1
|
Zhong Y, Zhang B, Somoza R, Caplan AI, Welter JF, Baskaran H. Amino Acid Uptake Limitations during Human Mesenchymal Stem Cell-Based Chondrogenesis. Tissue Eng Part A 2025; 31:1-12. [PMID: 38517098 PMCID: PMC11807877 DOI: 10.1089/ten.tea.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
A mino acids are the essential building blocks for collagen and proteoglycan, which are the main constituents for cartilage extracellular matrix (ECM). Synthesis of ECM proteins requires the uptake of various essential/nonessential amino acids. Analyzing amino acid metabolism during chondrogenesis can help to relate tissue quality to amino acid metabolism under different conditions. In our study, we studied amino acid uptake/secretion using human mesenchymal stem cell (hMSC)-based aggregate chondrogenesis in a serum-free induction medium with a defined chemical formulation. The initial glucose level and medium-change frequency were varied. Our results showed that essential amino acid uptake increased with time during hMSCs chondrogenesis for all initial glucose levels and medium-change frequencies. Essential amino acid uptake rates were initial glucose-level independent. The DNA-normalized glycosaminoglycans and hydroxyproline content of chondrogenic aggregates correlated with cumulative uptake of leucine, valine, and tryptophan regardless of initial glucose levels and medium-change frequencies. Collectively, our results show that amino acid uptake rates during in vitro chondrogenesis were insufficient to produce a tissue with an ECM content similar to that of human neonatal cartilage or adult cartilage. Furthermore, this deficiency was likely related to the downregulation of some key amino acid transporters in the cells. Such deficiency could be partially improved by increasing the amino acid availability in the chondrogenic medium by changing culture conditions.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Modular Manufacturing of Structural Tissues (CMOST), Case Western Reserve University, Cleveland, Ohio, USA
| | - Bo Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Modular Manufacturing of Structural Tissues (CMOST), Case Western Reserve University, Cleveland, Ohio, USA
| | - Rodrigo Somoza
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Modular Manufacturing of Structural Tissues (CMOST), Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I. Caplan
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Modular Manufacturing of Structural Tissues (CMOST), Case Western Reserve University, Cleveland, Ohio, USA
| | - Jean F. Welter
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Modular Manufacturing of Structural Tissues (CMOST), Case Western Reserve University, Cleveland, Ohio, USA
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Modular Manufacturing of Structural Tissues (CMOST), Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Bahari Golamkaboudi A, Vojoudi E, Babaeian Roshani K, Porouhan P, Houshangi D, Barabadi Z. Current Non-Surgical Curative Regenerative Therapies for Knee Osteoarthritis. Stem Cell Rev Rep 2024; 20:2104-2123. [PMID: 39145857 DOI: 10.1007/s12015-024-10768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/16/2024]
Abstract
Osteoarthritis (OA) is a prevalent musculoskeletal disease affecting middle-aged and elderly individuals, with knee pain as a common complaint. Standard therapy approaches generally attempt to alleviate pain and inflammation, using various pharmacological and non-pharmacological options. However, the efficacy of these therapies in long-term tissue repair remains debated. As an alternative, regenerative medicine offers a promising strategy, with decreased adverse event rates and increasing evidence of safety and efficacy. This review will outline current advances in regenerative medicine for knee OA, emphasizing outpatient clinic-based therapies that use orthobiological and non-biological products. Different strategies based on orthobiologics are discussed as potential regenerative options for the management of knee OA. Cell-free therapies including platelet-rich plasma, autologous anti-inflammatories, exosomes, human placenta extract, and mitochondrial transplantation are discussed, focusing on their potential for cartilage regeneration. Additionally, cell-based therapies with regenerative properties including bone marrow aspirate concentrate, adipose stromal vascular fraction, microfat, nanofat, stem cell therapy, and genetically modified cells as part of orthobiologics, are being investigated. Also, this study is looking into non-biological approaches such as using gold-induced cytokines, extracorporeal shockwave therapy, and ozone therapy. The mechanisms of action, effectiveness, and clinical applications of each therapy are being explored, providing insights into their role in the management of knee OA.
Collapse
Affiliation(s)
- Ali Bahari Golamkaboudi
- School of Medicine, Regenerative Medicine, Organ Procurement and Transplantation Multi- Disciplinary Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- School of Medicine, Regenerative Medicine, Organ Procurement and Transplantation Multi- Disciplinary Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pejman Porouhan
- Department of Radiation Oncology, Vasee Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - David Houshangi
- Department of Biomedical Engineering, University of Houston, Houston, United States
| | - Zahra Barabadi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Vadhan A, Gupta T, Hsu WL. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int J Mol Sci 2024; 25:9149. [PMID: 39273098 PMCID: PMC11395657 DOI: 10.3390/ijms25179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.
Collapse
Affiliation(s)
- Anupama Vadhan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan;
| | - Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
4
|
Nadeem G, Theerakittayakorn K, Somredngan S, Thi Nguyen H, Boonthai T, Samruan W, Tangkanjanavelukul P, Parnpai R. Induction of Human Wharton's Jelly of Umbilical Cord Derived Mesenchymal Stem Cells to Be Chondrocytes and Transplantation in Guinea Pig Model with Spontaneous Osteoarthritis. Int J Mol Sci 2024; 25:5673. [PMID: 38891860 PMCID: PMC11171648 DOI: 10.3390/ijms25115673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease commonly found in elderly people and obese patients. Currently, OA treatments are determined based on their condition severity and a medical professional's advice. The aim of this study was to differentiate human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) into chondrocytes for transplantation in OA-suffering guinea pigs. hWJ-MSCs were isolated using the explant culture method, and then, their proliferation, phenotypes, and differentiation ability were evaluated. Subsequently, hWJ-MSCs-derived chondrocytes were induced and characterized based on immunofluorescent staining, qPCR, and immunoblotting techniques. Then, early-OA-suffering guinea pigs were injected with hyaluronic acid (HA) containing either MSCs or 14-day-old hWJ-MSCs-derived chondrocytes. Results showed that hWJ-MSCs-derived chondrocytes expressed specific markers of chondrocytes including Aggrecan, type II collagen, and type X collagen proteins and β-catenin, Sox9, Runx2, Col2a1, Col10a1, and ACAN gene expression markers. Administration of HA plus hWJ-MSCs-derived chondrocytes (HA-CHON) produced a better recovery rate of degenerative cartilages than HA plus MSCs or only HA. Histological assessments demonstrated no significant difference in Mankin's scores of recovered cartilages between HA-CHON-treated guinea pigs and normal articular cartilage guinea pigs. Transplantation of hWJ-MSCs-derived chondrocytes was more effective than undifferentiated hWJ-MSCs or hyaluronic acid for OA treatment in guinea pigs. This study provides a promising treatment to be used in early OA patients to promote recovery and prevent disease progression to severe osteoarthritis.
Collapse
Affiliation(s)
- Gulrez Nadeem
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (G.N.); (K.T.); (S.S.); (H.T.N.); (T.B.); (W.S.)
| | - Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (G.N.); (K.T.); (S.S.); (H.T.N.); (T.B.); (W.S.)
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (G.N.); (K.T.); (S.S.); (H.T.N.); (T.B.); (W.S.)
| | - Hong Thi Nguyen
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (G.N.); (K.T.); (S.S.); (H.T.N.); (T.B.); (W.S.)
| | - Traimat Boonthai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (G.N.); (K.T.); (S.S.); (H.T.N.); (T.B.); (W.S.)
| | - Worawalan Samruan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (G.N.); (K.T.); (S.S.); (H.T.N.); (T.B.); (W.S.)
| | - Ponthep Tangkanjanavelukul
- School of Orthopedic Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (G.N.); (K.T.); (S.S.); (H.T.N.); (T.B.); (W.S.)
| |
Collapse
|
5
|
Lin F, Zhang X, Cui C. Mesenchymal stem cells and platelet rich plasma therapy for knee osteoarthritis: an umbrella review of systematic reviews with meta-analysis. Ann Saudi Med 2024; 44:195-211. [PMID: 38853480 PMCID: PMC11268471 DOI: 10.5144/0256-4947.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
The effect of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) therapy on knee osteoarthritis (KOA) has been contradictory in previous meta-analyses. This umbrella review on published meta-analyses aimed to investigate the effect of MSCs and PRP on KOA. We systematically searched Scopus, PubMed, and Cochrane databases to include related meta-analyses. The outcome included studies reporting visual analog scale scores, the Western Ontario and McMaster Universities Osteoarthritis Index, Whole-Organ Magnetic Resonance Imaging Scores, International Knee Documentation Committee scores, and the Knee injury and Osteoarthritis Outcome Score. A total of 28 meta-analyses with 32 763 participants. MSCs and PRP therapies were significantly associated with an improvement in KOA scores. This umbrella meta-analysis supports the beneficial health effects of MSCs and PRP in KOA.
Collapse
Affiliation(s)
- Feng Lin
- From the Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinguang Zhang
- From the Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cunbao Cui
- From the Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Tjandra KC, Novriansyah R, Sudiasa INS, Ar A, Rahmawati NAD, Dilogo IH. Modified Mesenchymal stem cell, platelet-rich plasma, and hyaluronic acid intervention in early stage osteoarthritis: A systematic review, meta-analysis, and meta-regression of arthroscopic-guided intra-articular approaches. PLoS One 2024; 19:e0295876. [PMID: 38457479 PMCID: PMC10923406 DOI: 10.1371/journal.pone.0295876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) hold promise for osteoarthritis (OA) treatment, potentially enhanced by combining them with platelet-rich plasma (PRP) and hyaluronic acid (HA). This study aimed to assess the synergy of MSCs, PRP, and varying HA doses, and determine optimal MSC sources to treat early-stage OA in the perspective of Lysholm score, VAS Score, KSS score, and WOMAC score. METHOD Original articles from 2013 to 2023 were screened from four databases, focusing on clinical trials and randomized controlled trials. The Risk of Bias in Non-randomized Studies-of Interventions (ROB-2) tool evaluated bias, and a PICOS criteria table guided result construction. Revman 5.4 analyzed outcomes such as Lysholm score, VAS score, KSS, WOMAC score, cartilage volume, and defect size using MRI. This systematic review adhered to PRISMA guidelines. RESULT Nine studies met the final inclusion criteria. Meta-analysis revealed a significant improvement in Lysholm score (MD: 17.89; 95% CI: 16.01, 19.77; I2 = 0%, P = 0.56), a notable reduction in VAS score (MD: -2.62; 95% CI: -2.83, -2.41; I2 = 99%, P < 0.00001), elevated KSS (MD: 29.59; 95% CI: 27.66, 31.52; I2 = 95%, P < 0.0001), and reduced WOMAC score (MD: -12.38; 95% CI: -13.75, -11.01; I2 = 99%, P < 0.0001). CONCLUSIONS Arthroscopic guided high-dose subchondral application of primary cultured synovial MSCs in popliteal PRP media with HA effectively regenerates cartilage defects and improves clinical outcomes in early-stage osteoarthritis. Clarification of MSC sources and quantities enhances the understanding of this promising treatment modality.
