1
|
Ren X, Wang J, Wang J, Wang G, Ren H, Xu P, Yang M, Xu K. Association between conicity index (C-index), relative fat mass (RFM), and osteoarthritis (OA): evidence from NHANES 2003-2018. Lipids Health Dis 2025; 24:140. [PMID: 40241060 PMCID: PMC12001612 DOI: 10.1186/s12944-025-02558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Obesity is considered an important risk factor for osteoarthritis (OA), with conicity index (C-index), relative fat mass (RFM) are two novel anthropometric measures of obesity. To investigate the association between OA and these two indicators, we conducted this study. METHODS We used data from the National Health and Nutrition Examination Survey (NHANES) to investigate the association between C-index, RFM, and OA. First, the participants were divided into two groups according to whether they had OA, and we compared the baseline characteristics of the two groups. Then, C-index and RFM were divided into quartiles (Q1, Q2, Q3, Q4) for multivariate regression analysis. Additionally, we applied restricted cubic spline (RCS) to assess whether the relationship is non-linear. Finally, we conducted a subgroup interaction analysis to investigate whether this relationship varies across different subgroups. RESULTS The study included 34,707 participants, with a weighted OA prevalence of 7.7%. Significant differences in C-index and RFM were observed between OA and non-OA groups. Treating C-index and RFM as categorical variables, logistic regression showed significantly higher OA risk in Q4 compared to Q1: for C-index, Q4 (OR = 1.60; 95% CI: 1.33-1.93; P < 0.001); for RFM, Q4 (OR = 2.07; 95% CI: 1.57-2.73; P < 0.001). The RCS results show that the relationship between C-index and OA is non-linear, while the relationship between RFM and OA is linear. Subgroup interaction analysis showed some interaction effects. CONCLUSIONS This study reveals detailed relationships between C-index, RFM, and OA, which may be better indicators of obesity in assessing OA risk.
Collapse
Affiliation(s)
- Xiaodong Ren
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China
| | - Junxiang Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China
| | - Jiachen Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China
| | - Guoqiang Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China
| | - Honghao Ren
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China.
| | - Mingyi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China.
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
2
|
Chen Y, Jiang H, Zhu H, He J, Chen L. Theranostics of osteoarthritis: Applications and prospects of precision targeting nanotechnology. Int J Pharm 2025; 676:125548. [PMID: 40216040 DOI: 10.1016/j.ijpharm.2025.125548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/22/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Osteoarthritis (OA), a complex degenerative joint disease driven by cartilage degeneration, synovial inflammation, and subchondral bone remodeling, lacks effective disease-modifying therapies. Precision-targeted nanotechnology has emerged as a breakthrough strategy, offering enhanced drug delivery, reduced toxicity, and synergistic diagnostic-therapeutic capabilities. This review summarizes OA pathogenesis, focusing on dysregulated immune networks and self-perpetuating synovial microenvironmental interactions. We discuss advanced nanomedicine approaches, which leverage OA-specific pathological cues for localized treatment. Innovations in cytokine modulation, photothermal therapy, and integrated theranostics (photoacoustic/fluorescence imaging) are highlighted as transformative tools for real-time diagnosis and personalized intervention. Despite progress, challenges such as biocompatibility optimization, clinical translation barriers, OA heterogeneity necessitate further development of multifunctional nanocarriers and rationaldesigns. This work underscores the potential of nanotechnology to advance OA therapeutics, bridging preclinical innovation with clinical applicability in pharmaceutical sciences.
Collapse
Affiliation(s)
- Yujing Chen
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoran Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyan He
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Kim D, Ansari MM, Ghosh M, Heo Y, Choi KC, Son YO. Implications of obesity-mediated cellular dysfunction and adipocytokine signaling pathways in the pathogenesis of osteoarthritis. Mol Aspects Med 2025; 103:101361. [PMID: 40156972 DOI: 10.1016/j.mam.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation, bone sclerosis, and chronic low-grade inflammation. Aging and injury play key roles in OA pathogenesis by triggering the release of proinflammatory factors from adipose tissue and other sources. Obesity and aging impair the function of endoplasmic reticulum (ER) chaperones, leading to ER stress, protein misfolding, and cellular apoptosis. Obesity also induces mitochondrial dysfunction in OA through oxidative stress and disrupts mitochondrial dynamics, exacerbating chondrocyte damage. These factors contribute to inflammation, matrix imbalance, and chondrocyte apoptosis. Adipocytes, the primary source of adipokines, release inflammatory mediators that affect joint cells. Several adipocytokines have a central role in the regulation of many aspects of inflammation. Adiponectin and leptin are the two most abundant adipocytokines that are strongly associated with OA progression. This literature review suggests that adipokines activate many signaling pathways to exert downstream effects and play significant roles in obesity-induced OA. Understanding this rapidly growing family of mainly adipocyte-derived mediators and obesity-mediated cellular dysfunction may be important in the development of new therapies for obesity-associated OA management.
Collapse
Affiliation(s)
- Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Ki-Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
4
|
Jiang Z, Cai X, Yao X, Lan W, Yao X, Tang F, Ma W. Body roundness index and the risk of knee osteoarthritis: evidence from the China Health and Retirement Longitudinal Study. Front Nutr 2025; 12:1533966. [PMID: 40144564 PMCID: PMC11938369 DOI: 10.3389/fnut.2025.1533966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Objective Previous cross-sectional studies have demonstrated that the body roundness index (BRI) is associated with knee osteoarthritis (KOA). However, no longitudinal studies have confirmed this association. This study aims to explore the link between BRI and KOA risk in the Chinese population through longitudinal analysis and to evaluate its utility in early diagnosis and risk prediction. Methods This study utilizes data from the China Health and Retirement Longitudinal Study (CHARLS). A total of 7,318 participants who were followed from 2015 to 2020 were included. BRI was calculated using physical examinations and questionnaire data, and participants were categorized by quartiles. The relationship between BRI and KOA risk was assessed using multivariate weighted regression models and trend tests, while subgroup and sensitivity analyses were conducted to ensure the robustness of the findings. Results After 5 years of follow-up, 1,035 participants (14.14%) were diagnosed with KOA. Findings indicate a positive correlation between BRI and KOA risk (HR = 1.08, 95% CI: 1.02-1.13, p = 0.0039), with an increasing trend in KOA risk across BRI quartiles (p for trend = 0.0033). Subgroup analysis reveals that the association is particularly strong among individuals aged 50-59, males, those living in rural areas, and those without cardiovascular disease. Conclusion This study establishes that an increase in BRI significantly elevates KOA risk. These findings suggest that BRI could be an effective tool for KOA risk assessment and could contribute to the development of personalized prevention strategies. Additionally, BRI is valuable in elucidating the potential mechanisms linking body fat distribution and inflammatory responses in KOA progression.
