Burmistrova DA, Pomortseva NP, Voronina YK, Kiskin MA, Dolgushin FM, Berberova NT, Eremenko IL, Poddel’sky AI, Smolyaninov IV. Synthesis, Structure, Electrochemical Properties, and Antioxidant Activity of Organogermanium(IV) Catecholate Complexes.
Int J Mol Sci 2024;
25:9011. [PMID:
39201696 PMCID:
PMC11354772 DOI:
10.3390/ijms25169011]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
A series of novel organogermanium(IV) catecholates 1-9 of the general formula R'2Ge(Cat), where R' = Ph, Et, have been synthesized. Compounds were characterized by 1H, 13C NMR, IR spectroscopy, and elemental analysis. The molecular structures of 1-3, 6, and 8 in crystal state were established using single-crystal X-ray analysis. The complexes are tetracoordinate germanium(IV) compounds containing a dioxolene ligand in a dianion (catecholato) form. Electrochemical transformations of target germanium(IV) complexes have been studied by cyclic voltammetry. The electro-oxidation mechanism of complexes 1-5, 7, and 10 (the related complex Ph2Ge(3,5-Cat) where 3,5-Cat is 3,5-di-tert-butylcatecholate) involves the consecutive formation of mono- and dicationic derivatives containing the oxidized forms of redox-active ligands. The stability of the generated monocations depends both on the hydrocarbon groups at the germanium atom and on the substituents in the catecholate ring. Compounds 6, 8, and 9 are oxidized irreversibly under the electrochemical conditions with the formation of unstable complexes. The radical scavenging activity and antioxidant properties of new complexes were estimated in the reaction with DPPH radical, ABTS radical cation, and CUPRACTEAC assay. It has been found that compounds 8 and 9 with benzothiazole or phenol fragments are more active in DPPH test. The presence of electron-rich moieties in the catecholate ligand makes complexes 5 and 7-9 more reactive to ABTS radical cation. The value of CUPRACTEAC for organogermanium(IV) catecholates varies from 0.23 to 1.45. The effect of compounds 1-9 in the process of lipid peroxidation of rat liver (Wistar) homogenate was determined in vitro. It was found that most compounds are characterized by pronounced antioxidant activity. A feature of complexes 1, 3, and 5-9 is the intensification of the antioxidant action with the incubation time. In the presence of additives of complexes 3, 5, 6, and 8, an induction period was observed during the process of lipid peroxidation.
Collapse