Collapse
Affiliation(s)
- Kevin Christian Tjandra
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Robin Novriansyah
- Kariadi General Hospital, Semarang, Indonesia
- Department of Surgery, Faculty of Medicine, Universitas Diopnegoro, Semarang, Indonesia
| | - I. Nyoman Sebastian Sudiasa
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Ardiyana Ar
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Nurul Azizah Dian Rahmawati
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Cluster Indonesian Medical Education and Research Institute (IMERI) Universitas Indonesia, Jakarta, Indonesia
- Department of Orthopaedic and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
7
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
8
|
Liu W, Liu A, Li X, Sun Z, Sun Z, Liu Y, Wang G, Huang D, Xiong H, Yu S, Zhang X, Fan C. Dual-engineered cartilage-targeting extracellular vesicles derived from mesenchymal stem cells enhance osteoarthritis treatment via miR-223/NLRP3/pyroptosis axis: Toward a precision therapy. Bioact Mater 2023; 30:169-183. [PMID: 37593145 PMCID: PMC10429745 DOI: 10.1016/j.bioactmat.2023.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 08/19/2023] Open
Abstract
Osteoarthritis (OA) is the most common disabling joint disease with no effective disease modifying drugs. Extracellular vesicles released by several types of mesenchymal stem cells could promote cartilage repair and ameliorate OA pathology in animal models, representing a novel therapeutic strategy. In this study, we demonstrated that extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hUC-EVs) could maintain chondrocyte homeostasis and alleviate OA, and further revealed a novel molecular mechanism of this therapeutic effect. miR-223, which could directly bind with the 3'UTR of NLRP3 mRNA, was found to be a key miRNA for hUC-EVs to exert beneficial effects on inflammation inhibiting and cartilage protecting. For enhancing the effect on mitigating osteoarthritis, exogenous miR-223 was loaded into hUC-EVs by electroporation, and a collagen II-targeting peptide (WYRGRL) was modified onto the surface of hUC-EVs by genetic engineering to achieve a more targeted and efficient RNA delivery to the cartilage. The dual-engineered EVs showed a maximal effect on inhibiting the NLRP3 inflammasome activation and chondrocyte pyroptosis, and offered excellent results for the treatment of OA. This study provides a novel theoretical basis and a promising therapeutic strategy for the application of engineered extracellular vesicles in OA treatment.
Collapse
Affiliation(s)
- Weixuan Liu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Anqi Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xujun Li
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Ziyang Sun
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhenghua Sun
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Yaru Liu
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Gang Wang
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Dan Huang
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Hao Xiong
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shiyang Yu
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xintao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Cunyi Fan
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
9
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
10
|
Kim YS, Oh SM, Suh DS, Tak DH, Kwon YB, Koh YG. Arthroscopic Implantation of Adipose-Derived Stromal Vascular Fraction Improves Cartilage Regeneration and Pain Relief in Patients With Knee Osteoarthritis. Arthrosc Sports Med Rehabil 2023; 5:e707-e716. [PMID: 37388866 PMCID: PMC10300599 DOI: 10.1016/j.asmr.2023.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose To compare the pain relief and cartilage repair status of patients with knee osteoarthritis who received arthroscopic treatment with or without stromal vascular fraction (SVF) implantation. Methods We retrospectively evaluated the patients who were examined with 12-month follow-up magnetic resonance imaging (MRI) after arthroscopic treatment for knee osteoarthritis from September 2019 to April 2021. Patients were included in this study if they had grade 3 or 4 knee osteoarthritis according to the Outerbridge classification in MRI. The visual analog scale (VAS) was used for pain assessment over the follow-up period (baseline and at 1-, 3-, 6-, and 12-month follow-ups). Cartilage repair was evaluated using follow-up MRIs based on Outerbridge grades and the Magnetic Resonance Observation of Cartilage Repair Tissue scoring system. Results Among 97 patients who received arthroscopic treatment, 54 patients received arthroscopic treatment alone (conventional group) and 43 received arthroscopic treatment along with SVF implantation (SVF group). In the conventional group, the mean VAS score decreased significantly at 1-month post-treatment compared with baseline (P < .05), and gradually increased from 3 to 12 months' post-treatment (all P < .05). In the SVF group, the mean VAS score decreased until 12 months post-treatment compared with baseline (all P < .05 except P = .780 in 1-month vs 3-month follow-ups). Significantly greater pain relief was reported in the SVF group than in the conventional group at 6 and 12 months' post-treatment (all P < .05). Overall, Outerbridge grades were significantly greater in the SVF group than in the conventional group (P < .001). Similarly, mean Magnetic Resonance Observation of Cartilage Repair Tissue scores were significantly greater (P < .001) in the SVF group (70.5 ± 11.1) than in the conventional group (39.7 ± 8.2). Conclusions The results regarding pain improvement and cartilage regeneration and the significant correlation between pain and MRI outcomes at 12-months follow-up indicate that the arthroscopic SVF implantation technique may be useful for repairing cartilage lesions in knee osteoarthritis. Level of Evidence Level III, retrospective comparative study.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Gon Koh
- Address correspondence to Yong Gon Koh, M.D., Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul 06698, Republic of Korea.
| |
Collapse
|
11
|
Kim YS, Suh DS, Tak DH, Kwon YB, Koh YG. Adipose-Derived Stromal Vascular Fractions Are Comparable With Allogenic Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells as a Supplementary Strategy of High Tibial Osteotomy for Varus Knee Osteoarthritis. Arthrosc Sports Med Rehabil 2023; 5:e751-e764. [PMID: 37388880 PMCID: PMC10300606 DOI: 10.1016/j.asmr.2023.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/04/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose To compare the clinical, radiologic, and second-look arthroscopic outcomes of high tibial osteotomy (HTO) with stromal vascular fraction (SVF) implantation versus human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) transplantation and identify the association between cartilage regeneration and HTO outcomes. Methods Patients treated with HTO for varus knee osteoarthritis between March 2018 and September 2020 were retrospectively identified. In this retrospective study, among 183 patients treated with HTO for varus knee osteoarthritis between March 2018 and September 2020, patients treated with HTO with SVF implantation (SVF group; n = 25) were pair-matched based on sex, age, and lesion size with those who underwent HTO with hUCB-MSC transplantation (hUCB-MSC group; n = 25). Clinical outcomes were evaluated using the International Knee Documentation Committee score and Knee Injury and Osteoarthritis Outcome Score. Radiological outcomes evaluated were the femorotibial angle and posterior tibial slope. All patients were evaluated clinically and radiologically before surgery and during follow-up. The mean final follow-up periods were 27.8 ± 3.6 (range 24-36) in the SVF group and 28.2 ± 4.1 (range, 24-36) in the hUCB-MSC group (P = 0.690). At second-look arthroscopic surgery, cartilage regeneration was evaluated using the International Cartilage Repair Society (ICRS) grade. Results A total of 17 male and 33 female patients with a mean age of 56.2 years (range, 49-67 years) were included. At the time of second-look arthroscopic surgery (mean, 12.6 months; range, 11-15 months in the SVF group and 12.7 months; range, 11-14 months in the hUCB-MSC group, P = .625), the mean International Knee Documentation Committee score and Knee Injury and Osteoarthritis Outcome Score in each group significantly improved (P < .001 for all), and clinical outcomes at final follow-up further improved in both groups when compared with the values at second-look arthroscopic surgery (P < .05 for all). Overall ICRS grades, which significantly correlated with clinical outcomes, were similar between groups with no significant differences (P = .170 for femoral condyle and P = .442 for tibial plateau). Radiologic outcomes at final follow-up showed improved knee joint alignment relative to preoperative conditions but showed no significant correlation with clinical outcomes or ICRS grade in either group (P > .05 for all). Conclusions Improved clinical and radiological outcomes and favorable cartilage regeneration were seen after surgery for varus Knee OA in both SVF and hUCB-MSC groups. Level of Evidence Level III, retrospective comparative study.
Collapse
Affiliation(s)
| | | | | | | | - Yong Gon Koh
- Address correspondence to Yong Gon Koh, M.D., Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul 06698, Republic of Korea.
| |
Collapse
|
12
|
Sahin N, Yesil H. Regenerative methods in osteoarthritis. Best Pract Res Clin Rheumatol 2023; 37:101824. [PMID: 37244803 DOI: 10.1016/j.berh.2023.101824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/29/2023]
Abstract
Osteoarthritis (OA) is the most common type of arthritis that can affect all joint structures. The primary goals of osteoarthritis treatment are to alleviate pain, reduce functional limitations, and improve quality of life. Despite its high prevalence, treatment options for osteoarthritis are limited, with most therapeutic approaches focusing on symptom management. Tissue engineering and regenerative strategies based on biomaterials, cells, and other bioactive molecules have emerged as viable options for osteoarthritis cartilage repair. Platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) are the most commonly used regenerative therapies today to protect, restore, or increase the function of damaged tissues. Despite promising results, there is conflicting evidence regarding the efficacy of regenerative therapies, and their efficacy remains unknown. The data suggest that more research and standardization are required for the use of these therapies in osteoarthritis. This article provides an overview of the application of MSCs and PRP applications.
Collapse
Affiliation(s)
- Nilay Sahin
- Balikesir University, Faculty of Medicine, Physical Medicine and Rehabilitation Department, Balıkesir, Turkey.
| | - Hilal Yesil
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Physical Medicine and Rehabilitation Department, Afyon, Turkey.
| |
Collapse
|
13
|
Kim YS, Oh SM, Suh DS, Tak DH, Kwon YB, Koh YG. Cartilage lesion size and number of stromal vascular fraction (SVF) cells strongly influenced the SVF implantation outcomes in patients with knee osteoarthritis. J Exp Orthop 2023; 10:28. [PMID: 36918463 PMCID: PMC10014644 DOI: 10.1186/s40634-023-00592-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE This study evaluated outcomes in patients with knee osteoarthritis following stromal vascular fraction implantation and assessed the associated prognostic factors. METHODS We retrospectively evaluated 43 patients who underwent follow-up magnetic resonance imaging 12 months after stromal vascular fraction implantation for knee osteoarthritis. Pain was assessed using the visual analogue scale and measured at baseline and 1-, 3-, 6-, and 12-month follow-up appointments. In addition, cartilage repair was evaluated based on the Magnetic Resonance Observation of Cartilage Repair Tissue scoring system using the magnetic resonance imaging from the 12-month follow-up. Finally, we evaluated the effects of various factors on outcomes following stromal vascular fraction implantation. RESULTS Compared to the baseline value, the mean visual analogue scale score significantly and progressively decreased until 12 months post-treatment (P < 0.05 for all, except n.s. between the 1 and 3-month follow-ups). The mean Magnetic Resonance Observation of Cartilage Repair Tissue score was 70.5 ± 11.1. Furthermore, the mean visual analogue scale and Magnetic Resonance Observation of Cartilage Repair Tissue scores significantly correlated 12 months postoperatively (P = 0.002). Additionally, the cartilage lesion size and the number of stromal vascular fraction cells significantly correlated with the 12-month visual analogue scale scores and the Magnetic Resonance Observation of Cartilage Repair Tissue score. Multivariate analyses determined that the cartilage lesion size and the number of stromal vascular fraction cells had a high prognostic significance for unsatisfactory outcomes. CONCLUSION Stromal vascular fraction implantation improved pain and cartilage regeneration for patients with knee osteoarthritis. The cartilage lesion size and the number of stromal vascular fraction cells significantly influenced the postoperative outcomes. Thus, these findings may serve as a basis for preoperative surgical decisions. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Yong Sang Kim
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea
| | - Sun Mi Oh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea
| | - Dong Suk Suh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea
| | - Dae Hyun Tak
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea
| | - Yoo Beom Kwon
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea
| | - Yong Gon Koh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10, Hyoryeong-Ro, Seocho-Gu, Seoul, 06698, Republic of Korea.
