1
|
Pavlovic L, Carvalho B, Hopmann KH. Revisiting the Mechanism of Asymmetric Ni-Catalyzed Reductive Carbo-Carboxylation with CO 2: The Additives Affect the Product Selectivity. Chemistry 2024; 30:e202401631. [PMID: 38924598 DOI: 10.1002/chem.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The mechanistic details of the asymmetric Ni-catalyzed reductive cyclization/carboxylation of alkenes with CO2 have been revisited using DFT methods. Emphasis was put on the enantioselectivity and the mechanistic role of Lewis acid additives and in situ formed salts. Our results show that oxidative addition of the substrate is rate-limiting, with the formed Ni(II)-aryl intermediate preferring a triplet spin state. After reduction to Ni(I), enantioselective cyclization of the substrate occurs, followed by inner sphere carboxylation. Our proposed mechanism reproduces the experimentally observed enantiomeric excess and identifies critical C-H/O and C-H/N interactions that affect the selectivity. Further, our results highlight the beneficial effect of Lewis acids on CO2 insertion and suggest that in situ formed salts influence if the 5-exo or 6-endo product will be formed.
Collapse
Affiliation(s)
- Ljiljana Pavlovic
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Bjørn Carvalho
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
- Hylleraas Center for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| |
Collapse
|
2
|
Dahy AA, Koga N. Theoretical Study on the Formation of 2-Pyrone Derivatives from the Reaction of Alkynes with Carbon Dioxide in the Presence of Nickel Catalyst. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- AbdelRahman A. Dahy
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
| | - Nobuaki Koga
- Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Ayyappan R, Abdalghani I, Da Costa RC, Owen GR. Recent developments on the transformation of CO 2 utilising ligand cooperation and related strategies. Dalton Trans 2022; 51:11582-11611. [PMID: 35839074 DOI: 10.1039/d2dt01609e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A portfolio of value-added chemicals, fuels and building block compounds can be envisioned from CO2 on an industrial scale. The high kinetic and thermodynamic stabilities of CO2, however, present a significant barrier to its utilisation as a C1 source. In this context, metal-ligand cooperation methodologies have emerged as one of the most dominant strategies for the transformation of the CO2 molecule over the last decade or so. This review focuses on the advancements in CO2 transformation using these cooperative methodologies. Different and well-studied ligand cooperation methodologies, such as dearomatisation-aromatisation type cooperation, bimetallic cooperation (M⋯M'; M' = main group or transition metal) and other related strategies are also discussed. Furthermore, the cooperative bond activations are subdivided based on the number of atoms connecting the reactive centre in the ligand framework (spacer/linker length) and the transition metal. Several similarities across these seemingly distinct cooperative methodologies are emphasised. Finally, this review brings out the challenges ahead in developing catalytic systems from these CO2 transformations.
Collapse
Affiliation(s)
- Ramaraj Ayyappan
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| | - Issam Abdalghani
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| | | | - Gareth R Owen
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| |
Collapse
|
4
|
Knowlden SW, Popp BV. Regioselective Boracarboxylation of α-Substituted Vinyl Arenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven W. Knowlden
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Brian V. Popp
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| |
Collapse
|
5
|
Hölscher M, Kemper G, Jenthra S, Bolm C, Leitner W. Factors Governing the Catalytic Insertion of CO
2
into Arenes – A DFT Case Study for Pd and Pt Phosphane Sulfonamido Complexes. Chemistry 2022; 28:e202104375. [PMID: 35188311 PMCID: PMC9310616 DOI: 10.1002/chem.202104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/06/2022]
Abstract
The potential of Pd/Pt complexes for catalytic carboxylation of arenes with CO2 is investigated by means of computational chemistry. Recently we reported that the bis[(2‐methoxyphenyl)phosphino]‐benzenesulfonamido palladium complex 1 inserts CO2 reversibly in its Pd−C(aryl) bond generating carboxylato complex 2. In the present work we study how geometric and electronic factors of various ligands and substrates influence the overall activation barrier (energy span, ES) of a potential catalytic cycle for arene carboxylation comprising this elementary step. The tendency of the key intermediates to dimerize and thus deactivating the potential catalysts is examined as well as the role of the base, which inevitably is needed to stabilize the reaction product. We show that Pd and Pt complexes I(Pd)‐L16‐S1 and I(Pt)‐L16‐S1 do not dimerize, enable the computation of complete catalytic cycles, and show interestingly low ES values of 26.8 and 24.5 kcal/mol, respectively.