Collapse
Affiliation(s)
- Zong Jiang
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin Cai
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, The First People's Hospital of Guiyang, Guiyang, China
| | - Xiaoling Yao
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weiya Lan
- Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xueming Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fang Tang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wukai Ma
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
5
|
Henriques J, Berenbaum F, Mobasheri A. Obesity-induced fibrosis in osteoarthritis: Pathogenesis, consequences and novel therapeutic opportunities. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100511. [PMID: 39483440 PMCID: PMC11525450 DOI: 10.1016/j.ocarto.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 11/03/2024] Open
Abstract
Osteoarthritis (OA) is a significant global burden, affecting more than half a billion people across the world. It is characterized by degeneration and loss of articular cartilage, synovial inflammation, and subchondral bone sclerosis, leading to pain and functional impairment. After age, obesity is a major modifiable risk factor for OA, and it has recently been identified as a chronic disease by the World Health Organization (WHO). Obesity is associated with high morbidity and mortality, imposing a significant cost on individuals and society. Obesity increases the risk of knee OA through increased joint loading, altered body composition, and elevated pro-inflammatory adipokines in the systemic circulation. Moreover, obesity triggers fibrotic processes in different organs and tissues, including those involved in OA. Fibrosis in OA refers to the abnormal accumulation of fibrous tissue within and around the joints. It can be driven by increased adiposity, low-grade inflammation, oxidative stress, and metabolic alterations. However, the clinical outcomes of fibrosis in OA are unclear. This review focuses on the link between obesity and OA, explores the mechanism of obesity-driven fibrosis, and examines potential therapeutic opportunities for targeting fibrotic processes in OA.
Collapse
Affiliation(s)
- João Henriques
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Francis Berenbaum
- Sorbonne University, Paris, France
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- INSERM CRSA, Paris, France
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
6
|
He M, Yu Q, Xiao H, Dong H, Li D, Gu W. Screening and validation of key genes associated with osteoarthritis. BMC Musculoskelet Disord 2024; 25:954. [PMID: 39587568 PMCID: PMC11587628 DOI: 10.1186/s12891-024-08015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Osteoarthritis is recognized as a common geriatric condition characterized by irregular chronic pain. Its prevalence is steadily increasing, posing significant challenges to global public health, while some studies indicate a trend towards younger individuals being affected. This condition severely impacts patients' quality of life. METHODS Using the Gene Expression Omnibus (GEO) database, we downloaded datasets GSE114007, GSE169077, and GSE206848. We utilized R software to screen and confirm differentially expressed genes (DEGs) related to the development of osteoarthritis. A cross-analysis of the three datasets was conducted, with the least overlapping dataset, GSE206848, selected as the validation set. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the DEGs from GSE114007 and GSE169077. Weighted Gene Co-Expression Network Analysis (WGCNA) was employed to identify modules closely associated with osteoarthritis, and genes from these intersecting modules were entered into the STRING database to construct Protein-Protein Interaction Networks. The top ten genes by connectivity were identified and validated using GSE206848. Key genes were identified and preliminarily validated using Quantitative Real-Time PCR (QPCR). Subsequent validation of related genes was carried out through Western Blot (WB) analysis. RESULTS Differentially expressed genes were identified from the GSE114007 and GSE169077 datasets and validated in the GSE206848 dataset, with ANGPTL4 selected as the key gene. QPCR results indicated a significant difference in ANGPTL4 expression levels between normal and osteoarthritic chondrocytes. Western Blot analysis confirmed a significant difference in ANGPTL4 protein expression between normal and osteoarthritic chondrocytes. CONCLUSION Based on the experimental findings, ANGPTL4 appears to be a potential key gene in osteoarthritis.
Collapse
Affiliation(s)
- MingLiu He
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - QiFan Yu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Xiao
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HengDa Dong
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - DaZhuang Li
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - WenGuang Gu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Su Q, Cai Q, Feng X, Huang C, Ge H, Chen L, Xue C, Liu C, Li J, Cheng B. Efficacy Analysis of Arthroscopic Surgery Combined with Intra-articular Chitosan Injection for Stage II-III Knee Osteoarthritis in Patients with Abnormal Body Weight. Orthop Surg 2024; 16:1980-1990. [PMID: 38961659 PMCID: PMC11293907 DOI: 10.1111/os.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Weight is an influential factor in knee osteoarthritis (KOA). However, the effect of abnormal body weight on chitosan's efficacy in treating KOA is unclear. This study aimed to explore the differences in the effectiveness of arthroscopic surgery combined with intra-articular chitosan injection for KOA in patients with abnormal body weight. METHODS Patients with stage II-III KOA (Kellgren-Lawrence rating, K-L) undergoing arthroscopic surgery were recruited for this clinical study from January 2020 to September 2021. Based on body mass index (BMI) and intra-articular chitosan injection, patients with KOA undergoing arthroscopic surgery (138 patients) were divided into four groups: low-weight-non-injection (Lw-N, BMI <18.5); low-weight-chitosan injection (Lw-CS, BMI <18.5); overweight-non-injection (Ow-N, BMI ≥25); overweight-chitosan injection (Ow-CS, BMI ≥25). A 2-year follow-up was conducted to evaluate various indicators, including the visual analogue scale (VAS) and the Western Ontario and McMaster Universities osteoarthritis index score (WOMAC). Statistical analyses were performed using relevant parametric or non-parametric tests. RESULTS In total, 138 patients with KOA were included in this study. There were no significant differences in gender, age, and incidence of chronic residual pain after arthroscopy among the four groups (p > 0.05). The proportion of patients undergoing subsequent knee arthroplasty during the 2-year follow-up period was significantly higher in the Ow-CS group (20/35) than in the Lw-CS group (12/39) (p < 0.05). The K-L rating showed an overall increasing trend over time, with the K-L rating in the Ow-N and Ow-CS groups significantly higher than that in the Lw-CS group at the final follow-up (p < 0.05). VAS and WOMAC scores significantly decreased at 1 and 3 months post-arthroscopy and then increased. One month after arthroscopy, VAS was significantly lower (p < 0.05) in the intra-articular chitosan injection groups (Lw-CS and Ow-CS) compared with the non-injection groups (Lw-N and Ow-N). VAS was lower in the Ow-CS group than in the Lw-CS group (p < 0.05). There was no significant difference in WOMAC between the intra-articular chitosan injection and non-injection groups at each time point (Lw-N vs. Lw-CS, Ow-N vs. Ow-CS, p > 0.05). CONCLUSION Arthroscopic surgery combined with intra-articular chitosan injection shows short-term positive effects in treating KOA. Intra-articular chitosan injection appears to have a greater short-term pain relief effect in obese patients.