| |
Collapse
|
14
|
Nowzari F, Zare M, Tanideh N, Meimandi-Parizi A, Kavousi S, Saneian SM, Zare S, Koohi-Hosseinabadi O, Ghaemmaghami P, Dehghanian A, Daneshi S, Azarpira N, Aliabadi A, Samimi K, Irajie C, Iraji A. Comparing the healing properties of intra-articular injection of human dental pulp stem cells and cell-free-secretome on induced knee osteoarthritis in male rats. Tissue Cell 2023; 82:102055. [PMID: 36948080 DOI: 10.1016/j.tice.2023.102055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a common and painful joint disease with multifactorial causes. Stem cells, due to their high ability to reproduce and differentiate, have created a new horizon in tissue engineering of cartilage and bone. Secretions are one of the new therapies that can be used with stem cells or separately. This study aimed to compare the healing effects of human dental pulp stem cells, cell-free secretome, and human dental pulp mesenchymal stem cells with secretome in the induced OA in male rats. METHODS Dental pulp mesenchymal stem cells were isolated and prepared from human dental pulp. The collagenase type II was injected into the knee of twenty-five male Sprague-Dawley rats, and after 10 weeks, OA was confirmed. Rats were divided into five groups (n = 5): 1) Human dental pulp stem cells plus secretome (HDP+Sec); 2) Human dental pulp stem cells (HDP); 3) Secretome (Sec); 4) Hyalgan as the positive control (Hya); 5) No treatment as the negative control (Ctrl). After 12 weeks since OA was confirmed, the healing process was examined by histopathology and radiology evaluations. RESULTS Histopathological evaluations, radiological assessments, and matrix indexes in three treatment groups significantly improved compared to the Ctrl and Hya groups. Surface in HDP+Sec was significantly better than the Ctrl group. In radiological evaluations, a significant decrease in OA was observed in the three treatment groups in comparison with the Ctrl groups. There was no significant difference between the treatment groups in any radiological and histopathological evaluations. HDP + Sec group slightly records better results compared to Sec or HDP treatment groups. CONCLUSION It was concluded that human dental pulp stem cells and their secretome promote cartilage regeneration due to their cell protective potential as well as matrix degeneration reduction capacity.
Collapse
Affiliation(s)
- Fariborz Nowzari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abdolhamid Meimandi-Parizi
- Department of Veterinary Surgery and Radiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Shahin Kavousi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Veterinary Surgery and Radiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Mojtaba Saneian
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Parvin Ghaemmaghami
- School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Daneshi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Pathology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arvin Aliabadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Kiana Samimi
- Department of Veterinary Surgery and Radiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Xu M, Ji Y. Immunoregulation of synovial macrophages for the treatment of osteoarthritis. Open Life Sci 2023; 18:20220567. [PMID: 36789002 PMCID: PMC9896167 DOI: 10.1515/biol-2022-0567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease affecting approximately 10% of men and 18% of women older than 60. Its pathogenesis is still not fully understood; however, emerging evidence has suggested that chronic low-grade inflammation is associated with OA progression. The pathological features of OA are articular cartilage degeneration in the focal area, including new bone formation at the edge of the joint, subchondral bone changes, and synovitis. Conventional drug therapy aims to prevent further cartilage loss and joint dysfunction. However, the ideal treatment for the pathogenesis of OA remains to be defined. Macrophages are the most common immune cells in inflamed synovial tissues. In OA, synovial macrophages undergo proliferation and activation, thereby releasing pro-inflammatory cytokines, including interleukin-1 and tumor necrosis factor-α, among others. The review article discusses (1) the role of synovial macrophages in the pathogenesis of OA; (2) the progress of immunoregulation of synovial macrophages in the treatment of OA; (3) novel therapeutic targets for preventing the progress of OA or promoting cartilage repair and regeneration.
Collapse
Affiliation(s)
- Mingze Xu
- Department of Orthopedics, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Yunhan Ji
- Department of Orthopedics, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| |
Collapse
|
16
|
Exosomes treating osteoarthritis: hope with challenge. Heliyon 2023; 9:e13152. [PMID: 36711315 PMCID: PMC9880404 DOI: 10.1016/j.heliyon.2023.e13152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
Osteoarthritis (OA) has been proven as the second primary cause of pain and disability in the elderly population, impact patients both physically and mentally, as well as imposing a heavy burden on the global healthcare system. Current treatment methods, whether conservative or surgical, that aim at relieving symptoms can not delay or reverse the degenerative process in the structure. Scientists and clinicians are facing a revolution in OA treatment strategies. The emergence of exosomes brings hope for OA treatment based on pathology, which is attributed to its full potential in protecting chondrocytes from excessive death, alleviating inflammation, maintaining cartilage matrix metabolism, and regulating angiogenesis and subchondral bone remodeling. Therefore, we summarized the recent studies of exosomes in OA, aiming to comprehensively understand the functions and mechanisms of exosomes in OA treatment, which may provide direction and theoretical support for formulating therapeutic strategies in the future.
Collapse
|
17
|
Otahal A, De Luna A, Mobasheri A, Nehrer S. Extracellular Vesicle Isolation and Characterization for Applications in Cartilage Tissue Engineering and Osteoarthritis Therapy. Methods Mol Biol 2023; 2598:123-140. [PMID: 36355289 DOI: 10.1007/978-1-0716-2839-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) have the capacity for use in cartilage tissue engineering by stimulating tissue repair and microenvironmental reprogramming. This makes them ideal candidates for treating focal cartilage defects and cartilage degeneration in osteoarthritis (OA). Observational studies have reported beneficial biological effects of EVs, such as inhibition of inflammation, enhanced extracellular matrix deposition, and reduced cartilage degradation. Isolation of EVs derived from different source materials such as conditioned cell culture media or biofluids is essential to attribute observed biological effects to EVs as genuine effectors. This chapter presents a density- and a size-based method as well as a combination of both for isolation of EVs from conditioned cell culture media or biofluids. In addition, three methods for characterization of isolated EVs are suggested based on physical properties, protein profiling, and ultrastructural morphology.
Collapse
Affiliation(s)
- Alexander Otahal
- Center for Regenerative Medicine, University For Continuing Education, Krems, Austria
| | - Andrea De Luna
- Center for Regenerative Medicine, University For Continuing Education, Krems, Austria
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Stefan Nehrer
- Center for Regenerative Medicine, University For Continuing Education, Krems, Austria.
| |
Collapse
|
18
|
Ho KKW, Lee WYW, Griffith JF, Ong MTY, Li G. Randomized control trial of mesenchymal stem cells versus hyaluronic acid in patients with knee osteoarthritis - A Hong Kong pilot study. J Orthop Translat 2022; 37:69-77. [PMID: 36262962 PMCID: PMC9550852 DOI: 10.1016/j.jot.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/11/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This pilot study evaluated the efficacy of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) versus hyaluronic acid (HA) in surgically naïve patients with knee osteoarthritis (OA). Methods Single-centre, single-blind randomized study of patients with knee OA. Twenty patients were randomized into groups of 10 each for intra-articular injection of cultured BM-MSCs (6 ml of BM-MSCs at 1 × 106 cells/mL) or HA (6 ml). Clinical assessments of pain, quality of life, radiographic imaging, and magnetic resonance imaging (MRI) compositional change were performed at baseline and 12 months follow-up. Results Compared with HA, BM-MSCs injection resulted in significant improvement in qualify of life and reduction in pain as reflected by visual analogue scale (VAS) pain score, Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and 36-Item Short Form Survey (SF-36) score collectively. T2-relaxation time tended to decrease more in the BM-MSCs group with a 38 ± 24.0% reduction in 6 out of 10 BM-MSC participants; while there was only a 12 ± 7.9% reduction in 4 out of 10 HA participants at the end of follow-up. The remaining participants showed either no response or had relaxation time increased on MRI assessment. Conclusions This pilot study found that autologous BM-MSCs significantly reduced pain, improved functional assessment score, and improved quality of life parameters comparing with HA at one year follow-up. Further clinical trial with larger sample size and longer follow up duration is warranted. The Translational Potential of this Article This pilot RCT demonstrated the feasibility and potential effectiveness of BM-MSCs advanced therapy for patients with knee OA compared to HA injection. Further multi-center clinical trial with a larger sample size and longer follow up duration in accordance with latest regulatory guidelines is warranted to ascertain the long term safety and effectiveness of MSCs therapy for cartilage regeneration in OA. Registration The study was registered in the Centre for Clinical Research Biostatistics - Clinical Trials Registry (CUHK_CCT00469).
Collapse
Affiliation(s)
- Kevin Ki-Wai Ho
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - James F Griffith
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Michael Tim-Yun Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| |
Collapse
|
19
|
Contentin R, Jammes M, Bourdon B, Cassé F, Bianchi A, Audigié F, Branly T, Velot É, Galéra P. Bone Marrow MSC Secretome Increases Equine Articular Chondrocyte Collagen Accumulation and Their Migratory Capacities. Int J Mol Sci 2022; 23:5795. [PMID: 35628604 PMCID: PMC9146805 DOI: 10.3390/ijms23105795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Equine osteoarthritis (OA) leads to cartilage degradation with impaired animal well-being, premature cessation of sport activity, and financial losses. Mesenchymal stem cell (MSC)-based therapies are promising for cartilage repair, but face limitations inherent to the cell itself. Soluble mediators and extracellular vesicles (EVs) secreted by MSCs are the alternatives to overcome those limitations while preserving MSC restorative properties. The effect of equine bone marrow MSC secretome on equine articular chondrocytes (eACs) was analyzed with indirect co-culture and/or MSC-conditioned media (CM). The expression of healthy cartilage/OA and proliferation markers was evaluated in eACs (monolayers or organoids). In vitro repair experiments with MSC-CM were made to evaluate the proliferation and migration of eACs. The presence of nanosized EVs in MSC-CM was appraised with nanoparticle tracking assay and transmission electron microscopy. Our results demonstrated that the MSC secretome influences eAC phenotype by increasing cartilage functionality markers and cell migration in a greater way than MSCs, which could delay OA final outcomes. This study makes acellular therapy an appealing strategy to improve equine OA treatments. However, the MSC secretome contains a wide variety of soluble mediators and small EVs, such as exosomes, and further investigation must be performed to understand the mechanisms occurring behind these promising effects.
