterization of the complexes [11-X][BArF 20 ] (X=Br, I), 12, and K[13]. Compound K[13] is found to be highly reactive, and abstracts hydrogen from a range of aliphatic C-H sources. Computational analysis by DFT suggests that the formal FeI and Fe-I complexes contain significant carbene radical character. The ability of the PCcarbene P ligand scaffold to partake in metal-ligand cooperativity and to support a range of iron oxidation states renders it as potentially useful in many catalytic applications.
Collapse
Affiliation(s)
- Qingyang Wang
- Department of Chemistry, National University of Singapore, Singapore
| | - Richard A Manzano
- Department of Chemistry, National University of Singapore, Singapore
| | | | - Simon Sung
- Department of Chemistry, National University of Singapore, Singapore
| | - Baptiste Leforestier
- Department of Chemistry, University of Warwick, UK.,Department of Chemistry, Maynooth University, Ireland
| | - Tobias Krämer
- Department of Chemistry, Maynooth University, Ireland
| | - Rowan D Young
- Department of Chemistry, National University of Singapore, Singapore
| |
Collapse
|
11
|
Takallou A, Mesgarsaravi N, Beigbaghlou SS, Sakhaee N, Halimehjani AZ. Recent Developments in Dehydrogenative Organic Transformations Catalyzed by Homogeneous Phosphine‐Free Earth‐Abundant Metal Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmad Takallou
- Faculty of Chemistry Kharazmi University 49 Mofateh St. Tehran 15719-14911 Iran
| | | | | | - Nader Sakhaee
- Roger Adams Lab, School of Chemical Sciences University of Illinois Urbana Champaign Illinois 61801 USA
| | | |
Collapse
|
12
|
Safronov SV, Osipova ES, Nelyubina YV, Filippov OA, Barakovskaya IG, Belkova NV, Shubina ES. Steric and Electronic Effect of Cp-Substituents on the Structure of the Ruthenocene Based Pincer Palladium Borohydrides. Molecules 2020; 25:molecules25092236. [PMID: 32397552 PMCID: PMC7248887 DOI: 10.3390/molecules25092236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Ruthenocene-based PCPtBu pincer ligands were used to synthesize novel pincer palladium chloride RcF[PCPtBu]PdCl (2a) and two novel palladium tetrahydroborates RcF[PCPtBu]Pd(BH4) (3a) and Rc*[PCPtBu]Pd(BH4) (3b), where RcF[PCPtBu] = κ3-{2,5-(tBu2PCH2)2-C5H2}Ru(CpF) (CpF = C5Me4CF3), and Rc*[PCPtBu] = κ3-{2,5-(tBu2PCH2)2C5H2}Ru(Cp*) (Cp* = C5Me5). These coordination compounds were characterized by X-ray, NMR and FTIR techniques. Analysis of the X-ray data shows that an increase of the steric bulk of non-metalated cyclopentadienyl ring in 3a and 3b relative to non-substituted Rc[PCPtBu]Pd(BH4) analogue (3c; where Rc[PCPtBu] = κ3-{2,5-(tBu2PCH2)2C5H2}Ru(Cp), Cp = C5H5) pushes palladium atom from the middle plane of the metalated Cp ring in the direction opposite to the ruthenium atom. This displacement increases in the order 3c < 3b < 3a following the order of the Cp-ring steric volume increase. The analysis of both X-ray and IR data suggests that BH4 ligand in both palladium tetrahydroborates 3a and 3b has the mixed coordination mode η1,2. The strength of the BH4 bond with palladium atom increases in the order Rc[PCPtBu]Pd(BH4) < Rc*[PCPtBu]Pd(BH4) < RcF[PCPtBu]Pd(BH4) that appears to be affected by both steric and electronic properties of the ruthenocene moiety.
Collapse
|
13
|
Recent Advances in Rare Earth Complexes Containing N-Heterocyclic Carbenes: Synthesis, Reactivity, and Applications in Polymerization. Catalysts 2020. [DOI: 10.3390/catal10010071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
N-heterocyclic carbenes (NHCs) are ubiquitous ancillary ligands employed in metal-catalyzed homogeneous reactions and polymerization reactions. Of significance is the use of NHCs as the supporting ligand in second- and third-generation Grubbs catalysts for their application in olefin metathesis and ring-opening metathesis polymerization. While the applications of transition metal catalysts ligated with NHCs in polymerization chemistry are well-documented, the use of analogous rare earth (Ln = Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) catalysts in this area remains under-developed, despite the unique role of rare earth elements in regio- and stereo-specific (co)polymerization reactions. By using hetero-atom-tethered chelating NHCs and, more recently, the employment of other structurally related NHCs, NHC-ligated Ln complexes have proven to be promising and fruitful catalysts for selective polymerization reactions. This review summarizes the recent developments in the coordination chemistry of Ln complexes containing NHCs and their catalytic performance in polymerization.