Collapse
Affiliation(s)
- Qihang Su
- Department of Sports MedicineTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Department of OrthopedicsShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qiuchen Cai
- Department of Sports MedicineTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Xiaofei Feng
- Department of OrthopedicsNingbo No. 2 HospitalNingboChina
| | - Chenglong Huang
- Department of Sports MedicineTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Heng'an Ge
- Department of Sports MedicineTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Liyang Chen
- Department of Sports MedicineTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Chao Xue
- Department of Sports MedicineTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Centao Liu
- Department of Sports MedicineTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Jun Li
- Department of Sports MedicineTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Biao Cheng
- Department of Sports MedicineTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Department of OrthopedicsShanghai Tenth People's Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
8
|
Cui A, Zhang J, Deng H, Wei X, Zhuang Y, Wang H. Weight change patterns across adulthood are associated with the risk of osteoarthritis: a population-based study. Aging Clin Exp Res 2024; 36:138. [PMID: 38935236 PMCID: PMC11211181 DOI: 10.1007/s40520-024-02792-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Body weight has been recognized as a driving factor of osteoarthritis. Few studies had investigated the association between weight status across adulthood and risk of osteoarthritis (OA). This study investigates the association of weight change patterns across adulthood (lasting at least 25 years) with the risk of OA from the National Health and Nutrition Examination Survey (NHANES) 2013-2018. METHODS The study assessed the relationship between weight change across adulthood and OA in 7392 individuals aged > 50 spanning a minimum of 25 years. Multivariate linear regression analyses were utilized to detect the association between weight change patterns and self-reported OA. Restricted cubic splines (RCS) were used to examine the nonlinear relationship between absolute weight change and OA risk. RESULTS From 10 years ago to survey, the risk of OA was 1.34-fold (95% CI 1.07-1.68) in people changed from obese to non-obese, 1.61-fold (95% CI 1.29-2.00) in people change from non-obese to obese, and 1.82-fold (95% CI 1.49-2.22) in stable obese people compared with people who were at stable normal weight. Similar patterns were also observed at age 25 years to baseline and age 25 years to 10 years before the baseline. The dose-response association of RCS found a U-shaped relationship between absolute weight change and OA risk. CONCLUSIONS The study suggests that weight patterns across adulthood are associated with the risk of OA. These findings stressed important to maintain a normal weight throughout adulthood, especially to prevent ignored weight gain in early adulthood to reduce OA risk later.
Collapse
Affiliation(s)
- Aiyong Cui
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Jun Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Hongli Deng
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xing Wei
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Yan Zhuang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Hu Wang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| |
Collapse
|
9
|
Epanomeritakis IE, Khan WS. Adipose-derived regenerative therapies for the treatment of knee osteoarthritis. World J Stem Cells 2024; 16:324-333. [PMID: 38690511 PMCID: PMC11056639 DOI: 10.4252/wjsc.v16.i4.324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024] Open
Abstract
Knee osteoarthritis is a degenerative condition with a significant disease burden and no disease-modifying therapy. Definitive treatment ultimately requires joint replacement. Therapies capable of regenerating cartilage could significantly reduce financial and clinical costs. The regenerative potential of mesenchymal stromal cells (MSCs) has been extensively studied in the context of knee osteoarthritis. This has yielded promising results in human studies, and is likely a product of immunomodulatory and chondroprotective biomolecules produced by MSCs in response to inflammation. Adipose-derived MSCs (ASCs) are becoming increasingly popular owing to their relative ease of isolation and high proliferative capacity. Stromal vascular fraction (SVF) and micro-fragmented adipose tissue (MFAT) are produced by the enzymatic and mechanical disruption of adipose tissue, respectively. This avoids expansion of isolated ASCs ex vivo and their composition of heterogeneous cell populations, including immune cells, may potentiate the reparative function of ASCs. In this editorial, we comment on a multicenter randomized trial regarding the efficacy of MFAT in treating knee osteoarthritis. We discuss the study's findings in the context of emerging evidence regarding adipose-derived regenerative therapies. An underlying mechanism of action of ASCs is proposed while drawing important distinctions between the properties of isolated ASCs, SVF, and MFAT.
Collapse
Affiliation(s)
- Ilias E Epanomeritakis
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Wasim S Khan
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
10
|
Kennedy O, Kitson A, Okpara C, Chow LW, Gonzalez-Fernandez T. Immunomodulatory Strategies for Cartilage Regeneration in Osteoarthritis. Tissue Eng Part A 2024; 30:259-271. [PMID: 38126327 DOI: 10.1089/ten.tea.2023.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent musculoskeletal disorder and a leading cause of disability globally. Although many efforts have been made to treat this condition, current tissue engineering (TE) and regenerative medicine strategies fail to address the inflammatory tissue environment that leads to the rapid progression of the disease and prevents cartilage tissue formation. First, this review addresses in detail the current anti-inflammatory therapies for OA with a special emphasis on pharmacological approaches, gene therapy, and mesenchymal stromal cell (MSC) intra-articular administration, and discusses the reasons behind the limited clinical success of these approaches at enabling cartilage regeneration. Then, we analyze the state-of-the-art TE strategies and how they can be improved by incorporating immunomodulatory capabilities such as the optimization of biomaterial composition, porosity and geometry, and the loading of anti-inflammatory molecules within an engineered structure. Finally, the review discusses the future directions for the new generation of TE strategies for OA treatment, specifically focusing on the spatiotemporal modulation of anti-inflammatory agent presentation to allow for tailored patient-specific therapies. Impact statement Osteoarthritis (OA) is a prevalent and debilitating musculoskeletal disorder affecting millions worldwide. Despite significant advancements in regenerative medicine and tissue engineering (TE), mitigating inflammation while simultaneously promoting cartilage tissue regeneration in OA remains elusive. In this review article, we discuss current anti-inflammatory therapies and explore their potential synergy with cutting-edge cartilage TE strategies, with a special focus on novel spatiotemporal and patient-specific anti-inflammatory strategies.