Collapse
Affiliation(s)
- Markus Hölscher
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Gregor Kemper
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Sangeth Jenthra
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Carsten Bolm
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim a. d. Ruhr Germany
| |
Collapse
|
6
|
Deziel AP, Espinosa MR, Pavlovic L, Charboneau DJ, Hazari N, Hopmann KH, Mercado BQ. Ligand and solvent effects on CO2 insertion into group 10 metal alkyl bonds. Chem Sci 2022; 13:2391-2404. [PMID: 35342547 PMCID: PMC8867079 DOI: 10.1039/d1sc06346d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The insertion of carbon dioxide into metal element σ-bonds is an important elementary step in many catalytic reactions for carbon dioxide valorization. Here, the insertion of carbon dioxide into a family of group 10 alkyl complexes of the type (RPBP)M(CH3) (RPBP = B(NCH2PR2)2C6H4−; R = Cy or tBu; M = Ni or Pd) to generate κ1-acetate complexes of the form (RPBP)M{OC(O)CH3} is investigated. This involved the preparation and characterization of a number of new complexes supported by the unusual RPBP ligand, which features a central boryl donor that exerts a strong trans-influence, and the identification of a new decomposition pathway that results in C–B bond formation. In contrast to other group 10 methyl complexes supported by pincer ligands, carbon dioxide insertion into (RPBP)M(CH3) is facile and occurs at room temperature because of the high trans-influence of the boryl donor. Given the mild conditions for carbon dioxide insertion, we perform a rare kinetic study on carbon dioxide insertion into a late-transition metal alkyl species using (tBuPBP)Pd(CH3). These studies demonstrate that the Dimroth–Reichardt parameter for a solvent correlates with the rate of carbon dioxide insertion and that Lewis acids do not promote insertion. DFT calculations indicate that insertion into (tBuPBP)M(CH3) (M = Ni or Pd) proceeds via an SE2 mechanism and we compare the reaction pathway for carbon dioxide insertion into group 10 methyl complexes with insertion into group 10 hydrides. Overall, this work provides fundamental insight that will be valuable for the development of improved and new catalysts for carbon dioxide utilization. The kinetics of carbon dioxide insertion into a pincer-supported palladium methyl complex are studied. The complex inserts carbon dioxide at room temperature, and we explore both solvent and Lewis acid effects on carbon dioxide insertion.![]()
Collapse
Affiliation(s)
- Anthony P. Deziel
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Matthew R. Espinosa
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Ljiljana Pavlovic
- Department of Chemistry, UiT The Arctic University of Norway, N-9307 Tromsø, Norway
| | - David J. Charboneau
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Kathrin H. Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, N-9307 Tromsø, Norway
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| |
Collapse
|
7
|
Shao Y, Nie W, Yao C, Ye L, Yu H. DFT insights into the Ni-catalyzed regioselective hydrocarboxylation of unsaturated alkenes with CO 2. Dalton Trans 2021; 50:15084-15093. [PMID: 34610067 DOI: 10.1039/d1dt02486h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nickel-catalyzed hydrocarboxylation of alkenes using carbon dioxide has recently become an appealing method to prepare functionalized carboxylic acids with high efficiency and regioselectivity. Herein, density functional theory (DFT) calculations were conducted on the Ni-catalyzed hydrocarboxylation of aryl-/alkyl-substituted alkenes with CO2. The α- and β-carboxylation of aromatic and aliphatic olefins originate from distinct catalytic cycles: H-transfer-carboxylation and carboxylation-H-transfer pathways. The typical hydrometallation-carboxylation mechanism is unlikely because water/carbonic acid (H-resource) are inferior hydride donors.
