1
|
Chuang SC, Chou YS, Lin YS, Chang JK, Chen CH, Ho ML. Cyclooxygenase-2 negatively regulates osteogenic differentiation in murine bone marrow mesenchymal stem cells via the FOXO3a/p27kip1 pathway. Bone Joint Res 2025; 14:407-419. [PMID: 40335058 PMCID: PMC12058311 DOI: 10.1302/2046-3758.145.bjr-2024-0262.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Aims Cyclooxygenase-2 (COX-2) is an enzyme that synthesizes prostaglandins from arachidonic acid. Previous reports have indicated that COX-2 is constitutively expressed in osteogenic cells instead of being expressed only after pathogenic induction, and that it facilitates osteoblast proliferation via PTEN/Akt/p27kip1 signalling. However, the role of COX-2 in osteogenic differentiation of murine bone marrow mesenchymal stromal cells (BMSCs) remains controversial. In this study, we investigated the function of COX-2 in the osteogenic differentiation of BMSCs. Methods COX-2 inhibitor, COX-2 overexpression vector, and p27kip1 small interfering RNA (siRNA) were used to evaluate the role of COX-2 in osteogenic differentiation and related signalling pathways in BMSCs. Results We found that the messenger RNA (mRNA) and protein levels of COX-2 decreased gradually during osteogenic differentiation. Inhibition of COX-2 activity promoted FOXO3a and p27kip1 expression and simultaneously enhanced osteogenesis, as indicated by increased osteogenic gene expression and mineralization in BMSCs. Furthermore, when p27kip1 was silenced, the suppressive effects of COX-2 on osteogenesis were reversed. It demonstrated that the negative regulatory effect of COX-2 on osteogenesis was mediated by p27kip1. In addition, our results showed that overexpression of COX-2 reduced the mRNA and protein levels of FOXO3a and p27kip1, and thus attenuated osteogenic gene expression. These results indicate that COX-2 negatively regulates osteogenic differentiation by reducing the expression of osteogenic genes via the FOXO3a/p27kip1 signalling pathway. Conclusion Together with the findings from previous and current studies, these results indicate that COX-2 has a different role in proliferation versus differentiation during osteogenesis via FOXO3a/p27kip1 signalling in osteoblasts or BMSCs.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Shuan Chou
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Gangshan Hospital, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- PhD Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Materials Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Tsutsumi-Arai C, Tran A, Arai Y, Ono W, Ono N. Mandibular Condylar Cartilage in Development and Diseases: A PTHrP-Centric View. Orthod Craniofac Res 2025. [PMID: 40251915 DOI: 10.1111/ocr.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 12/25/2024] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
The mandibular condylar cartilage (MCC) is a dual-function component of the temporomandibular joint (TMJ), acting as both articular cartilage for jaw movement and growth cartilage for vertical growth of the mandibular condyle. Parathyroid hormone-related protein (PTHrP) plays a critical role in orchestrating chondrogenesis in the long bone, and its importance is also highlighted in both MCC development and TMJ function. Here, we discuss the role of PTHrP in the development, growth and diseases of the MCC. PTHrP is a key morphogen in the MCC that regulates chondrogenesis by promoting chondrocyte proliferation and preventing premature hypertrophic differentiation. Exclusively expressed in the superficial layer, PTHrP diffuses across the MCC and targets chondrocytes in deeper layers, regulating transcription factors such as RUNX2 and SOX9. PTHrP regulates chondrocyte differentiation through two main pathways: the PTHrP-PTH1R signalling pathway, which suppresses hypertrophy and the PTHrP-Ihh negative feedback loop, which balances proliferation and hypertrophy. In the postnatal murine MCC, PTHrP levels are high early on and decrease after the onset of mastication around P21. Altered mechanical environments, such as those therapeutically induced as mandibular advancement, increase PTHrP expression, promoting chondrocyte proliferation and delaying hypertrophy. PTHrP also plays a dual role in adult TMJ diseases, particularly in osteoarthritis (OA); PTHrP expression transiently increases during the early stages of TMJ-OA to promote cell proliferation, but its eventual decrease contributes to the progression of the disease. This highlights the complex role of PTHrP in maintaining MCC homeostasis and its potential involvement in TMJ-OA pathology. The MCC combines the characteristics of growth and articular cartilage and functions distinctively in three phases: development before occlusion, growth after the occlusion is established, and maintenance after the growth is complete. While PTHrP plays a multifaceted role in all phases, further research is needed to fully understand how it regulates MCC development, growth and diseases.