Collapse
Affiliation(s)
- Orlaith Kennedy
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Andrew Kitson
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Chiebuka Okpara
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Lesley W Chow
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | | |
Collapse
|
11
|
Brittberg M. Treatment of knee cartilage lesions in 2024: From hyaluronic acid to regenerative medicine. J Exp Orthop 2024; 11:e12016. [PMID: 38572391 PMCID: PMC10985633 DOI: 10.1002/jeo2.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Abstract Intact articular cartilage plays a vital role in joint homeostasis. Local cartilage repairs, where defects in the cartilage matrix are filled in and sealed to congruity, are therefore important treatments to restore a joint equilibrium. The base for all cartilage repairs is the cells; either chondrocytes or chondrogeneic cells from bone, synovia and fat tissue. The surgical options include bone marrow stimulation techniques alone or augmented with scaffolds, chondrogeneic cell implantations and osteochondral auto- or allografts. The current trend is to choose one-stage procedures being easier to use from a regulatory point of view. This narrative review provides an overview of the current nonoperative and surgical options available for the repair of various cartilage lesions. Level of Evidence Level IV.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, Team Orthopedic Research Region Halland‐TOR, Region Halland Orthopaedics, Varberg HospitalUniversity of GothenburgVarbergSweden
| |
Collapse
|
12
|
Xiong Z, Peng G, Deng J, Liu M, Ning X, Zhuang Y, Yang H, Sun H. Therapeutic targets and potential delivery systems of melatonin in osteoarthritis. Front Immunol 2024; 15:1331934. [PMID: 38327517 PMCID: PMC10847247 DOI: 10.3389/fimmu.2024.1331934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent age-related musculoskeletal disorder that typically results in chronic pain and disability. OA is a multifactorial disease, with increased oxidative stress, dysregulated inflammatory response, and impaired matrix metabolism contributing to its onset and progression. The neurohormone melatonin, primarily synthesized by the pineal gland, has emerged as a promising therapeutic agent for OA due to its potential to alleviate inflammation, oxidative stress, and chondrocyte death with minimal adverse effects. The present review provides a comprehensive summary of the current understanding regarding melatonin as a promising pharmaceutical agent for the treatment of OA, along with an exploration of various delivery systems that can be utilized for melatonin administration. These findings may provide novel therapeutic strategies and targets for inhibiting the advancement of OA.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
Gu F, Zhang K, Zhu WA, Sui Z, Li J, Xie X, Yu T. Silicone rubber sealed channel induced self-healing of large bone defects: Where is the limit of self-healing of bone? J Orthop Translat 2023; 43:21-35. [PMID: 37965195 PMCID: PMC10641457 DOI: 10.1016/j.jot.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 11/16/2023] Open
Abstract
Background Large defects of long tubular bones due to severe trauma, bone tumor resection, or osteomyelitis debridement are challenging in orthopedics. Bone non-union and other complications often lead to serious consequences. At present, autologous bone graft is still the gold standard for the treatment of large bone defects. However, autologous bone graft sources are limited. Silicon rubber (SR) materials are widely used in biomedical fields, due to their safety and biocompatibility, and even shown to induce nerve regeneration. Materials and methods We extracted rat bone marrow mesenchymal stem cells (BMMSCs) in vitro and verified the biocompatibility of silicone rubber through cell experiments. Then we designed a rabbit radius critical sized bone defect model to verify the effect of silicone rubber sealed channel inducing bone repair in vivo. Results SR sealed channel could prevent the fibrous tissue from entering the fracture end and forming bone nonunion, thereby inducing self-healing of long tubular bone through endochondral osteogenesis. The hematoma tissue formed in the early stage was rich in osteogenesis and angiogenesis related proteins, and gradually turned into vascularization and endochondral osteogenesis, and finally realized bone regeneration. Conclusions In summary, our study proved that SR sealed channel could prevent the fibrous tissue from entering the fracture end and induce self-healing of long tubular bone through endochondral osteogenesis. In this process, the sealed environment provided by the SR channel was key, and this might indicate that the limit of self-healing of bone exceeded the previously thought. The translational potential of this article This study investigated a new concept to induce the self-healing of large bone defects. It could avoid trauma caused by autologous bone extraction and possible rejection reactions caused by bone graft materials. Further research based on this study, including the innovation of induction materials, might invent a new type of bone inducing production, which could bring convenience to patients. We believed that this study had significant meaning for the treatment of large bone defects in clinical practice.
Collapse
Affiliation(s)
- Feng Gu
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Ke Zhang
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Wan-an Zhu
- Department of Radiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenjiang Sui
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Jiangbi Li
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoping Xie
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Tiecheng Yu
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
14
|
Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, Metabolic Syndrome, and Osteoarthritis-An Updated Review. Curr Obes Rep 2023; 12:308-331. [PMID: 37578613 DOI: 10.1007/s13679-023-00520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS), also called the 'deadly quartet' comprising obesity, diabetes, dyslipidemia, and hypertension, has been ascertained to have a causal role in the pathogenesis of osteoarthritis (OA). This review is aimed at discussing the current knowledge on the contribution of metabolic syndrome and its various components to OA pathogenesis and progression. RECENT FINDINGS Lately, an increased association identified between the various components of metabolic syndrome (obesity, diabetes, dyslipidemia, and hypertension) with OA has led to the identification of the 'metabolic phenotype' of OA. These metabolic perturbations alongside low-grade systemic inflammation have been identified to inflict detrimental effects upon multiple tissues of the joint including cartilage, bone, and synovium leading to complete joint failure in OA. Recent epidemiological and clinical findings affirm that adipokines significantly contribute to inflammation, tissue degradation, and OA pathogenesis mediated through multiple signaling pathways. OA is no longer perceived as just a 'wear and tear' disease and the involvement of the metabolic components in OA pathogenesis adds up to the complexity of the disease. Given the global surge in obesity and its allied metabolic perturbations, this review aims to throw light on the current knowledge on the pathophysiology of MetS-associated OA and the need to address MetS in the context of metabolic OA management. Better regulation of the constituent factors of MetS could be profitable in preventing MetS-associated OA. The identification of key roles for several metabolic regulators in OA pathogenesis has also opened up newer avenues in the recognition and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India.
| | | | - Sudip Ghosh
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India
| | - Nagasuryaprasad Kotikalapudi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School Teaching Hospital, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Li J, Zhang H, Han Y, Hu Y, Geng Z, Su J. Targeted and responsive biomaterials in osteoarthritis. Theranostics 2023; 13:931-954. [PMID: 36793867 PMCID: PMC9925319 DOI: 10.7150/thno.78639] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/07/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by loss of articular cartilage and chronic inflammation, involving multiple cellular dysfunctions and tissue lesions. The non-vascular environment and dense cartilage matrix in the joints tend to block drug penetration, resulting in low drug bioavailability. There is a desire to develop safer and more effective OA therapies to meet the challenges of an aging world population in the future. Biomaterials have achieved satisfactory results in improving drug targeting, prolonging the duration of action, and achieving precision therapy. This article reviews the current basic understanding of the pathological mechanisms and clinical treatment dilemmas of OA, summarizes and discusses the advances for different kinds of targeted and responsive biomaterials in OA, seeking to provide new perspectives for the treatment of OA. Subsequently, limitations and challenges in clinical translation and biosafety are analyzed to guide the development of future therapeutic strategies for OA. As the need for precision medicine rises over time, emerging multifunctional biomaterials based on tissue targeting and controlled release will become an irreplaceable part of OA management.