Collapse
|
14
|
Wiedmaier NR, Speth H, Leistikow G, Eichele K, Schubert H, Mayer HA, Wesemann L. Conformation controlled stepwise hydride shuffling from the metal to the ligand backbone. Dalton Trans 2020; 49:7218-7227. [DOI: 10.1039/d0dt01431a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protonation of the benzo annulated cycloheptatriene PCP pincer ruthenium hydrido dicarbonyl complex using the superacid [H(Et2O)2][BArF24] launches a cascade of hydride shifts which lead to the hydrogenation of the ligand backbone.
Collapse
Affiliation(s)
| | - Hansjörg Speth
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | - Georg Leistikow
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | - Klaus Eichele
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | - Hermann A. Mayer
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| | - Lars Wesemann
- Institut für Anorganische Chemie
- Universität Tübingen
- 72076 Tübingen
- Germany
| |
Collapse
|
15
|
Cooperative Reactivity by Pincer-Type Complexes Possessing Secondary Coordination Sphere. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Singh A, Gelman D. Cooperative Reactivity in Carbometalated Pincer-Type Complexes Possessing an Appended Functionality. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04882] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ajeet Singh
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, 91904 Jerusalem, Israel
| | - Dmitri Gelman
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, 91904 Jerusalem, Israel
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St., 6, 117198 Moscow, Russia
| |
Collapse
|
18
|
Takaya J, Hoshino M, Ueki K, Saito N, Iwasawa N. Synthesis, structure, and reactivity of pincer-type iridium complexes having gallyl- and indyl-metalloligands utilizing 2,5-bis(6-phosphino-2-pyridyl)pyrrolide as a new scaffold for metal-metal bonds. Dalton Trans 2019; 48:14606-14610. [PMID: 31549112 DOI: 10.1039/c9dt03443a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis and structural analyses of pincer-type iridium complexes having gallyl- and indyl-metalloligands were achieved utilizing 2,5-bis(6-phosphino-2-pyridyl)pyrrolide as a new scaffold for metal-metal bonds. A BH3-coordinated PInP-Ir dihydride complex was also developed as an equivalent to an iridium dihydride complex, which could be a useful catalyst for synthetic reactions.
Collapse
Affiliation(s)
- Jun Takaya
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan.
| | | | | | | | | |
Collapse
|
19
|
Jie H, Gajecki L, Berg DJ, Oliver AG. A linear chain of carbazolyl-bis(tetrazole) supported copper(II) dimers held together by bridging tribromide anions. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1659964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Huang Jie
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Leah Gajecki
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - David J. Berg
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, U.S.A
| |
Collapse
|
20
|
Brunel P, Lhardy C, Mallet-Ladeira S, Monot J, Martin-Vaca B, Bourissou D. Palladium pincer complexes featuring an unsymmetrical SCN indene-based ligand with a hemilabile pyridine sidearm. Dalton Trans 2019; 48:9801-9806. [PMID: 31080977 DOI: 10.1039/c9dt00898e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new unsymmetrical indene-based pro-ligand featuring thiophosphinoyle and methylpyridine sidearms 2 was prepared. Coordination and cyclometalation in the presence of [PdCl2(PhCN)2] and PS-DIEA afforded three well-defined 2-indenyl SCN pincer complexes 3a-c. The lability of the pyridine moiety has been evidenced upon treatment with triphenylphosphine and 2,6-dimethylphenylisocyanide. In addition, reversible C-Pd bond cleavage has been demonstrated under Brønsted acid/base conditions. The indenediide SCN pincer complex 4 was prepared by deprotonation of 3a in the presence of triphenylphosphine. Preliminary catalytic tests on the cycloisomerization of 4-pentynoic acid have underlined the impact of the pyridine sidearm on the catalytic activity.
Collapse
Affiliation(s)
- Paul Brunel
- CNRS, Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| | | | | | | | | | | |
Collapse
|
21
|
Feichtner KS, Gessner VH. Cooperative bond activation reactions with carbene complexes. Chem Commun (Camb) 2018; 54:6540-6553. [DOI: 10.1039/c8cc02198h] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent advances in the application of carbene complexes in bond activation reactions via metal–ligand cooperation.
Collapse
Affiliation(s)
- Kai-Stephan Feichtner
- Inorganic Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Viktoria H. Gessner
- Inorganic Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|