Collapse
Affiliation(s)
- Romain Contentin
- Normandie University, Unicaen, Biotargen, F-14000 Caen, France; (R.C.); (M.J.); (B.B.); (F.C.); (T.B.)
| | - Manon Jammes
- Normandie University, Unicaen, Biotargen, F-14000 Caen, France; (R.C.); (M.J.); (B.B.); (F.C.); (T.B.)
| | - Bastien Bourdon
- Normandie University, Unicaen, Biotargen, F-14000 Caen, France; (R.C.); (M.J.); (B.B.); (F.C.); (T.B.)
| | - Frédéric Cassé
- Normandie University, Unicaen, Biotargen, F-14000 Caen, France; (R.C.); (M.J.); (B.B.); (F.C.); (T.B.)
| | - Arnaud Bianchi
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, F-54000 Nancy, France; (A.B.); (É.V.)
| | - Fabrice Audigié
- Center of Imaging and Research on Locomotor Affections on Equines (CIRALE), Unit Under Contract 957 Equine Biomechanics and Locomotor Disorders (USC 957 BPLC), French National Research Institute for Agriculture Food and Environment (INRAE), École Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Thomas Branly
- Normandie University, Unicaen, Biotargen, F-14000 Caen, France; (R.C.); (M.J.); (B.B.); (F.C.); (T.B.)
| | - Émilie Velot
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, F-54000 Nancy, France; (A.B.); (É.V.)
| | - Philippe Galéra
- Normandie University, Unicaen, Biotargen, F-14000 Caen, France; (R.C.); (M.J.); (B.B.); (F.C.); (T.B.)
| |
Collapse
|
20
|
Xu Y, Duan L, Liu S, Yang Y, Qiao Z, Shi L. Long intergenic non-protein coding RNA 00707 regulates chondrocyte apoptosis and proliferation in osteoarthritis by serving as a sponge for microRNA-199-3p. Bioengineered 2022; 13:11137-11145. [PMID: 35485364 PMCID: PMC9208525 DOI: 10.1080/21655979.2022.2061287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is known that long intergenic non-protein coding RNA 00707 (LINC00707) promotes lipopolysaccharide (LPS)-injury and microRNA-199-3p (miR-199-3p) regulates chondrocyte proliferation and apoptosis. Both processes participate in osteoarthritis (OA). We predicted that LINC00707 and miR-199-3p may interact with each other. Therefore, LINC00707 and miR-199-3p may interact with each other to participate in OA. In this study, the expression of LINC00707 and miR-199-3p in both OA and normal articular cartilage tissues was analyzed using RT-qPCR. The subcellular location of LINC00707 and its direct interaction with miR-199-3p were explored by nuclear fractionation assay, RNA pull-down assay and Luciferase reporter assay, respectively. The role of LINC00707 and miR-199-3p in regulating the expression of each other was analyzed using an overexpression assay, followed by RT-qPCR. The role of LINC00707 and miR-199-3p in regulating OA chondrocyte proliferation and apoptosis was analyzed by BrdU assay and cell apoptosis assay, respectively. OA tissues exhibited increased expression of LINC00707 and decreased expression of miR-199-3p. LINC00707 directly interacted with miR-199-3p in cytoplasm. However, LINC00707 and miR-199-3p overexpression failed to affect each other’s expression. LPS treatment increased LINC00707 expression and decreased miR-199-3p expression in OA chondrocyte. LINC00707 overexpression increased the apoptosis of OA chondrocytes induced by LPS and suppressed the proliferation of OA chondrocytes. Moreover, LINC00707 suppressed the role of miR-199-3p in enhancing cell proliferation and suppressing cell apoptosis. In conclusion, LINC00707 can be detected in cytoplasm and it may sponge miR-199-3p to regulate chondrocyte proliferation and apoptosis in OA.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopedics, Xi'an Fifth Hospital, Xi'an, Shaanxi, PR China
| | - Liang Duan
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xian City, Shaanxi, PR China
| | - Shizhang Liu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xian City, Shaanxi, PR China
| | - Yuanyuan Yang
- Editorial Board of Chinese Journal of Child Health Care, the Second Affiliated Hospital of Xi 'An Jiaotong University, Xian, Shaanxi, China
| | - Zhi Qiao
- Department of Orthopedics, Xi'an Fifth Hospital, Xi'an, Shaanxi, PR China
| | | |
Collapse
|
21
|
Wang S, Lei B, Zhang E, Gong P, Gu J, He L, Han L, Yuan Z. Targeted Therapy for Inflammatory Diseases with Mesenchymal Stem Cells and Their Derived Exosomes: From Basic to Clinics. Int J Nanomedicine 2022; 17:1757-1781. [PMID: 35469174 PMCID: PMC9034888 DOI: 10.2147/ijn.s355366] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a beneficial and physiological process, but there are a number of inflammatory diseases which have detrimental effects on the body. In addition, the drugs used to treat inflammation have toxic side effects when used over a long period of time. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can be isolated from a variety of tissues and can be differentiate into diverse cell types under appropriate conditions. They also exhibit noteworthy anti-inflammatory properties, providing new options for the treatment of inflammatory diseases. The therapeutic potential of MSCs is currently being investigated for various inflammatory diseases, such as kidney injury, lung injury, osteoarthritis (OA), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSCs can perform multiple functions, including immunomodulation, homing, and differentiation, to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment under severe inflammatory conditions. In addition, accumulated evidence indicates that exosomes from extracellular vesicles of MSCs (MSC-Exos) play an extraordinary role, mainly by transferring their components to recipient cells. In this review, we summarize the mechanism and clinical trials of MSCs and MSC-Exos in various inflammatory diseases in detail, with a view to contributing to the treatment of MSCs and MSC-Exos in inflammatory diseases.
Collapse
Affiliation(s)
- Shuo Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Biyu Lei
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - E Zhang
- Department of Basic Sciences, Officers College of People’s Armed Police, Chengdu, Sichuan, 610213, People’s Republic of China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Zhixiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| |
Collapse
|
22
|
Ye J, Jin Z, Chen S, Guo W. Uridine relieves MSCs and chondrocyte senescence in vitvo and exhibits the potential to treat osteoarthritis in vivo. Cell Cycle 2022; 21:33-48. [PMID: 34974808 PMCID: PMC8837230 DOI: 10.1080/15384101.2021.2010170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of extremely high incidence in the elderly. Therefore, anti-aging may be an important prerequisite for treating OA. The senescence of chondrocytes and mesenchymal stem cells (MSCs) is one of the important factors that causes OA. Here, the effect of uridine (which is a functional food derived from plants or animals) on senescence of chondrocytes and MSCs was evaluated in in vivo and in vitro experiments. For this, we established the senescence model of chondrocyte and MSCs in vitro, and established the OA model in vivo, and a series of experiments (such as CLSM, ELISA, Western blot, etc.) were conducted to evaluate the effect of uridine on chondrocyte and MSCs senescence. The results showed that uridine could alleviate chondrocyte and MSCs senescence in vitro by evaluating a series of aging markers. Furthermore, uridine could also relieve OA in vivo. In summary, in the present work, we found that uridine can alleviate chondrocyte and MSCs senescence in in vitro and in vivo experiments. Uridine has shown great potential in the treatment of OA in vivo, suggesting that uridine could be used to treat and prevent OA induced by aging, and has potential clinical applications in future.
Collapse
Affiliation(s)
- Jia Ye
- Department of Orthopedics, People’s Hospital of Wuhan University, Wuhan, China,CONTACT Jia Ye Department of Orthopedics, People’s Hospital of Wuhan University, No. 99, Zhangzhidong Road, Wuchang District, Wuhan, Hubei, China
| | - Zhihui Jin
- Department of Orthopedics, People’s Hospital of Wuhan University, Wuhan, China
| | - Sen Chen
- Department of Orthopedics, People’s Hospital of Wuhan University, Wuhan, China
| | - Weichun Guo
- Department of Orthopedics, People’s Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Vitali M, Ometti M, Pironti P, Salvato D, Sandrucci A, Leone O, Saliniv V. Clinical and functional evaluation of bone marrow aspirate concentrate vs autologous conditioned serum in the treatment of knee osteoarthritis. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022222. [PMID: 36300237 PMCID: PMC9686147 DOI: 10.23750/abm.v93i5.12845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIM The aim of this study was to compare the efficacy of a single Bone Marrow Aspirate Concentrate (BMAC) with a cycle of 4 Autologous Conditioned Serum (ACS) injections in the treatment of early-stage knee osteoarthritis (OA). METHODS Two groups of 12 patients with degenerative knee OA were treated with a single BMAC injection and with a cycle of 4 ACS injections respectively. Follow-up was set at baseline (t0), one-month (t1) and six-months (t2) evaluating VAS for pain, WOMAC index and range of motion (ROM). RESULTS We reported a significant improvement in WOMAC after BMAC injection both at t1 (p= 0,001) as well as t2 (p< 0,001), plus a reduction of VAS values in BMAC group at six months follow-up (p = 0,024). In contrast, no significant differences in ROM between the two groups were observed. CONCLUSIONS Both the approaches are safe and effective in the treatment of knee OA, with a major efficacy of BMAC.
Collapse
Affiliation(s)
- Matteo Vitali
- San Raffaele Scientific Institute, Department of Orthopedics and Traumatology (Milan, Italy)
| | - Marco Ometti
- San Raffaele Scientific Institute, Department of Orthopedics and Traumatology (Milan, Italy)
| | - Pierluigi Pironti
- University of Milan, Residency Program in Orthopedics and Traumatology (Milan, Italy)
| | - Damiano Salvato
- San Raffaele University, Residency Program in Orthopedics and Traumatology (Milan, Italy)
| | | | - Orlando Leone
- San Raffaele University, Residency Program in Orthopedics and Traumatology (Milan, Italy)
| | - Vincenzo Saliniv
- San Raffaele Scientific Institute, Department of Orthopedics and Traumatology (Milan, Italy)
| |
Collapse
|
24
|
Hsu GCY, Cherief M, Sono T, Wang Y, Negri S, Xu J, Peault B, James AW. Divergent effects of distinct perivascular cell subsets for intra-articular cell therapy in posttraumatic osteoarthritis. J Orthop Res 2021; 39:2388-2397. [PMID: 33512030 PMCID: PMC8319216 DOI: 10.1002/jor.24997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/04/2023]
Abstract
Intra-articular injection of mesenchymal stem cells has shown benefit for the treatment of osteoarthritis (OA). However, mesenchymal stem/stromal cells at the origin of these clinical results are heterogenous cell populations with limited cellular characterization. Here, two transgenic reporter mice were used to examine the differential effects of two precisely defined perivascular cell populations (Pdgfrα+ and Pdgfrβ+ cells) from white adipose tissue for alleviation of OA. Perivascular mesenchymal cells were isolated from transgenic Pdgfrα-and Pdgfrβ-CreERT2 reporter animals and delivered as a one-time intra-articular dose to C57BL/6J mice after destabilization of the medial meniscus (DMM). Both Pdgfrα+ and Pdgfrβ+ cell preparations improved metrics of cartilage degradation and reduced markers of chondrocyte hypertrophy. While some similarities in cell distribution were identified within the synovial and perivascular spaces, injected Pdgfrα+ cells remained in the superficial layers of articular cartilage, while Pdgfrβ+ cells were more widely dispersed. Pdgfrβ+ cell therapy prevented subchondral sclerosis induced by DMM, while Pdgfrα+ cell therapy had no effect. In summary, while both cell therapies showed beneficial effects in the DMM model, important differences in cell incorporation, persistence, and subchondral sclerosis were identified.