Collapse
Affiliation(s)
- Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China.,School of Medicine, Shanghai University, Shanghai 200444, China.,School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
16
|
Lyu L, Cai Y, Xiao M, Liang J, Zhang G, Jing Z, Zhang R, Dang X. Causal Relationships of General and Abdominal Adiposity on Osteoarthritis: A Two-Sample Mendelian Randomization Study. J Clin Med 2022; 12:jcm12010320. [PMID: 36615120 PMCID: PMC9820884 DOI: 10.3390/jcm12010320] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Adiposity is closely related to osteoarthritis, but the causal effects of different types of adiposity on osteoarthritis are indistinct. This study conducted a Mendelian Randomization (MR) analysis for the causal effects of general adiposity and abdominal adiposity on knee osteoarthritis (KOA) and hip osteoarthritis (HOA). Methods: The general adiposity was assessed by body mass index (BMI), while the abdominal adiposity was evaluated with waist circumference (WC), hip circumference (HC), and waist-to-hip ratio (WHR). The data used in this two-sample MR analysis originated from genome-wide association studies (GWAS). Significant (p < 5 × 10−8) and independent (r2 < 0.01) single-nucleotide polymorphisms were selected as instrumental variables for the MR analysis. Subsequently, this study used the inverse variance weighted, weighted median, and other methods for the causal inference, and the results were presented as odds ratios (OR). Moreover, sensitivity analyses were conducted to assess the stability and reliability of the results. Results: The MR results revealed positive causal effects of BMI on KOA (OR: 1.694; 95% CI: from 1.492 to 1.923; p = 3.96 × 10−16) and HOA (OR: 1.412; 95% CI: from 1.196 to 1.666; p = 4.58 × 10−5). Additionally, WC and HC both positively and causally related to KOA (WC: OR: 1.827; 95% CI: from 1.564 to 2.134; p = 2.68 × 10−14; HC: OR: 1.610; 95% CI: from 1.357 to 1.912; p = 5.03 × 10−8) and HOA (WC: OR: 1.491; 95% CI: from 1.254 to 1.772; p = 5.85 × 10−6; HC: OR: 1.439; 95% CI: from 1.205 to 1.719; p = 5.82 × 10−5). However, no causal relationship existed between WHR and obesity. These results were robust according to the sensitivity analyses. Conclusions: This study indicated that both general and abdominal obesity had positive causal effects on knee osteoarthritis and hip osteoarthritis.
Collapse
Affiliation(s)
- Leifeng Lyu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an 710004, China
| | - Yuanqing Cai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an 710004, China
| | - Mofan Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jialin Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an 710004, China
| | - Guangyang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an 710004, China
| | - Zhaopu Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an 710004, China
| | - Rupeng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an 710004, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, NO. 157, Xiwu Road, Xi'an 710004, China
| |
Collapse
|
17
|
Tong L, Yu H, Huang X, Shen J, Xiao G, Chen L, Wang H, Xing L, Chen D. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 2022; 10:60. [PMID: 36127328 PMCID: PMC9489702 DOI: 10.1038/s41413-022-00226-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease that causes painful swelling and permanent damage to the joints in the body. The molecular mechanisms of OA are currently unknown. OA is a heterogeneous disease that affects the entire joint, and multiple tissues are altered during OA development. To better understand the pathological mechanisms of OA, new approaches, methods, and techniques need to be used to understand OA pathogenesis. In this review, we first focus on the epigenetic regulation of OA, with a particular focus on DNA methylation, histone modification, and microRNA regulation, followed by a summary of several key mediators in OA-associated pain. We then introduce several innovative techniques that have been and will continue to be used in the fields of OA and OA-associated pain, such as CRISPR, scRNA sequencing, and lineage tracing. Next, we discuss the timely updates concerning cell death regulation in OA pathology, including pyroptosis, ferroptosis, and autophagy, as well as their individual roles in OA and potential molecular targets in treating OA. Finally, our review highlights new directions on the role of the synovial lymphatic system in OA. An improved understanding of OA pathogenesis will aid in the development of more specific and effective therapeutic interventions for OA.
Collapse
Affiliation(s)
- Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
| | - Huan Yu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xingyun Huang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Shen
- Department of Orthopedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huaiyu Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lianping Xing
- Department of Pathology and Laboratory of Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
18
|
Esmaeili J, Barati A, Charelli LE. Discussing the final size and shape of the reconstructed tissues in tissue engineering. J Artif Organs 2022:10.1007/s10047-022-01360-1. [PMID: 36125581 DOI: 10.1007/s10047-022-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Tissue engineering (TE) has made a revolution in repairing, replacing, or regenerating tissues or organs, but it has still a long way ahead. The mechanical properties along with suitable physicochemical and biological characteristics are the initial criteria for scaffolds in TE that should be fulfilled. This research will provide another point of view toward TE challenges concerning the morphological and geometrical aspects of the reconstructed tissue and which parameters may affect it. Based on our survey, there is a high possibility that the final reconstructed tissue may be different in size and shape compared to the original design scaffold. Thereby, the 3D-printed scaffold might not guarantee an accurate tissue reconstruction. The main justification for this is the unpredicted behavior of cells, specifically in the outer layer of the scaffold. It can also be a concern when the scaffold is implanted while cell migration cannot be controlled through the in vivo signaling pathways, which might cause cancer challenges. To sum up, it is concluded that more studies are necessary to focus on the size and geometry of the final reconstructed tissue.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.,Tissue Engineering Department, TISSUEHUB Co., Tehran, Iran
| | - Aboulfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.
| | - Letícia Emiliano Charelli
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Bednarczyk E. Chondrocytes In Vitro Systems Allowing Study of OA. Int J Mol Sci 2022; 23:ijms231810308. [PMID: 36142224 PMCID: PMC9499487 DOI: 10.3390/ijms231810308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is an extremely complex disease, as it combines both biological-chemical and mechanical aspects, and it also involves the entire joint consisting of various types of tissues, including cartilage and bone. This paper describes the methods of conducting cell cultures aimed at searching for the mechanical causes of OA development, therapeutic solutions, and methods of preventing the disease. It presents the systems for the cultivation of cartilage cells depending on the level of their structural complexity, and taking into account the most common solutions aimed at recreating the most important factors contributing to the development of OA, that is mechanical loads. In-vitro systems used in tissue engineering to investigate the phenomena associated with OA were specified depending on the complexity and purposefulness of conducting cell cultures.