Collapse
Affiliation(s)
- Yifan Shao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Wan Nie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chengyu Yao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Lina Ye
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China. .,Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
8
|
Davies J, Lyonnet JR, Zimin DP, Martin R. The road to industrialization of fine chemical carboxylation reactions. Chem 2021. [DOI: 10.1016/j.chempr.2021.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Affiliation(s)
- Mijung Lee
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-dong, Yuseong, Daejeon 34113, Republic of Korea
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Young Kyu Hwang
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-dong, Yuseong, Daejeon 34113, Republic of Korea
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
10
|
Cerveri A, Giovanelli R, Sella D, Pedrazzani R, Monari M, Nieto Faza O, López CS, Bandini M. Enantioselective CO 2 Fixation Via a Heck-Coupling/Carboxylation Cascade Catalyzed by Nickel. Chemistry 2021; 27:7657-7662. [PMID: 33829576 DOI: 10.1002/chem.202101082] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/14/2022]
Abstract
A novel asymmetric nickel-based procedure has been developed in which CO2 fixation is achieved as a second step of a truncated Heck coupling. For this, a new chiral ligand has been prepared and shown to achieve enantiomeric excesses up to 99 %. The overall process efficiently furnishes chiral 2,3-dihydrobenzofuran-3-ylacetic acids, an important class of bioactive products, from easy to prepare starting materials. A combined experimental and computational effort revealed the key steps of the catalytic cycle and suggested the unexpected participation of Ni(I) species in the coupling event.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Riccardo Giovanelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Davide Sella
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Riccardo Pedrazzani
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Olalla Nieto Faza
- Departamento de Química Orgánica, Universidade de Vigo, As Lagoas (Marcosende), 36310, Vigo, Spain
| | - Carlos Silva López
- Departamento de Química Orgánica, Universidade de Vigo, As Lagoas (Marcosende), 36310, Vigo, Spain
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.,Consorzio CINMPIS, via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
11
|
Xu Y, Shao Y, Ahlquist MSG, Yu H, Fu Y. Pivotal Electron Delivery Effect of the Cobalt Catalyst in Photocarboxylation of Alkynes: A DFT Calculation. J Org Chem 2021; 86:1540-1548. [PMID: 33353304 DOI: 10.1021/acs.joc.0c02393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photocarboxylation of alkyne with carbon dioxide represents a highly attractive strategy to prepare functionalized alkenes with high efficiency and atomic economy. However, the reaction mechanism, especially the sequence of elementary steps (leading to different reaction pathways), reaction modes of the H-transfer step and carboxylation step, spin and charge states of the cobalt catalyst, etc., is still an open question. Herein, density functional theory calculations are carried out to probe the mechanism of the Ir/Co-catalyzed photocarboxylation of alkynes. The overall catalytic cycle mainly consists of four steps: reductive-quenching of the Ir catalyst, hydrogen transfer (rate-determining step), outer sphere carboxylation, and the final catalyst regeneration step. Importantly, the cobalt catalyst can facilitate the H-transfer by an uncommon hydride coupled electron transfer (HCET) process. The pivotal electron delivery effect of the Co center enables a facile H-transfer to the α-C(alkyne) of the aryl group, resulting in the high regioselectivity for β-carboxylation.
Collapse
Affiliation(s)
- Yuantai Xu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China.,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yifan Shao
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Haizhu Yu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
12
|
Baughman NN, Akhmedov NG, Petersen JL, Popp BV. Experimental and Computational Analysis of CO2 Addition Reactions Relevant to Copper-Catalyzed Boracarboxylation of Vinyl Arenes: Evidence for a Phosphine-Promoted Mechanism. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Notashia N. Baughman
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Brian V. Popp
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| |
Collapse
|
13
|
Somerville RJ, Odena C, Obst MF, Hazari N, Hopmann KH, Martin R. Ni(I)-Alkyl Complexes Bearing Phenanthroline Ligands: Experimental Evidence for CO 2 Insertion at Ni(I) Centers. J Am Chem Soc 2020; 142:10936-10941. [PMID: 32520556 PMCID: PMC7351122 DOI: 10.1021/jacs.0c04695] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the catalytic carboxylation of unactivated alkyl electrophiles has reached remarkable levels of sophistication, the intermediacy of (phenanthroline)Ni(I)-alkyl species-complexes proposed in numerous Ni-catalyzed reductive cross-coupling reactions-has been subject to speculation. Herein we report the synthesis of such elusive (phenanthroline)Ni(I) species and their reactivity with CO2, allowing us to address a long-standing question related to Ni-catalyzed carboxylation reactions.
