Babón JC, Esteruelas MA, López AM, Oñate E. Hydration of Aliphatic Nitriles Catalyzed by an Osmium Polyhydride: Evidence for an Alternative Mechanism.
Inorg Chem 2021;
60:7284-7296. [PMID:
33904305 PMCID:
PMC8892838 DOI:
10.1021/acs.inorgchem.1c00380]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The hexahydride OsH6(PiPr3)2 competently catalyzes the hydration
of aliphatic nitriles
to amides. The main metal species under the catalytic conditions are
the trihydride osmium(IV) amidate derivatives OsH3{κ2-N,O-[HNC(O)R]}(PiPr3)2, which have been isolated and fully characterized
for R = iPr and tBu. The rate of hydration is
proportional to the concentrations of the catalyst precursor, nitrile,
and water. When these experimental findings and density functional
theory calculations are combined, the mechanism of catalysis has been
established. Complexes OsH3{κ2-N,O-[HNC(O)R]}(PiPr3)2 dissociate the carbonyl group of the chelate to afford
κ1-N-amidate derivatives, which
coordinate the nitrile. The subsequent attack of an external water
molecule to both the C(sp) atom of the nitrile and the N atom of the
amidate affords the amide and regenerates the κ1-N-amidate catalysts. The attack is concerted and takes place
through a cyclic six-membered transition state, which involves Cnitrile···O–H···Namidate interactions. Before the attack, the free carbonyl
group of the κ1-N-amidate ligand
fixes the water molecule in the vicinity of the C(sp) atom of the
nitrile.
The hexahydride complex OsH6(PiPr3)2 competently catalyzes the
hydration of aliphatic
nitriles to amides. Isolation of the main metal species under the
catalytic conditions, kinetics of hydration, and density functional
theory calculations support an alternative mechanism to those previously
reported.
Collapse