Collapse
Affiliation(s)
- Ewa Bednarczyk
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| |
Collapse
|
20
|
Zong Z, Xu L, Zhang N, Cheung WH, Li G, Lin S. Editorial: Recent trends in pharmacological treatment of musculoskeletal disorders. Front Pharmacol 2022; 13:908977. [PMID: 36120356 PMCID: PMC9479490 DOI: 10.3389/fphar.2022.908977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhixian Zong
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ning Zhang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- *Correspondence: Sien Lin,
| |
Collapse
|
21
|
Bao C, Zhu S, Song K, He C. HK2: a potential regulator of osteoarthritis via glycolytic and non-glycolytic pathways. Cell Commun Signal 2022; 20:132. [PMID: 36042519 PMCID: PMC9426234 DOI: 10.1186/s12964-022-00943-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is an age-related chronic degenerative joint disease where the main characteristics include progressive degeneration of cartilage, varying degrees of synovitis, and periarticular osteogenesis. However, the underlying factors involved in OA pathogenesis remain elusive which has resulted in poor clinical treatment effect. Recently, glucose metabolism changes provide a new perspective on the pathogenesis of OA. Under the stimulation of external environment, the metabolic pathway of chondrocytes tends to change from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Previous studies have demonstrated that glycolysis of synovial tissue is increased in OA. The hexokinase (HK) is the first rate limiting enzyme in aerobic glycolysis, participating and catalyzing the main pathway of glucose utilization. An isoform of HKs, HK2 is considered to be a key regulator of glucose metabolism, promotes the transformation of glycolysis from OXPHOS to aerobic glycolysis. Moreover, the expression level of HK2 in OA synovial tissue (FLS) was higher than that in control group, which indicated the potential therapeutic effect of HK2 in OA. However, there is no summary to help us understand the potential therapeutic role of glucose metabolism in OA. Therefore, this review focuses on the properties of HK2 and existing research concerning HK2 and OA. We also highlight the potential role and mechanism of HK2 in OA. Video abstract
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Kangping Song
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Sichuan Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
22
|
Oo WM, Mobasheri A, Hunter DJ. A narrative review of anti-obesity medications for obese patients with osteoarthritis. Expert Opin Pharmacother 2022; 23:1381-1395. [PMID: 35855642 DOI: 10.1080/14656566.2022.2104636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The prevalence of both obesity and osteoarthritis (OA) are increasing worldwide (twindemic), and the association between the two chronic diseases is also well-established. AREAS COVERED : In this narrative review, we will briefly describe the double burdens of both diseases, the impact of weight loss or gain on OA incidence and structural progression and discuss the biomechanical and anti-inflammatory mechanisms mediating these effects. FDA-approved anti-obesity drugs are summarized in terms of their clinical efficacy and safety profile, and the completed or ongoing phase 2/3 clinical trials of such drugs in OA patients with obesity are examined. EXPERT OPINION : We will discuss the perspectives related to principles of prescription of anti-obesity drugs, the potential role of phenotype-guided approach, time to drug effects in clinical trials, sustainability of weight loss based on the real-world studies, the importance of concomitant therapies such as dieting and exercises, and the role of weight loss on non-weight bearing OA joints. Although obesity is the major risk factor for OA pathogenesis and progression, and there are a variety of anti-obesity medications on the market, research on the use of these disease-modifying drugs in OA (DMOAD) is still sparse..
Collapse
Affiliation(s)
- Win Min Oo
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Mandalay, Myanmar
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - David J Hunter
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Emmi A, Stocco E, Boscolo-Berto R, Contran M, Belluzzi E, Favero M, Ramonda R, Porzionato A, Ruggieri P, De Caro R, Macchi V. Infrapatellar Fat Pad-Synovial Membrane Anatomo-Fuctional Unit: Microscopic Basis for Piezo1/2 Mechanosensors Involvement in Osteoarthritis Pain. Front Cell Dev Biol 2022; 10:886604. [PMID: 35837327 PMCID: PMC9274201 DOI: 10.3389/fcell.2022.886604] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
The Infrapatellar Fat Pad (IFP) is a fibro-adipose tissue of the knee recently reconsidered as part of a single anatomo-functional unit (AFU) together with the synovial membrane (SM). Several evidence support the role of this unit in the mechanisms that trigger and perpetuate the onset and progression of osteoarthritis (OA) disease. Additionally, the contribution of IFP-SM AFU in OA-associated pain has also been supposed, but this assumption still needs to be fully elucidated. Within this context, the recent discovery of the mechanoceptive Piezo ion channels (i.e., Piezo1 and Piezo2) in mammals and consciousness on their role in mediating both mechanoceptive and inflammatory stimuli could shed some light on knee OA pain, as well as on the process leading from acute to chronic nociceptive responses. For this purpose, the IFP-SM AFUs of both healthy donors (non-OA IFP-SM AFUs, n = 10) and OA patients (OA IFP-SM AFUs, n = 10) were processed by histology and immunohistochemistry. After the attribution of a histopathological score to IFP-SM AFUs to confirm intrinsic differences between the two groups, the specimens were investigated for the expression and localization/distribution pattern of the mechanosensors Piezo1 and Piezo2. In addition, the presence of monocytes/macrophages (CD68), peripheral nerve endings (PGP9.5) and neoangiogenesis signs (YAP1) was evaluated for a broad tissue characterization. The study results lead to a better description of the IFP-SM AFU microscopic features in both healthy and pathological conditions, highlighting peculiar differences in the study cohort. Specifically, immunopositivity towards Piezo1/2, CD68 and YAP1 markers was detected at vessels level in the OA- IFP-SM AFUs compartments, differently from the non-OA-group. A correlation with pain was also inferred, paving the way for the identification of new and effective molecules in OA management.
Collapse
Affiliation(s)
- Aron Emmi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Rafael Boscolo-Berto
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Martina Contran
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
- Internal Medicine I, Cà Foncello Hospital, Treviso, Italy
| | - Roberta Ramonda
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- *Correspondence: Raffaele De Caro,
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| |
Collapse
|
24
|
|
25
|
Zhang C, Lin Y, Yan CH, Zhang W. Adipokine Signaling Pathways in Osteoarthritis. Front Bioeng Biotechnol 2022; 10:865370. [PMID: 35519618 PMCID: PMC9062110 DOI: 10.3389/fbioe.2022.865370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease that affects millions of individuals. The pathogenesis of OA has not been fully elucidated. Obesity is a well-recognized risk factor for OA. Multiple studies have demonstrated adipokines play a key role in obesity-induced OA. Increasing evidence show that various adipokines may significantly affect the development or clinical course of OA by regulating the pro/anti-inflammatory and anabolic/catabolic balance, matrix remodeling, chondrocyte apoptosis and autophagy, and subchondral bone sclerosis. Several signaling pathways are involved but still have not been systematically investigated. In this article, we review the cellular and molecular mechanisms of adipokines in OA, and highlight the possible signaling pathways. The review suggested adipokines play important roles in obesity-induced OA, and exert downstream function via the activation of various signaling pathways. In addition, some pharmaceuticals targeting these pathways have been applied into ongoing clinical trials and showed encouraging results. However, these signaling pathways are complex and converge into a common network with each other. In the future work, more research is warranted to further investigate how this network works. Moreover, more high quality randomised controlled trials are needed in order to investigate the therapeutic effects of pharmaceuticals against these pathways for the treatment of OA. This review may help researchers to better understand the pathogenesis of OA, so as to provide new insight for future clinical practices and translational research.