Collapse
Affiliation(s)
- Ginny Ching-Yun Hsu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States;,Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, 90095;,Center For Cardiovascular Science and Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| |
Collapse
|
25
|
Zhong Y, Caplan AI, Welter JF, Baskaran H. Glucose Availability Affects Extracellular Matrix Synthesis During Chondrogenesis In Vitro. Tissue Eng Part A 2021; 27:1321-1332. [PMID: 33499734 PMCID: PMC8610032 DOI: 10.1089/ten.tea.2020.0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/22/2021] [Indexed: 01/09/2023] Open
Abstract
Understanding in vitro chondrogenesis of human mesenchymal stem cells (hMSCs) is important as it holds great promise for cartilage tissue engineering and other applications. The current technology produces the end tissue quality that is highly variable and dependent on culture conditions. We investigated the effect of nutrient availability on hMSC chondrogenesis in a static aggregate culture system by varying the medium-change frequency together with starting glucose levels. Glucose uptake and lactate secretion profiles were obtained to monitor the metabolism change during hMSC chondrogenesis with different culture conditions. Higher medium-change frequency led to increases in cumulative glucose uptake for all starting glucose levels. Furthermore, increase in glucose uptake by aggregates led to increased end tissue glycosaminoglycan (GAG) and hydroxyproline (HYP) content. The results suggest that increased glucose availability either through increased medium-change frequency or higher initial glucose levels lead to improved chondrogenesis. Also, cumulative glucose uptake and lactate secretion were found to correlate well with GAG and HYP content, indicating both molecules are promising biomarkers for noninvasive assessment of hMSC chondrogenesis. Collectively, our results can be used to design optimal culture conditions and develop dynamic assessment strategies for cartilage tissue engineering applications. Impact statement In this study, we investigated how culture conditions, medium-change frequency and glucose levels, affect chondrogenesis of human mesenchymal stem cells in an aggregate culture model. Doubling the medium-change frequency significantly increased the biochemical quality of the resultant tissue aggregates, as measured by their glycosaminoglycan and hydroxyproline content. We attribute this to increased glucose uptake through the glycolysis pathway, as secretion of lactate, a key endpoint product of the glycolysis pathway, increased concurrently. These findings can be used to design optimal culture conditions for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- CWRU Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I. Caplan
- CWRU Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biology and Case Western Reserve University, Cleveland, Ohio, USA
| | - Jean F. Welter
- CWRU Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biology and Case Western Reserve University, Cleveland, Ohio, USA
| | - Harihara Baskaran
- CWRU Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Development of PBPK model for intra-articular injection in human: methotrexate solution and rheumatoid arthritis case study. J Pharmacokinet Pharmacodyn 2021; 48:909-922. [PMID: 34569001 PMCID: PMC8604827 DOI: 10.1007/s10928-021-09781-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/29/2021] [Indexed: 11/26/2022]
Abstract
A physiologically based model describing the dissolution, diffusion, and transfer of drug from the intra-articular (IA) space to the plasma, was developed for GastroPlus® v9.8. The model is subdivided into compartments representing the synovial fluid, synovium, and cartilage. The synovium is broken up into two sublayers. The intimal layer acts as a diffusion barrier between the synovial fluid and the subintimal layer. The subintimal layer of the synovium has fenestrated capillaries that allow the free drug to be transported into systemic circulation. The articular cartilage is broken up into 10 diffusion sublayers as it is much thicker than the synovium. The cartilage acts as a depot tissue for the drug to diffuse into from synovial fluid. At later times, the drug will diffuse from the cartilage back into synovial fluid once a portion of the dose enters systemic circulation. In this study, a listing of all relevant details and equations for the model is presented. Methotrexate was chosen as a case study to show the application and utility of the model, based on the availability of intravenous (IV), oral (PO) and IA administration data in patients presenting rheumatoid arthritis (RA) symptoms. Systemic disposition of methotrexate in RA patients was described by compartmental pharmacokinetic (PK) model with PK parameters extracted using the PKPlus™ module in GastroPlus®. The systemic PK parameters were validated by simulating PO administration of methotrexate before being used for simulation of IA administration. For methotrexate, the concentrations of drug in the synovial fluid and plasma were well described after adjustments of physiological parameters to account for RA disease state, and with certain assumptions about binding and diffusion. The results indicate that the model can correctly describe PK profiles resulting from administration in the IA space, however, additional cases studies will be required to evaluate ability of the model to scale between species and/or doses.
Collapse
|
27
|
Zhang C, Yuan S, Chen Y, Wang B. Neohesperidin promotes the osteogenic differentiation of human bone marrow stromal cells by inhibiting the histone modifications of lncRNA SNHG1. Cell Cycle 2021; 20:1953-1966. [PMID: 34455928 DOI: 10.1080/15384101.2021.1969202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neohesperidin (NH) was reported to regulate osteoclastic differentiation, while LncRNA SNHG1 could inhibit osteogenic differentiation of bone marrow stromal cells (BMSCs). In this study, we aimed to explore whether SNHG1-mediated osteogenic differentiation could be regulated by NH. Osteonecrosis and adjacent tissues, as well as normal bone marrow samples were gathered. BMSCs were isolated from normal bone marrow samples by Ficoll density gradient and identified by flow cytometry. Histopathological changes of tissues were detected by hematoxylin-eosin staining. After the treatment with NH or transfection, cell viability, osteogenic differentiation, and the activity of alkaline phosphatase (ALP) in BMSCs were detected by MTT, alizarin red staining, and microplate method, respectively. The histone modification and expressions of SNHG1 and osteogenic marker genes in tissues or BMSCs were detected by q-PCR and Chromatin Immunoprecipitation (ChIp). SNHG1 was highly expressed in osteonecrosis tissues, and typical signs of empty lacunae appeared in the necrotic tissues zone. NH increased viability and osteogenic differentiation of BMSCs, activity of ALP, and expressions of RUNX2, OCN and ALP. NH decreased both SNHG1 expression and H3K4me3 (activating histone modification) occupancies and increased H3K27me3 (inhibiting histone modification) occupancies of SNHG1. Furthermore, siSNHG1 enhanced osteogenic differentiation of BMSCs and expressions of RUNX2, OCN and ALP, while SNHG1 overexpression did the opposite and reversed the effects of NH on the osteogenic differentiation of BMSCs. In a word, NH promotes the osteogenic differentiation of human BMSCs by inhibiting the histone modifications of lncRNA SNHG1.
Collapse
Affiliation(s)
- Chuanxin Zhang
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shuai Yuan
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Li H, Li X, Yang B, Su J, Cai S, Huang J, Hu T, Chen L, Xu Y, Li Y. The retinoid X receptor α modulator K-80003 suppresses inflammatory and catabolic responses in a rat model of osteoarthritis. Sci Rep 2021; 11:16956. [PMID: 34417523 PMCID: PMC8379249 DOI: 10.1038/s41598-021-96517-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA), a most common and highly prevalent joint disease, is closely associated with dysregulated expression and modification of RXRα. However, the role of RXRα in the pathophysiology of OA remains unknown. The present study aimed to investigate whether RXRα modulator, such as K-80003 can treat OA. Experimental OA was induced by intra-articular injection of monosodium iodoacetate (MIA) in the knee joint of rats. Articular cartilage degeneration was assessed using Safranin-O and fast green staining. Synovial inflammation was measured using hematoxylin and eosin (H&E) staining and enzyme-linked immunosorbent assay (ELISA). Expressions of MMP-13, ADAMTS-4 and ERα in joints were analyzed by immunofluorescence staining. Western blot, RT-PCR and co-Immunoprecipitation (co-IP) were used to assess the effects of K-80003 on RXRα-ERα interaction. Retinoid X receptor α (RXRα) modulator K-80003 prevented the degeneration of articular cartilage, reduced synovial inflammation, and alleviated osteoarthritic pain in rats. Furthermore, K-80003 markedly inhibited IL-1β-induced p65 nuclear translocation and IκBα degradation, and down-regulate the expression of HIF-2α, proteinases (MMP9, MMP13, ADAMTS-4) and pro-inflammatory factors (IL-6 and TNFα) in primary chondrocytes. Additionally, knockdown of ERα with siRNA blocked these effects of K-80003 in chondrocytes. In conclusion, RXRα modulators K-80003 suppresses inflammatory and catabolic responses in OA, suggesting that targeting RXRα-ERα interaction by RXRα modulators might be a novel therapeutic approach for OA treatment.
Collapse
Affiliation(s)
- Hua Li
- The Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xiaofan Li
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou, 350001, China
| | - Boyu Yang
- The Department of Orthopedics, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Junnan Su
- The Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Shaofang Cai
- The Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Jinmei Huang
- The Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Tianfu Hu
- Department of Traditional Chinese Medicine, Community Health Service Center of Qiaoying Street, Xiamen, China
| | - Lijuan Chen
- Department of Traditional Chinese Medicine, Community Health Service Center of Qiaoying Street, Xiamen, China
| | - Yaping Xu
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Yuhang Li
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research On the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
- Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China.
| |
Collapse
|
29
|
曹 洪, 李 珠, 孙 勇, 樊 渝, 张 兴. [Role of Stem Cells and Their Biomimetic Matrix Microenvironment in Regenerative Repair of Articular Cartilage: A Review]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:548-554. [PMID: 34323029 PMCID: PMC10409407 DOI: 10.12182/20210760301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 11/23/2022]
Abstract
It is difficult for the articular cartilage to self-heal any damage it may incur due to its lack of nerves and blood vessels. Development in stem cell technology provides new prospects for articular cartilage regeneration. Currently, stem cells from different sources and their diverse applications have demonstrated different degrees of therapeutic effect and potential in articular cartilage repair. However, stem cells are highly sensitive to their microenvironment. Therefore, more and more researchers are focusing their attention on regulating stem cells and thus accelerating cartilage regeneration through the biomimetic microenvironment constructed by biologically functional scaffolds. We reviewed in this paper the sources of the stem cells used for cartilage repair, the application method of these stem cells, as well as the therapeutic effect, mechanism and limitations in the application of stem cells synergizing with the biomimetic microenvironment in promoting articular cartilage repair and regeneration. We hoped to provide suggestions for practical clinical research in the design and improvement of biofunctional cartilage repair scaffolds that synergize with stem cells.
Collapse
Affiliation(s)
- 洪芙 曹
- 四川大学国家生物医学材料工程技术研究中心 (成都 610064)National Engineering Research Center for Biomedical Materials, Sichuan University, Chengdu 610064, China
- 四川大学生物医学工程学院 (成都 610064)College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - 珠廉 李
- 四川大学国家生物医学材料工程技术研究中心 (成都 610064)National Engineering Research Center for Biomedical Materials, Sichuan University, Chengdu 610064, China
- 四川大学生物医学工程学院 (成都 610064)College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - 勇 孙
- 四川大学国家生物医学材料工程技术研究中心 (成都 610064)National Engineering Research Center for Biomedical Materials, Sichuan University, Chengdu 610064, China
- 四川大学生物医学工程学院 (成都 610064)College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - 渝江 樊
- 四川大学国家生物医学材料工程技术研究中心 (成都 610064)National Engineering Research Center for Biomedical Materials, Sichuan University, Chengdu 610064, China
- 四川大学生物医学工程学院 (成都 610064)College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - 兴栋 张
- 四川大学国家生物医学材料工程技术研究中心 (成都 610064)National Engineering Research Center for Biomedical Materials, Sichuan University, Chengdu 610064, China
- 四川大学生物医学工程学院 (成都 610064)College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
30
|
Zhang SY, Xu HH, Xiao MM, Zhang JJ, Mao Q, He BJ, Tong PJ. Subchondral bone as a novel target for regenerative therapy of osteochondritis dissecans: A case report. World J Clin Cases 2021; 9:3623-3630. [PMID: 34046461 PMCID: PMC8130072 DOI: 10.12998/wjcc.v9.i15.3623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteochondritis dissecans (OCD) is a rare disease of unclear cause characterized by subchondral bone damage and overlying cartilage defects. The current report presents the results of subchondral bone as a novel target for implantation of peripheral blood stem cells (PBSCs) in the treatment of OCD.
CASE SUMMARY A 16-year-old patient diagnosed with OCD underwent subchondral bone implantation of PBSCs. Four months later, the patient's visual analog scale scores, Western Ontario and McMaster University osteoarthritis index, and whole-organ magnetic resonance imaging score improved significantly, and regeneration of cartilage and subchondral bone was observed on magnetic resonance imaging.
CONCLUSION This is the first case of OCD treated with subchondral bone as an implantation target of PBSCs, which highlights the importance of subchondral bone for cartilage repair. This treatment could be a potential option for articular cartilage and subchondral bone recovery in OCD.