Collapse
Affiliation(s)
- Rosie J Somerville
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, c/Marcel·lı́ Domingo 1, 43007 Tarragona, Spain
| | - Carlota Odena
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, c/Marcel·lı́ Domingo 1, 43007 Tarragona, Spain
| | - Marc F Obst
- Hylleraas Center for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9307 Tromsø, Norway
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Kathrin H Hopmann
- Hylleraas Center for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9307 Tromsø, Norway
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA, Passeig Lluı́s Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
14
|
Friederich P, Dos Passos Gomes G, De Bin R, Aspuru-Guzik A, Balcells D. Machine learning dihydrogen activation in the chemical space surrounding Vaska's complex. Chem Sci 2020; 11:4584-4601. [PMID: 33224459 PMCID: PMC7659707 DOI: 10.1039/d0sc00445f] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Homogeneous catalysis using transition metal complexes is ubiquitously used for organic synthesis, as well as technologically relevant in applications such as water splitting and CO2 reduction. The key steps underlying homogeneous catalysis require a specific combination of electronic and steric effects from the ligands bound to the metal center. Finding the optimal combination of ligands is a challenging task due to the exceedingly large number of possibilities and the non-trivial ligand-ligand interactions. The classic example of Vaska's complex, trans-[Ir(PPh3)2(CO)(Cl)], illustrates this scenario. The ligands of this species activate iridium for the oxidative addition of hydrogen, yielding the dihydride cis-[Ir(H)2(PPh3)2(CO)(Cl)] complex. Despite the simplicity of this system, thousands of derivatives can be formulated for the activation of H2, with a limited number of ligands belonging to the same general categories found in the original complex. In this work, we show how DFT and machine learning (ML) methods can be combined to enable the prediction of reactivity within large chemical spaces containing thousands of complexes. In a space of 2574 species derived from Vaska's complex, data from DFT calculations are used to train and test ML models that predict the H2-activation barrier. In contrast to experiments and calculations requiring several days to be completed, the ML models were trained and used on a laptop on a time-scale of minutes. As a first approach, we combined Bayesian-optimized artificial neural networks (ANN) with features derived from autocorrelation and deltametric functions. The resulting ANNs achieved high accuracies, with mean absolute errors (MAE) between 1 and 2 kcal mol-1, depending on the size of the training set. By using a Gaussian process (GP) model trained with a set of selected features, including fingerprints, accuracy was further enhanced. Remarkably, this GP model minimized the MAE below 1 kcal mol-1, by using only 20% or less of the data available for training. The gradient boosting (GB) method was also used to assess the relevance of the features, which was used for both feature selection and model interpretation purposes. Features accounting for chemical composition, atom size and electronegativity were found to be the most determinant in the predictions. Further, the ligand fragments with the strongest influence on the H2-activation barrier were identified.
Collapse
Affiliation(s)
- Pascal Friederich
- Chemical Physics Theory Group , Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
- Institute of Nanotechnology , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
- Department of Computer Science , University of Toronto , 214 College St. , Toronto , Ontario M5T 3A1 , Canada
| | - Gabriel Dos Passos Gomes
- Chemical Physics Theory Group , Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
- Department of Computer Science , University of Toronto , 214 College St. , Toronto , Ontario M5T 3A1 , Canada
| | - Riccardo De Bin
- Department of Mathematics , University of Oslo , P. O. Box 1053, Blindern , N-0316 , Oslo , Norway
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group , Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
- Department of Computer Science , University of Toronto , 214 College St. , Toronto , Ontario M5T 3A1 , Canada
- Vector Institute for Artificial Intelligence , 661 University Ave. Suite 710 , Toronto , Ontario M5G 1M1 , Canada
- Lebovic Fellow , Canadian Institute for Advanced Research (CIFAR) , 661 University Ave , Toronto , ON M5G 1M1 , Canada
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , University of Oslo , P. O. Box 1033, Blindern , N-0315 , Oslo , Norway .
| |
Collapse
|
15
|
Gevorgyan A, Hopmann KH, Bayer A. Exploration of New Biomass-Derived Solvents: Application to Carboxylation Reactions. CHEMSUSCHEM 2020; 13:2080-2088. [PMID: 31909560 PMCID: PMC7217053 DOI: 10.1002/cssc.201903224] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/05/2020] [Indexed: 05/12/2023]
Abstract
A range of hitherto unexplored biomass-derived chemicals have been evaluated as new sustainable solvents for a large variety of CO2 -based carboxylation reactions. Known biomass-derived solvents (biosolvents) are also included in the study and the results are compared with commonly used solvents for the reactions. Biosolvents can be efficiently applied in a variety of carboxylation reactions, such as Cu-catalyzed carboxylation of organoboranes and organoboronates, metal-catalyzed hydrocarboxylation, borocarboxylation, and other related reactions. For many of these reactions, the use of biosolvents provides comparable or better yields than the commonly used solvents. The best biosolvents identified are the so far unexplored candidates isosorbide dimethyl ether, acetaldehyde diethyl acetal, rose oxide, and eucalyptol, alongside the known biosolvent 2-methyltetrahydrofuran. This strategy was used for the synthesis of the commercial drugs Fenoprofen and Flurbiprofen.