Collapse
Affiliation(s)
- Chaofan Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yunzhi Lin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chun Hoi Yan
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
26
|
Sakhrani N, Lee AJ, Murphy LA, Kenawy HM, Visco CJ, Ateshian GA, Shah RP, Hung CT. Toward Development of a Diabetic Synovium Culture Model. Front Bioeng Biotechnol 2022; 10:825046. [PMID: 35265601 PMCID: PMC8899218 DOI: 10.3389/fbioe.2022.825046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation and inflammation of synovium, the specialized connective tissue that envelops the diarthrodial joint. Type 2 diabetes mellitus (DM) is often found in OA patients, with nearly double the incidence of arthritis reported in patients with diabetes (52%) than those without it (27%). The correlation between OA and DM has been attributed to similar risk factors, namely increasing age and joint loading due to obesity. However, a potential causative link is not well understood due to comorbidities involved with treating diabetic patients, such as high infection rates and poor healing response caused by hyperglycemia and insulin resistance. The purpose of this study was to investigate the effect of hyperglycemic and insulin culture conditions on synovium properties. It was hypothesized that modeling hyperglycemia-induced insulin resistance in synovium would provide novel insights of OA pathogenesis in DM patients. To simulate DM in the synovial joint, healthy synovium was preconditioned in either euglycemic (EG) or hyperglycemic (HG) glucose concentrations with insulin in order to induce the biological response of the diseased phenotype. Synovium biochemical composition was evaluated to determine ECM remodeling under hyperglycemic culture conditions. Concurrent changes in AKT phosphorylation, a signaling pathway implicated in insulin resistance, were measured along with gene expression data for insulin receptors, glucose transporters, and specific glycolysis markers involved in glucose regulation. Since fluid shear stress arising during joint articulation is a relevant upstream stimulus for fibroblast-like synoviocytes (FLS), the predominant cell type in synovium, FLS mechanotransduction was evaluated via intracellular calcium ([Ca2+]i). Incidence and length of primary cilia, a critical effector of cell mechanosensing, were measured as potential mechanisms to support differences in [Ca2+]i responses. Hyperglycemic culture conditions decreased collagen and GAG content compared to EG groups, while insulin recovered ECM constituents. FLS mechanosensitivity was significantly greater in EG and insulin conditions compared to HG and non-insulin treated groups. Hyperglycemic treatment led to decreased incidence and length of primary cilia and decreased AKT phosphorylation, providing possible links to the mechanosensing response and suggesting a potential correlation between glycemic culture conditions, diabetic insulin resistance, and OA development.
Collapse
Affiliation(s)
- Neeraj Sakhrani
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andy J Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Lance A Murphy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Hagar M Kenawy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Christopher J Visco
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, United States
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Roshan P Shah
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
27
|
Hart DA. Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle. Front Sports Act Living 2021; 3:685845. [PMID: 34927066 PMCID: PMC8677937 DOI: 10.3389/fspor.2021.685845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of Homo sapiens, and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Collapse
Affiliation(s)
- David A Hart
- Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Family Practice, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Wang B, Chariyev-Prinz F, Burdis R, Eichholz K, Kelly DJ. Additive manufacturing of cartilage-mimetic scaffolds as off-the-shelf implants for joint regeneration. Biofabrication 2021; 14. [PMID: 34883477 DOI: 10.1088/1758-5090/ac41a0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
Biomimetic scaffolds that provide a tissue-specific environment to cells are particularly promising for tissue engineering and regenerative medicine applications. The goal of this study was to integrate emerging additive manufacturing and biomaterial design strategies to produce articular cartilage (AC) mimetic scaffolds that could be used as 'off-the-shelf' implants for joint regeneration. To this end alginate sulfate, a sulfated glycosaminoglycan (sGAG) mimic, was used to functionalize porous alginate-based scaffolds and to support the sustained release of transforming growth factor-β3 (TGF-β3). Covalent crosslinking dramatically improved the elasticity of the alginate/alginate sulfate scaffolds, while scaffold architecture could be tailored using a directional freezing technique. Introducing such an anisotropic architecture was found to promote mesenchymal stem cell (MSC) infiltration into the scaffold and to direct the orientation of the deposited extracellular matrix, leading to the development of cartilage tissue with a biomimetic zonal architecture. In vitro experiments also demonstrated the capacity of the sulfated scaffolds to both enhance chondrogenesis of MSCs and to control the release of TGF-β3, leading to the development of a tissue rich in sGAG and type II collagen. The scaffolds were further reinforced with a 3D printed PLCL framework, leading to composite implants that were more elastic than those reinforced with PCL, and which better mimicked the bulk mechanical properties of native cartilage tissue. The ability of this composite scaffold to support chondrogenesis was then confirmed within a dynamic culture system. Altogether, these findings demonstrate the potential of such biomimetic scaffolds as putative 'single-stage' or 'off-the-shelf' strategies for articular cartilage regeneration.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, IRELAND
| | - Farhad Chariyev-Prinz
- Trinity Biomedical Institute, Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - Ross Burdis
- Trinity Biomedical Institute, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - Kian Eichholz
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, IRELAND
| | - Daniel John Kelly
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, IRELAND
| |
Collapse
|
29
|
Wei W, Ma Y, Zhang X, Zhou W, Wu H, Zhang J, Lin J, Tang C, Liao Y, Li C, Wang X, Yao X, Koh YW, Huang W, Ouyang H. Biomimetic Joint Paint for Efficient Cartilage Repair by Simultaneously Regulating Cartilage Degeneration and Regeneration in Pigs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54801-54816. [PMID: 34706537 DOI: 10.1021/acsami.1c17629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Irregular partial-thickness cartilage defect is a common pathogenesis of osteoarthritis (OA) with no available treatment in clinical practice. Currently, cartilage tissue engineering is only suitable for a limited area of full-thickness cartilage defect. Here, we design a biomimetic joint paint for the intractable partial-thickness cartilage defect repair. The joint paint, composed of a bridging layer of chondroitin sulfate and a surface layer of gelatin methacrylate with hyaluronic acid, can quickly and tightly adhere to the cartilage defect by light activation. Being treated by the joint paint, the group of rabbit and pig models with partial-thickness cartilage defects showed a restoration of a smooth cartilage surface and the preservation of normal glycosaminoglycan content, whereas the untreated control group exhibited serious progressive OA development. This paint treatment functions by prohibiting chondrocyte apoptosis, maintaining chondrocyte phenotype, and preserving the content of glycosaminoglycan in the partial-thickness cartilage defects. These findings illustrated that the biomimetic joint paint is an effective and revolutionary therapeutics for the patients with noncurable partial-thickness cartilage defects.
Collapse
Affiliation(s)
- Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China
| | - Yuanzhu Ma
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chenqi Tang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chenglin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China
| | - Yi Wen Koh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Wenwen Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310000, Zhejiang, China
| |
Collapse
|
30
|
Gherghel R, Iordan DA, Mocanu MD, Onu A, Onu I. Osteoarthritis is not a disease, but rather an accumulation of predisposing factors. A systematic review. BALNEO AND PRM RESEARCH JOURNAL 2021. [DOI: 10.12680/balneo.2021.441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Although they do not endanger the life of the individual, the major symptoms of osteoarthritis (OA), such as pain, inflammation and dysfunction, it will slowly decrease quality of life and performance, leading finally to disabilities. Due to the fact that this disease has no cure, strategies are still being sought to slow its evolution. The lack of understanding of the predisposing and triggering factors of OA, has led to different approaches to this pathology so discussed, but with modest results. This systematic review aims to debate the main phenomena underlying joint destruction in OA, and etiopathogenic theories.