Collapse
Affiliation(s)
- Sheng-Yang Zhang
- Institute of Orthopedics and Traumatology, The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Hui-Hui Xu
- Institute of Orthopedics and Traumatology, The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Miao-Miao Xiao
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jing-Jing Zhang
- Institute of Orthopedics and Traumatology, The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Qiang Mao
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Bang-Jian He
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Pei-Jian Tong
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
31
|
Extracellular Vesicles from Mesenchymal Stem Cells as Potential Treatments for Osteoarthritis. Cells 2021; 10:cells10061287. [PMID: 34067325 PMCID: PMC8224601 DOI: 10.3390/cells10061287] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disorder of the joint and its prevalence and severity is increasing owing to ageing of the population. Osteoarthritis is characterized by the degradation of articular cartilage and remodeling of the underlying bone. There is little understanding of the cellular and molecular processes involved in pathophysiology of OA. Currently the treatment for OA is limited to painkillers and anti-inflammatory drugs, which only treat the symptoms. Some patients may also undergo surgical procedures to replace the damaged joints. Extracellular vesicles (EV) play an important role in intercellular communications and their concentration is elevated in the joints of OA patients, although their mechanism is unclear. Extracellular vesicles are naturally released by cells and they carry their origin cell information to be delivered to target cells. On the other hand, mesenchymal stem cells (MSCs) are highly proliferative and have a great potential in cartilage regeneration. In this review, we provide an overview of the current OA treatments and their limitations. We also discuss the role of EV in OA pathophysiology. Finally, we highlight the therapeutic potential of MSC-derived EV in OA and their challenges.
Collapse
|
32
|
Yao H, Xu J, Wang J, Zhang Y, Zheng N, Yue J, Mi J, Zheng L, Dai B, Huang W, Yung S, Hu P, Ruan Y, Xue Q, Ho K, Qin L. Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice. Bioact Mater 2021; 6:1341-1352. [PMID: 33210027 PMCID: PMC7658330 DOI: 10.1016/j.bioactmat.2020.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION We previously demonstrated that magnesium ions (Mg2+) was a novel therapeutic alternative for osteoarthritis (OA) through promoting the hypoxia inducible factor-1α (HIF-1α)-mediated cartilage matrix synthesis. However, oxidative stress can inhibit the expression of HIF-1α, amplify the inflammation that potentially impairs the therapeutic efficacy of Mg2+ in OA. Vitamin (VC), a potent antioxidant, may enhance the efficacy of Mg2+ in OA treatment. This study aims to investigate the efficacy of combination of Mg2+ and VC on alleviating joint destruction and pain in OA. MATERIAL AND METHODS Anterior cruciate ligament transection with partial medial meniscectomy induced mice OA model were randomly received intra-articular injection of either saline, MgCl2 (0.5 mol/L), VC (3 mg/ml) or MgCl2 (0.5 mol/L) plus VC (3 mg/ml) at week 2 post-operation, twice weekly, for 2 weeks. Joint pain and pathological changes were assessed by gait analysis, histology, western blotting and micro-CT. RESULTS Mg2+ and VC showed additive effects to significantly alleviate the joint destruction and pain. The efficacy of this combined therapy could sustain for 3 months after the last injection. We demonstrated that VC enhanced the promotive effect of Mg2+ on HIF-1α expression in cartilage. Additionally, combination of Mg2+ and VC markedly promoted the M2 polarization of macrophages in synovium. Furthermore, combination of Mg2+ and VC inhibited osteophyte formation and expressions of pain-related neuropeptides. CONCLUSIONS Intra-articular administration of Mg2+ and VC additively alleviates joint destruction and pain in OA. Our current formulation may be a cost-effective alternative treatment for OA.
Collapse
Affiliation(s)
- Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Yifeng Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Nianye Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Yue
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenhan Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuhang Yung
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Peijie Hu
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong, China
| | - Yechun Ruan
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong, China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, No. 5th Clinical Medical Collage, Health Science Center, Peking University, Beijing, PR China
| | - Kiwai Ho
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Zhu X, Lee CW, Xu H, Wang YF, Yung PSH, Jiang Y, Lee OK. Phenotypic alteration of macrophages during osteoarthritis: a systematic review. Arthritis Res Ther 2021; 23:110. [PMID: 33838669 PMCID: PMC8035781 DOI: 10.1186/s13075-021-02457-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) has long been regarded as a disease of cartilage degeneration, whereas mounting evidence implies that low-grade inflammation contributes to OA. Among inflammatory cells involved, macrophages play a crucial role and are mediated by the local microenvironment to exhibit different phenotypes and polarization states. Therefore, we conducted a systematic review to uncover the phenotypic alterations of macrophages during OA and summarized the potential therapeutic interventions via modulating macrophages. METHODS A systematic review of multiple databases (PubMed, Web of Science, ScienceDirect, Medline) was performed up to February 29, 2020. Included articles were discussed and evaluated by two independent reviewers. Relevant information was analyzed with a standardized and well-designed template. RESULTS A total of 28 studies were included. Results were subcategorized into two sections depending on sources from human tissue/cell-based studies (12 studies) and animal experiments (16 studies). The overall observation indicated that M1 macrophages elevated in both synovium and circulation during OA development, along with lower numbers of M2 macrophages. The detailed alterations of macrophages in both synovium and circulation were listed and analyzed. Furthermore, interventions against OA via regulating macrophages in animal models were highlighted. CONCLUSION This study emphasized the importance of the phenotypic alterations of macrophages in OA development. The classical phenotypic subcategory of M1 and M2 macrophages was questionable due to controversial and conflicting results. Therefore, further efforts are needed to categorize macrophages in an exhaustive manner and to use advanced technologies to identify the individual roles of each subtype of macrophages in OA.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chien-Wei Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongtao Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick S H Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Oscar K Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
34
|
miR-137 targets the inhibition of TCF4 to reverse the progression of osteoarthritis through the AMPK/NF-κB signaling pathway. Biosci Rep 2021; 40:224888. [PMID: 32432314 PMCID: PMC7295621 DOI: 10.1042/bsr20200466] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: To explore the regulatory mechanism of miR-137 and transcription factor 4 (TCF4) in the progression of osteoarthritis (OA). Patients and Methods: The expressions of miR-137 and TCF4 were detected in OA cartilage tissue, chondrocytes and OA rat cartilage tissue. miR-137 and TCF4 were up-regulated or down-regulated and transfected into chondrocytes and OA rat cartilage tissue. The gene expression, protein level, cell proliferation, apoptosis and inflammatory factors were detected, respectively. LPS and anterior cruciate ligament transection (ACLT) on the right knee were used to induce chondrocyte inflammation and establish rat OA model, respectively. Results: miR-137 was low expressed in cartilage tissue of OA group, while TCF4 expression and protein level were significantly higher, showing significant negative correlation. In LPS group, chondrocyte activity was significantly inhibited, cell apoptosis ability was significantly enhanced, and the levels of inflammatory factors TNF-α, IL-1β, IL-6 were significantly increased. However, the above results were significantly improved after the up-regulation of miR-137 or down-regulation of TCF4. Double luciferase report revealed that miR-137 and TCF4 had targeted relationship. LPS induced activation of AMPK/NF-κB pathway and higher level of apoptosis. AMPK/NF-κB pathway inhibitor C could inhibit activation of this pathway, and up-regulation of miR-137 or down-regulation of TCF4 could significantly weaken the regulation of LPS on the pathway and apoptosis. Analysis of OA rat model showed that over-expression of miR-137 could inhibit up-regulation of inflammatory factors and activation of AMPK/NF-κB pathway. Conclusion: miR-137 targets the inhibition of TCF4 to reverse the progression of OA through the AMPK/NF-κB signaling pathway.
Collapse
|
35
|
Zhang Q, Xiang E, Rao W, Zhang YQ, Xiao CH, Li CY, Han B, Wu D. Intra-articular injection of human umbilical cord mesenchymal stem cells ameliorates monosodium iodoacetate-induced osteoarthritis in rats by inhibiting cartilage degradation and inflammation. Bone Joint Res 2021; 10:226-236. [PMID: 33739851 PMCID: PMC7998343 DOI: 10.1302/2046-3758.103.bjr-2020-0206.r2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aims This study aimed to investigate whether human umbilical cord mesenchymal stem cells (UC-MSCs) can prevent articular cartilage degradation and explore the underlying mechanisms in a rat osteoarthritis (OA) model induced by monosodium iodoacetate (MIA). Methods Human UC-MSCs were characterized by their phenotype and multilineage differentiation potential. Two weeks after MIA induction in rats, human UC-MSCs were intra-articularly injected once a week for three weeks. The therapeutic effect of human UC-MSCs was evaluated by haematoxylin and eosin, toluidine blue, Safranin-O/Fast green staining, and Mankin scores. Markers of joint cartilage injury and pro- and anti-inflammatory markers were detected by immunohistochemistry. Results Histopathological analysis showed that intra-articular injection of human UC-MSCs significantly inhibited the progression of OA, as demonstrated by reduced cartilage degradation, increased Safranin-O staining, and lower Mankin scores. Immunohistochemistry showed that human UC-MSC treatment down-regulated the expression of matrix metalloproteinase-13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), and enhanced the expression of type II collagen and ki67 in the articular cartilage. Furthermore, human UC-MSCs significantly decreased the expression of interleukin (IL)-1β and tumour necrosis factor-α (TNF-α), while increasing TNF-α-induced protein 6 and IL-1 receptor antagonist. Conclusion Our results demonstrated that human UC-MSCs ameliorate MIA-induced OA by preventing cartilage degradation, restoring the proliferation of chondrocytes, and inhibiting the inflammatory response, which implies that human UC-MSCs may be a promising strategy for the treatment of OA. Cite this article: Bone Joint Res 2021;10(3):226–236.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Wuhan Hamilton Biotechnology Co, Wuhan, China
| | - E Xiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Wuhan Hamilton Biotechnology Co, Wuhan, China
| | - Wei Rao
- Wuhan Hamilton Biotechnology Co, Wuhan, China
| | - Ya Qi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | | | - Chang Yong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Bing Han
- Wuhan Hamilton Biotechnology Co, Wuhan, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Wuhan Hamilton Biotechnology Co, Wuhan, China
| |
Collapse
|
36
|
Wong KU, Zhang A, Akhavan B, Bilek MM, Yeo GC. Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomater Sci Eng 2021. [PMID: 33599471 DOI: 10.1021/acsbiomaterials.0c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) typically require significant ex vivo expansion to achieve the high cell numbers required for research and clinical applications. However, conventional MSC culture on planar (2D) plastic surfaces has been shown to induce MSC senescence and decrease cell functionality over long-term proliferation, and usually, it has a high labor requirement, a high usage of reagents, and therefore, a high cost. In this Review, we describe current MSC-based therapeutic strategies and outline the important factors that need to be considered when developing next-generation cell expansion platforms. To retain the functional value of expanded MSCs, ex vivo culture systems should ideally recapitulate the components of the native stem cell microenvironment, which include soluble cues, resident cells, and the extracellular matrix substrate. We review the interplay between these stem cell niche components and their biological roles in governing MSC phenotype and functionality. We discuss current biomimetic strategies of incorporating biochemical and biophysical cues in MSC culture platforms to grow clinically relevant cell numbers while preserving cell potency and stemness. This Review summarizes the current state of MSC expansion technologies and the challenges that still need to be overcome for MSC clinical applications to be feasible and sustainable.