Collapse
Affiliation(s)
- Ashot Gevorgyan
- Department of ChemistryUiT The Arctic University of Norway9037TromsøNorway
| | - Kathrin H. Hopmann
- Hylleraas Centre for Quantum Molecular SciencesDepartment of ChemistryUiT The Arctic University of Norway9037TromsøNorway
| | - Annette Bayer
- Department of ChemistryUiT The Arctic University of Norway9037TromsøNorway
| |
Collapse
|
16
|
García-López D, Pavlovic L, Hopmann KH. To Bind or Not to Bind: Mechanistic Insights into C–CO2 Bond Formation with Late Transition Metals. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Diego García-López
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ljiljana Pavlovic
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kathrin H. Hopmann
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
17
|
Yanagi T, Somerville RJ, Nogi K, Martin R, Yorimitsu H. Ni-Catalyzed Carboxylation of C(sp2)–S Bonds with CO2: Evidence for the Multifaceted Role of Zn. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05141] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rosie J. Somerville
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Affiliation(s)
- Hong-Ru Li
- College of Pharmacy, Nankai University, Tianjin 300353, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Gevorgyan A, Obst MF, Guttormsen Y, Maseras F, Hopmann KH, Bayer A. Caesium fluoride-mediated hydrocarboxylation of alkenes and allenes: scope and mechanistic insights. Chem Sci 2019; 10:10072-10078. [PMID: 32055361 PMCID: PMC6991174 DOI: 10.1039/c9sc02467k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
A caesium fluoride-mediated hydrocarboxylation of olefins is disclosed that does not rely on precious transition metal catalysts and ligands. The reaction occurs at atmospheric pressures of CO2 in the presence of 9-BBN as a stoichiometric reductant. Stilbenes, β-substituted styrenes and allenes could be carboxylated in good yields. The developed methodology can be used for preparation of commercial drugs as well as for gram scale hydrocarboxylation. Computational studies indicate that the reaction occurs via formation of an organocaesium intermediate.
Collapse
Affiliation(s)
- Ashot Gevorgyan
- Department of Chemistry , UiT The Arctic University of Norway , Norway .
| | - Marc F Obst
- Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , UiT The Arctic University of Norway , Norway .
| | - Yngve Guttormsen
- Department of Chemistry , UiT The Arctic University of Norway , Norway .
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ) , Spain
| | - Kathrin H Hopmann
- Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , UiT The Arctic University of Norway , Norway .
| | - Annette Bayer
- Department of Chemistry , UiT The Arctic University of Norway , Norway .
| |
Collapse
|
20
|
Diccianni JB, Hu CT, Diao T. Insertion of CO
2
Mediated by a (Xantphos)Ni
I
–Alkyl Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justin B. Diccianni
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| | - Chunhua T. Hu
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| | - Tianning Diao
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
21
|
Diccianni JB, Hu CT, Diao T. Insertion of CO 2 Mediated by a (Xantphos)Ni I -Alkyl Species. Angew Chem Int Ed Engl 2019; 58:13865-13868. [PMID: 31309669 DOI: 10.1002/anie.201906005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/21/2019] [Indexed: 12/14/2022]
Abstract
The incorporation of CO2 into organometallic and organic molecules represents a sustainable way to prepare carboxylates. The mechanism of reductive carboxylation of alkyl halides has been proposed to proceed through the reduction of NiII to NiI by either Zn or Mn, followed by CO2 insertion into NiI -alkyl species. No experimental evidence has been previously established to support the two proposed steps. Demonstrated herein is that the direct reduction of (tBu-Xantphos)NiII Br2 by Zn affords NiI species. (tBu-Xantphos)NiI -Me and (tBu-Xantphos)NiI -Et complexes undergo fast insertion of CO2 at 22 °C. The substantially faster rate, relative to that of NiII complexes, serves as the long-sought-after experimental support for the proposed mechanisms of Ni-catalyzed carboxylation reactions.
Collapse
Affiliation(s)
- Justin B Diccianni
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Chunhua T Hu
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Tianning Diao
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
22
|
Affiliation(s)
- Kathrin H. Hopmann
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
23
|
Lv X, Zhang X, Sa R, Huang F, Lu G. Computational exploration of substrate and ligand effects in nickel-catalyzed C–Si bond carboxylation with CO 2. Org Chem Front 2019. [DOI: 10.1039/c9qo00854c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ring strain of substrates and steric hindrance of NHC ligands are the key factors affecting the reactivity of CO2 insertion into sila-nickelacycles.
Collapse
Affiliation(s)
- Xiangying Lv
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Xiaotian Zhang
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Rongjian Sa
- Institute of Oceanography
- Ocean college
- Minjiang University
- Fuzhou
- China
| | - Fang Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan
- China
| | - Gang Lu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
24
|
Pavlovic L, Vaitla J, Bayer A, Hopmann KH. Rhodium-Catalyzed Hydrocarboxylation: Mechanistic Analysis Reveals Unusual Transition State for Carbon–Carbon Bond Formation. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ljiljana Pavlovic
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Janakiram Vaitla
- Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kathrin H. Hopmann
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|