Materials and Methods: In this study were included 58 bibliographic sources, of which title 39 refers to OA, 6 with inflammation, 28 with cartilage, 3 with chondrocytes, and 5 with synovitis. In this study were discussed the etiopathogenic theories of OA which include: age, alteration of the cartilaginous matrix, alteration of chondrocyte metabolism, microtrauma and major trauma, inflammation of the joints - synovitis and obesity.
Results: Increasing the level of understanding of predisposing factors, the occurrence of acute inflammatory phenomenon and the perpetuation of mechanisms that latently maintain chronic inflammation that over time develops a destructive effect on articular cartilage, would limit the negative effects of OA, delay the evolution and optimally combat that maintain the vicious circle: inflammation → production of enzymes → chondrolysis → inflammation.
Conclusions: These studies contribute significantly to the understanding of destructive phenomena in OA. More studies are needed on the risk factors of OA and its production mechanisms, to find increasingly effective therapies that limiting its progression.
Keywords: Osteoarthritis, etiopathogenic theories, chronic inflammation, age, obesity, cartilaginous matrixm, chondrocyte metabolism
Collapse
Affiliation(s)
- Robert Gherghel
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, România 2. Departments of orthopedics and physiotherapy Micromedica Medical Clinic, Piatra Neamț
| | - Daniel-Andrei Iordan
- “Dunărea de Jos” University, Faculty of Physical Education and Sports, Galați, România
| | - Mircea-Dan Mocanu
- “Dunărea de Jos” University, Faculty of Physical Education and Sports, Galați, România
| | - Ana Onu
- Departments of orthopedics and physiotherapy Micromedica Medical Clinic, Piatra Neamț
| | - Ilie Onu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, România 2. Departments of orthopedics and physiotherapy Micromedica Medical Clinic, Piatra Neamț
| |
Collapse
|
31
|
Liao B, Guan M, Tan Q, Wang G, Zhang R, Huang J, Liu M, Chen H, Li K, Bai D, Zhu Y. Low-intensity pulsed ultrasound inhibits fibroblast-like synoviocyte proliferation and reduces synovial fibrosis by regulating Wnt/β-catenin signaling. J Orthop Translat 2021; 30:41-50. [PMID: 34611513 PMCID: PMC8458725 DOI: 10.1016/j.jot.2021.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Synovial fibrosis is a characteristic symptom of osteoarthritis (OA), which is closely associated with joint pain and stiffness. Previous studies have reported that low-intensity pulsed ultrasound (LIPUS) can alleviate cartilage degradation in OA. However, the functions and mechanisms of LIPUS in OA synovial fibrosis are still unknown. METHODS The destabilization of the medial meniscus (DMM) mouse model of OA was established in C57 male mice and fibroblast-like synoviocytes (FLS) were isolated from synovial tissue of OA patients. The knee joint diameter, Masson's trichrome (MT) and Hematoxylin-eosin (HE) staining were used to evaluate synovial fibrosis and hyperplasia. The Immunohistochemistry (IHC) staining was performed to detected the expression of synovial fibrosis makers and the activation of Wnt/β-catenin signaling in vivo. FLS were treated with TGF-β1 to serve as an in vitro model of synovial fibrosis, Wnt3a was used to activate the Wnt/β-catenin signaling in cells. Cell proliferation was detected by using EdU assay, cell viability was performed by CCK8 assay. The protein levels of α-SMA, CTGF, Col Ⅰ, β-catenin, active β-catenin, c-Myc and cyclin D1 were examined by western blot and immunofluorescence staining. RESULTS Two weeks after the LIPUS treatment, the synovial fibrosis, synovial hyperplasia and synoviocyte proliferation in the DMM model were significantly decreased. In vitro, LIPUS directly inhibited the TGF-β1-induced fibrotic response and proliferation of FLS. Meanwhile, LIPUS suppressed Wnt/β-catenin signaling in the synovium of DMM mice and cultured FLS. More importantly, we found that the synovial fibrosis makers, Wnt/β-catenin pathway downstream proteins and FLS proliferation were significantly decreased in Wnt3a-stimulated FLS following LIPUS treatment. CONCLUSIONS Our results present a novel role of LIPUS in OA-related synovial fibrosis, which is associated with its ability to repress Wnt/β-catenin signaling in FLS. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study provides new insight into the clinical application of LIPUS as a therapeutic option to manage synovial fibrosis in OA.
Collapse
Affiliation(s)
- Bo Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Mengtong Guan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Rehabilitation Medicine, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan province, 610091, China
| | - Qiaoyan Tan
- Center of Bone Metabolism and Repair (Orthopedics Medicine), Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Gailan Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ruobin Zhang
- Center of Bone Metabolism and Repair (Orthopedics Medicine), Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Junlan Huang
- Center of Bone Metabolism and Repair (Orthopedics Medicine), Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mi Liu
- Center of Bone Metabolism and Repair (Orthopedics Medicine), Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Kaiting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
32
|
He Y, Yocum L, Alexander PG, Jurczak MJ, Lin H. Urolithin A Protects Chondrocytes From Mechanical Overloading-Induced Injuries. Front Pharmacol 2021; 12:703847. [PMID: 34220525 PMCID: PMC8245698 DOI: 10.3389/fphar.2021.703847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023] Open
Abstract
Physiological mechanical stimulation has been shown to promote chondrogenesis, but excessive mechanical loading results in cartilage degradation. Currently, the underlying mechanotransduction pathways in the context of physiological and injurious loading are not fully understood. In this study, we aim to identify the critical factors that dictate chondrocyte response to mechanical overloading, as well as to develop therapeutics that protect chondrocytes from mechanical injuries. Specifically, human chondrocytes were loaded in hyaluronic hydrogel and then subjected to dynamic compressive loading under 5% (DL-5% group) or 25% strain (DL-25% group). Compared to static culture and DL-5%, DL-25% reduced cartilage matrix formation from chondrocytes, which was accompanied by the increased senescence level, as revealed by higher expression of p21, p53, and senescence-associated beta-galactosidase (SA-β-Gal). Interestingly, mitophagy was suppressed by DL-25%, suggesting a possible role for the restoration mitophagy in reducing cartilage degeneration with mechanical overloading. Next, we treated the mechanically overloaded samples (DL-25%) with Urolithin A (UA), a natural metabolite previously shown to enhance mitophagy in other cell types. qRT-PCR, histology, and immunostaining results confirmed that UA treatment significantly increased the quantity and quality of cartilage matrix deposition. Interestingly, UA also suppressed the senescence level induced by mechanical overloading, demonstrating its senomorphic potential. Mechanistic analysis confirmed that UA functioned partially by enhancing mitophagy. In summary, our results show that mechanical overloading results in cartilage degradation partially through the impairment of mitophagy. This study also identifies UA's novel use as a compound that can protect chondrocytes from mechanical injuries, supporting high-quality cartilage formation/maintenance.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren Yocum
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Peter G Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Affiliation(s)
- Chelsea Hopkins
- The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Orthopaedics & Traumatology, Shatin, N.T, Hong Kong, China
| | - Di Chen
- Shenzhen Institutes of Advanced Technology, Shenzhen University of Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|