Collapse
Affiliation(s)
- Kuan Un Wong
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anyu Zhang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M Bilek
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
37
|
Kim YS, Suh DS, Tak DH, Chung PK, Kwon YB, Kim TY, Koh YG. Factors Influencing Clinical and MRI Outcomes of Mesenchymal Stem Cell Implantation With Concomitant High Tibial Osteotomy for Varus Knee Osteoarthritis. Orthop J Sports Med 2021; 9:2325967120979987. [PMID: 33681398 PMCID: PMC7897834 DOI: 10.1177/2325967120979987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023] Open
Abstract
Background Cartilage repair procedures using mesenchymal stem cells (MSCs) can provide superior cartilage regeneration in the medial compartment of the knee joint when high tibial osteotomy (HTO) is performed for varus knee osteoarthritis (OA). However, few studies have reported the factors influencing the outcomes of MSC implantation with concomitant HTO. Purpose To investigate the outcomes of MSC implantation with concomitant HTO and to identify the prognostic factors that are associated with the outcomes. Study Design Case series; Level of evidence, 4. Methods A total of 71 patients (75 knees) were retrospectively evaluated after MSC implantation with concomitant HTO. Clinical and radiological outcomes were evaluated, and magnetic resonance imaging (MRI) was used to assess cartilage regeneration. Statistical analyses were performed to determine the effect of different factors on clinical, radiographic, and MRI outcomes. Results Clinical and radiographic outcomes improved significantly from preoperatively to final follow-up (P < .001 for all), and overall cartilage regeneration was encouraging. Significant correlations were found between clinical and MRI outcomes. However, radiographic outcomes were not significantly correlated with clinical or MRI outcomes. Patient age and number of MSCs showed significant correlations with clinical and MRI outcomes. On multivariate analyses, patient age and number of MSCs showed high prognostic significance with poor clinical outcomes. Conclusion MSC implantation with concomitant HTO provided feasible cartilage regeneration and satisfactory clinical outcomes for patients with varus knee OA. Patient age and number of MSCs were important factors that influenced the clinical and MRI outcomes of MSC implantation with concomitant HTO for varus knee OA.
Collapse
Affiliation(s)
- Yong Sang Kim
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Dong Suk Suh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Dae Hyun Tak
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Pill Ku Chung
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Yoo Beom Kwon
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Tae Yong Kim
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Yong Gon Koh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| |
Collapse
|
38
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
39
|
Zong Z, Zhang X, Yang Z, Yuan W, Huang J, Lin W, Chen T, Yu J, Chen J, Cui L, Li G, Wei B, Lin S. Rejuvenated ageing mesenchymal stem cells by stepwise preconditioning ameliorates surgery-induced osteoarthritis in rabbits. Bone Joint Res 2021; 10:10-21. [PMID: 33382341 PMCID: PMC7845463 DOI: 10.1302/2046-3758.101.bjr-2020-0249.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model. METHODS Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone. RESULTS Stepwise preconditioning approach significantly enhanced the proliferation and chondrogenic potential of ageing hMSCs at early passage. Interestingly, remarkably lower immunogenicity and senescence was also found in hM-MSCs. Data from animal studies showed cartilage damage was retarded and subchondral bone remodelling was prevented by the treatment of preconditioned MSCs. The therapeutic effect depended on the number of cells applied to animals, with the best effect observed when treated with eight millions of hM-MSCs. CONCLUSION This study demonstrated a reliable and feasible stepwise preconditioning strategy to improve the safety and efficacy of ageing MSCs for the prevention of OA development. Cite this article: Bone Joint Res 2021;10(1):10-21.
Collapse
Affiliation(s)
- Zhixian Zong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Xiaoting Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Zhengmeng Yang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Weihao Yuan
- Department of Biomedical Engineering, Faculty of Engineering, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jianping Huang
- Department of Stomatology, Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Weiping Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Ting Chen
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Jiahao Yu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Jiming Chen
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Department of Pharmacology, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Sien Lin
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Pharmacology, The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, USA
| |
Collapse
|
40
|
Kim YS, Suh DS, Tak DH, Chung PK, Koh YG. Mesenchymal Stem Cell Implantation in Knee Osteoarthritis: Midterm Outcomes and Survival Analysis in 467 Patients. Orthop J Sports Med 2020; 8:2325967120969189. [PMID: 33415176 PMCID: PMC7750771 DOI: 10.1177/2325967120969189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background A cell-based tissue engineering approach that uses mesenchymal stem cells (MSCs) has addressed the issue of articular cartilage repair in knees with osteoarthritis (OA). Purpose To evaluate the midterm outcomes, analyze the survival rates, and identify the factors affecting the survival rate of MSC implantation to treat knee OA. Study Design Case series; Level of evidence, 4. Methods We retrospectively evaluated 467 patients (483 knees) who underwent MSC implantation on a fibrin glue scaffold for knee OA with a minimum 5-year follow-up. Clinical outcomes were determined based on the International Knee Documentation Committee (IKDC) and Tegner activity scale results measured preoperatively and during follow-up. Standard radiographs were evaluated using Kellgren-Lawrence grading. Statistical analyses were performed to determine the survival rate and the effect of different factors on the clinical outcomes. Results The mean IKDC scores (baseline, 39.2 ± 7.2; 1 year, 66.6 ± 9.6; 3 years, 67.2 ± 9.9; 5 years, 66.1 ± 9.7; 9 years, 62.8 ± 8.5) and Tegner scores (baseline, 2.3 ± 1.0; 1 year, 3.4 ± 0.9; 3 years, 3.5 ± 0.9; 5 years, 3.4 ± 0.9; 9 years, 3.2 ± 0.9) were significantly improved until 3 years postoperatively and gradually decreased from 3- to 9-year follow-up (P < .05 for all, except for Tegner score at 5 years vs 1 year [P = .237]). Gradual deterioration of radiological outcomes according to the Kellgren-Lawrence grade was found during follow-up. Survival rates based on either a decrease in IKDC or an advancement of radiographic OA with Kellgren-Lawrence scores were 99.8%, 94.5%, and 74.5% at 5, 7, and 9 years, respectively. Based on multivariate analyses, older age and the presence of bipolar kissing lesion were associated with significantly worse outcomes (P = .002 and .013, respectively), and a larger number of MSCs was associated with significantly better outcomes (P < .001) after MSC implantation. Conclusion MSC implantation provided encouraging outcomes with acceptable duration of symptom relief at midterm follow-up in patients with early knee OA. Patient age, presence of bipolar kissing lesion, and number of MSCs were independent factors associated with failure of MSC implantation.
Collapse
Affiliation(s)
- Yong Sang Kim
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Dong Suk Suh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Dae Hyun Tak
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Pill Ku Chung
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Yong Gon Koh
- Center for Stem Cell & Arthritis Research, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| |
Collapse
|
41
|
Yuan S, Zhang C, Zhu Y, Wang B. Neohesperidin Ameliorates Steroid-Induced Osteonecrosis of the Femoral Head by Inhibiting the Histone Modification of lncRNA HOTAIR. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5419-5430. [PMID: 33324039 PMCID: PMC7733036 DOI: 10.2147/dddt.s255276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Background Neohesperidin (NH) and lncRNA HOTAIR (HOTAIR) could regulate osteoclastic and osteogenic differentiation. This study aimed to explore whether HOTAIR-mediated osteogenic differentiation was regulated by NH. Methods Steroid-induced osteonecrosis of the femoral head (SONFH) mice model was established. Histopathological changes in mouse osteonecrosis tissues were detected by hematoxylin-eosin staining. Bone marrow stromal cells (BMSCs) were isolated from healthy mice bone marrow samples by Ficoll density gradient and identified by flow cytometry. After treating the BMSCs with NH and dexamethasone or transfecting with HOTAIR overexpression plasmids and siHOTAIR, histone modification of HOTAIR, the cell viability, osteogenic differentiation, and adipogenic differentiation were detected by chromatin immunoprecipitation, MTT, Alizarin Red and Oil Red O staining, respectively. The expressions of HOTAIR and differentiation-related factors in the BMSCs were detected by RT-qPCR and Western blot. Results HOTAIR was highly expressed in SONFH model mice. NH ameliorated histopathological changes in the model mice, but the effect was reversed by overexpressed HOTAIR. NH increased viability of BMSCs and the H3K27me3 occupancy of HOTAIR, but decreased the expression and the H3K4me3 occupancy of HOTAIR. HOTAIR expression was down-regulated in BMSCs after osteogenic differentiation but was up-regulated after adipogenic differentiation. HOTAIR overexpression inhibited osteogenic differentiation and the expressions of RUNX2, OCN, and ALP, but increased adipogenic differentiation and the expressions of LPL and PPARr in BMSCs; moreover, the opposite results were observed in siHOTAIR. Conclusion NH ameliorated SONFH by inhibiting the histone modifications of HOTAIR.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Chuanxin Zhang
- Department of Joint Surgery and Sports Medicine, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Yunli Zhu
- Department of Joint Surgery and Sports Medicine, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Bo Wang
- Department of Joint Surgery and Sports Medicine, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Current Nanoparticle-Based Technologies for Osteoarthritis Therapy. NANOMATERIALS 2020; 10:nano10122368. [PMID: 33260493 PMCID: PMC7760945 DOI: 10.3390/nano10122368] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint disease that is characterized by joint pain and stiffness, and limitation of motion and the major cause of disability, which reduces life quality of patients and brings a large economic burden to the family and society. Current clinical treatment is mostly limited to symptomatic treatment aimed at pain alleviation and functional improvement, rather than suppressing the progression of OA. Nanotechnology is a promising strategy for the treatment of OA. In this review, we summarize the current experimental progress that focuses on technologies such as liposomes, micelles, dendrimers, polymeric nanoparticles (PNPs), exosomes, and inorganic nanoparticles (NPs) for their potential treatment of OA.
Collapse
|
43
|
Kim YS, Suh DS, Tak DH, Chung PK, Kwon YB, Kim TY, Koh YG. Comparative matched-pair cohort analysis of the short-term clinical outcomes of mesenchymal stem cells versus hyaluronic acid treatments through intra-articular injections for knee osteoarthritis. J Exp Orthop 2020; 7:90. [PMID: 33188474 PMCID: PMC7666263 DOI: 10.1186/s40634-020-00310-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Purpose Intra-articular injection of hyaluronic acid (HA) has shown promises in reducing pain and improving physical function in knee osteoarthritis (OA). Recently, cell-based therapies using mesenchymal stem cells (MSCs) have emerged as potential treatments. However, few studies have compared the treatment outcomes between MSCs and HA. This study aimed to compare the clinical and radiological outcomes of intra-articular injections of MSCs versus HA in patients with knee OA. Methods A cohort of 209 patients with knee OA were retrospectively screened for those who underwent intra-articular injections using MSCs or HA. Thirty MSC-treated patients (MSC group) were pair-matched with thirty HA-treated patients (HA group) based on gender and age. Clinical outcomes were evaluated using the visual analog scale (VAS), International Knee Documentation Committee (IKDC) rating system, and Lysholm scoring system. Radiological evaluation was assessed using the Kellgren-Lawrence (K-L) grading system. Results MSC treatment yielded consistent significant improvements in VAS, IKDC and Lysholm scores. In the HA group, VAS scores significantly decreased at 1 month, slightly increased at 3 months, and increased significantly from 3 months to 1 year after injection. The IKDC and Lysholm scores improved significantly until 3 months, but gradually worsened thereafter. Significantly greater improvements in VAS (P = 0.041), IKDC (P = 0.014), and Lysholm (P = 0.020) scores were observed in the MSC group compared to those in the HA group at 1-year post-treatment. The K-L grade worsened in a few patients, especially those in the HA group, albeit no significant difference. Conclusions MSC group showed better VAS, IKDC, and Lysholm scores at 1-year post-treatment, compared to the HA group, although earlier clinical improvements were superior in the HA group for the initial 3 months. Level of Evidence Therapeutic study, Level III.
Collapse
Affiliation(s)
- Yong Sang Kim
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Dong Suk Suh
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Dae Hyun Tak
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Pill Ku Chung
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Yoo Beom Kwon
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Tae Yong Kim
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea
| | - Yong Gon Koh
- Department of Orthopaedic Surgery, Center for Stem Cell & Arthritis Research, Yonsei Sarang Hospital, 10, Hyoryeong-ro, Seocho-gu, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Sriwatananukulkit O, Tawonsawatruk T, Rattanapinyopituk K, Luangwattanawilai T, Srikaew N, Hemstapat R. Scaffold-Free Cartilage Construct from Infrapatellar Fat Pad Stem Cells for Cartilage Restoration. Tissue Eng Part A 2020; 28:199-211. [PMID: 32972295 DOI: 10.1089/ten.tea.2020.0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Once damaged, the articular cartilage has a very limited intrinsic capacity for self-renewal due to its avascular nature. If left untreated, damaged cartilage can lead to progressive degeneration of bone and eventually causes pain. Infrapatellar fat pad adipose-derived mesenchymal stromal cells (IPFP-ASCs) has a potential role for cartilage restoration. However, the therapeutic role for IPFP-ASCs remains to be evaluated in an appropriate osteochondral defect model. Thus, this study aimed to investigate the potential of using a three-dimensional (3D) cartilage construct of IPFP-ASCs as a promising source of cells to restore articular cartilage and to attenuate pain associated with the cartilage defect in an osteochondral defect model. The chondrogenic differentiation potential of the 3D cartilage construct derived from IPFP-ASCs was determined before implantation and postimplantation by gene expression and immunohistochemistry analysis. Pain-related behavior was also assessed by using a weight-bearing test. A significant pain-associated with the osteochondral defect was observed in this model in all groups postinduction; however, this pain can spontaneously resolve within 3 weeks postimplantation regardless of implantation of IPFP-ASCs constructs. The expression of SOX9 and COL2A1 genes in addition to protein expression were strongly expressed in 3D construct IPFP-ASCs. The existence of mature chondrocytes, along with significant (p < 0.05) positive immunostaining for type II collagen and aggrecan, were identified in the implanted site for up to 12 weeks compared with the untreated group, indicating hyaline cartilage regeneration. Taken together, this study demonstrated the successful outcome of osteochondral regeneration with scaffold-free IPFP-ASCs constructs in an osteochondral defect rat model. It provides novel and interesting insights into the current hypothesis that 3D construct IPFP-ASCs may offer potential benefits as an alternative approach to repair the cartilage defect. Impact statement This study provides evidence of using the human 3D scaffold-free infrapatellar fat pad adipose-derived mesenchymal stromal cells (IPFP-ASCs) construct to restore the full-thickness osteochondral defect in a rat model. This study showed that chondrogenic features of the construct could be retained for up to 12 weeks postimplantation. The results of this proof-of-concept study support that human 3D scaffold-free IPFP-ASCs construct has potential benefits in promoting the hyaline-like native cartilage restoration, which may be beneficial as a tissue-specific stem cell for cell-based cartilage therapy. There are several clinical advantages of IPFP-ASC including ease and minimal invasive harvesting, chondrogenic inducible property, and tissue-specific progenitors in the knee.
Collapse
Affiliation(s)
| | | | - Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Narongrit Srikaew
- Research Centre, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Decidual mesenchymal stem/stromal cell-derived extracellular vesicles ameliorate endothelial cell proliferation, inflammation, and oxidative stress in a cell culture model of preeclampsia. Pregnancy Hypertens 2020; 22:37-46. [PMID: 32721892 DOI: 10.1016/j.preghy.2020.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress and endothelial dysfunction contribute substantially to the pathogenesis of preeclampsia (PE). Decidual mesenchymal stem/stromal cells (DMSC), reportedly reduce endothelial cell dysfunction and alleviate PE-like symptoms in a murine model. However, as a therapeutic strategy, the use of whole DMSC presents significant technical limitations, which may be overcome by employing DMSC-secreted extracellular vesicles (DMSC_EV). DMSC_EV restoration of endothelial dysfunction through a paracrine effect may alleviate the clinical features of PE. OBJECTIVE To determine whether DMSC-secreted, extracellular vesicles (DMSC_EV) restore endothelial cell function and reduce oxidative stress. METHODS DMSC were isolated from the placentae of uncomplicated term pregnancies and DMSC_EV prepared by ultracentrifugation. Human umbilical vein endothelial cells (HUVEC) were treated with bacterial lipopolysaccharide (LPS), or with serum from PE patients, to model the effects of PE. DMSC_EV were then added to treated HUVEC and their growth profiles, inflammatory state, and oxidative stress levels measured. RESULTS DMSC_EV displayed characteristic features of extracellular vesicles. In both LPS- and PE serum-treatment models, addition of DMSC_EV significantly increased HUVEC cell attachment and proliferation, and significantly reduced production of pro-inflammatory cytokine IL-6. The addition of DMSC_EV to LPS-treated HUVEC had no significant effect on total antioxidant capacity, superoxide dismutase levels or on lipid peroxidation levels. In contrast, the addition of DMSC_EV to PE serum-treated HUVEC resulted in a significant reduction in levels of lipid peroxidation. CONCLUSION Addition of DMSC_EV had beneficial effects in both LPS- and PE serum- treated HUVEC but the two treatment models to induce endothelial cell dysfunction showed differences. The LPS treatment of HUVEC model may not accurately model the endothelial cell dysfunction characteristic of PE. Human cell culture models of PE show that DMSC_EV improve endothelial cell dysfunction in PE, but testing in in vivo models of PE is required.
Collapse
|
46
|
Interaction of cancer cells with mesenchymal stem cells: implications in metastatic progression. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X, Chen L. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 2020; 8:25. [PMID: 32596023 PMCID: PMC7305215 DOI: 10.1038/s41413-020-0100-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes participate in many physiological and pathological processes by regulating cell-cell communication, which are involved in numerous diseases, including osteoarthritis (OA). Exosomes are detectable in the human articular cavity and were observed to change with OA progression. Several joint cells, including chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and secrete exosomes that influence the biological effects of targeted cells. In addition, exosomes from stem cells can protect the OA joint from damage by promoting cartilage repair, inhibiting synovitis, and mediating subchondral bone remodeling. This review summarizes the roles and therapeutic potential of exosomes in OA and discusses the perspectives and challenges related to exosome-based treatment for OA patients in the future.
Collapse
Affiliation(s)
- Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siru Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Cformation of H-type vessel in subchondral enter of Trauma and War Injury; Daping Hospital, Army Medical University of PLA, Chongqing, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Eleven Squadron Three Brigade, School of Basic Medical Science, Army Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Ouyang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei He
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
48
|
Creste CFZ, Orsi PR, Landim-Alvarenga FC, Justulin LA, Golim MDA, Barraviera B, Ferreira RS. Highly effective fibrin biopolymer scaffold for stem cells upgrading bone regeneration. MATERIALS 2020; 13:ma13122747. [PMID: 32560388 PMCID: PMC7344939 DOI: 10.3390/ma13122747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
Fibrin scaffold fits as a provisional platform promoting cell migration and proliferation, angiogenesis, connective tissue formation and growth factors stimulation. We evaluated a unique heterologous fibrin biopolymer as scaffold to mesenchymal stem cells (MSCs) to treat a critical-size bone defect. Femurs of 27 rats were treated with fibrin biopolymer (FBP); FBP + MSCs; and FBP + MSC differentiated in bone lineage (MSC-D). Bone repair was evaluated 03, 21 and 42 days later by radiographic, histological and scanning electron microscopy (SEM) imaging. The FBP + MSC-D association was the most effective treatment, since newly formed Bone was more abundant and early matured in just 21 days. We concluded that FBP is an excellent scaffold for MSCs and also use of differentiated cells should be encouraged in regenerative therapy researches. The FBP ability to maintain viable MSCs at Bone defect site has modified inflammatory environment and accelerating their regeneration.
Collapse
Affiliation(s)
- Camila Fernanda Zorzella Creste
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP—São Paulo State University, Botucatu 18610-307, Brazil; (C.F.Z.C.); (P.R.O.); (B.B.)
- Botucatu Medical School, UNESP—São Paulo State University, Botucatu 18618-687, Brazil;
| | - Patrícia Rodrigues Orsi
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP—São Paulo State University, Botucatu 18610-307, Brazil; (C.F.Z.C.); (P.R.O.); (B.B.)
| | - Fernanda Cruz Landim-Alvarenga
- College of Veterinary Medicine and Animal Husbandry (FMVZ), UNESP—São Paulo State University, Botucatu 18618-681, Brazil;
| | - Luis Antônio Justulin
- Botucatu Biosciences Institute, UNESP—São Paulo State University, Botucatu 18618-689, Brazil;
| | | | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP—São Paulo State University, Botucatu 18610-307, Brazil; (C.F.Z.C.); (P.R.O.); (B.B.)
- Botucatu Medical School, UNESP—São Paulo State University, Botucatu 18618-687, Brazil;
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP—São Paulo State University, Botucatu 18610-307, Brazil; (C.F.Z.C.); (P.R.O.); (B.B.)
- Botucatu Medical School, UNESP—São Paulo State University, Botucatu 18618-687, Brazil;
- Correspondence: ; Tel.: +55-(014)-3880-7241
| |
Collapse
|
49
|
Alahdal M, Duan L, Ouyang H, Wang D. The role of indoleamine 2,3 dioxygenase 1 in the osteoarthritis. Am J Transl Res 2020; 12:2322-2343. [PMID: 32655775 PMCID: PMC7344072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease and a leading cause of disability. It involves articular cartilage destruction and a whole joint inflammation. In spite of OA pathogenesis is still unclear, new studies on the OA pathophysiological aetiology and immunomodulation therapy continuously achieve significant advances with new concepts. Here, we focus on the indoleamine-2,3-dioxygenase1 (IDO1) activity in the osteoarthritis (OA), which is one of the noticeable enzymes in the synovial fluid of arthritis patients. It was recognized as an essential mediator of autoreactive B and T cell responses in rheumatoid arthritis (RA) and an interesting therapeutic target against RA. However, the role IDO1 plays in the OA pathogenesis hasn't been discussed. The new OA experimental analysis evidenced IDO1 overexpression in the synovial fluid of OA patients, and recent studies reported that IDO1 metabolites were found higher in the OA synovial fluid than RA and spondyloarthropathies (SpA) patients. Moreover, the positive relation of IDO1 metabolites with OA pain and joint stiffness has been confirmed. Thus, the IDO1 plays a pivotal role in the pathogenesis of OA. In this review, the role IDO1 plays in the OA pathogenesis has been deeply discussed. It could be a promising target in the immunotherapy of OA disease.
Collapse
Affiliation(s)
- Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)Shenzhen 518035, P. R. China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen 518035, P. R. China
| |
Collapse
|
50
|
Poudel P, Yu J. Geriatric Rheumatology: The Need for a Separate Subspecialty in the Near Future. Cureus 2020; 12:e8474. [PMID: 32642378 PMCID: PMC7336673 DOI: 10.7759/cureus.8474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Rheumatology is a broad specialty in itself, and it involves caring for patients of all age groups. Patients of different age groups have different characteristics and a one-size-fits-all approach is not feasible in catering to their diverse medical needs. The presentation and the manifestations of diseases vary in different age groups. We have pediatric rheumatology as a separate subspecialty where pediatric patients with rheumatological diseases are provided specific care best suited to their needs. However, for older patients, such a separate subspecialty is not widely available in medical practice. Geriatric rheumatology or gerontorheumatology is a branch of rheumatology dealing with older patients with rheumatological diseases. It is high time to consider establishing geriatric rheumatology as a separate subspecialty to provide better care for older patients.
Collapse
Affiliation(s)
- Pooja Poudel
- Internal Medicine, State University of New York Upstate Medical University, Syracuse, USA
| | - Jianghong Yu
- Rheumatology, State University of New York Upstate Medical University, Syracuse, USA
| |
Collapse
|