Collapse
Affiliation(s)
- Chiaki Tsutsumi-Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Amy Tran
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Yuki Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
3
|
Xu L, Zhang Y, Yang H, Liu Q, Fan P, Yu J, Zhang M, Yu S, Wu Y, Wang M. Proliferative behaviours of CD90-expressing chondrocytes under the control of the TSC1-mTOR/PTHrP-nuclear localisation segment pathway. Osteoarthritis Cartilage 2025; 33:437-446. [PMID: 39730094 DOI: 10.1016/j.joca.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/12/2024] [Accepted: 11/13/2024] [Indexed: 12/29/2024]
Abstract
OBJECTIVE Some cells in temporomandibular joint (TMJ) cartilage undergo proliferation in response to negative pressure, which can be induced in vivo by creating bilateral anterior elevation (BAE). TMJ cartilage harbours CD90-expressing cells, and CD90 expression increases under certain controlled conditions. The parathyroid hormone-related peptide (PTHrP) nuclear localisation segment (NLS) promotes chondrocyte proliferation, and mammalian target of rapamycin (mTOR) signalling plays a regulatory role in promoting PTHrP transcription. The purpose of this study was to determine the role of the mTOR/PTHrP-NLS axis in the proliferative responses of CD90+ chondrocytes in TMJ cartilage to BAE. METHODS CD90+ cells were isolated from TMJ cartilage and subjected to negative pressure followed by RNA sequencing (RNA-seq). A PTHrP-NLS conditional mutation (CD90-CreER;Pthlh84STOP-fl/fl) mouse model was developed to obtain CD90+ cell-specific PTHrP-NLS conditional mutation (Pthlh84STOP) littermate. CD90-Cre;Tsc1fl/fl mice and CD90-Cre;mTORfl/fl mice were generated to obtain Mtor conditional knockout (Mtor-CKO) and Tsc1-CKO littermates. RESULTS Using RNA-seq, the mTOR signalling pathway was identified as the most significant biological process occurring in superficial zone cells of the TMJ condylar cartilage under negative pressure. Proliferation of CD90+ cells was stimulated in Tsc1-CKO littermates but inhibited in both Mtor-CKO and Pthlh84STOP littermates. BAE did not promote chondrocyte proliferation in either Mtor-CKO or Pthlh84STOP littermates. Administration of the PTHrP87-139 peptide to Mtor-CKO mice restored chondrocyte proliferation and rescued the promoting effect of BAE in TMJ cartilage. CONCLUSIONS CD90+ chondrocytes in TMJ cartilage proliferate in response to negative pressure under the control of the TSC1-mTOR/PTHrP-NLS pathway.
Collapse
Affiliation(s)
- Lingfeng Xu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Yuejiao Zhang
- Department of Oral Anatomy and Physiology and TMD, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Hongxu Yang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Qian Liu
- Department of Stomatology, Air Force Medical Center, PLA, The Fourth Military Medical University, Beijing, China
| | - Peinan Fan
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Jia Yu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Mian Zhang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Shibin Yu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Yaoping Wu
- Department of Joint Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
| | - Meiqing Wang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China; Department of Oral Anatomy and Physiology and TMD, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zheng J, Xiong X, Li K, Wang G, Cao H, Huang H. SPHK2 Knockdown Inhibits the Proliferation and Migration of Fibroblast-Like Synoviocytes Through the IL-17 Signaling Pathway in Osteoarthritis. J Inflamm Res 2024; 17:7221-7234. [PMID: 39416266 PMCID: PMC11479950 DOI: 10.2147/jir.s476077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Synovial inflammation is vital for the progression of osteoarthritis (OA). The objective of this study was to explore the effects and potential molecular mechanisms of sphingosine kinase 2 (SPHK2) on the proliferation and migration of fibroblast-like synoviocytes (FLS). Methods A TNF-α-stimulated FLS model and a papain-induced OA rat model were constructed. The functions of SPHK2 knockdown in OA were explored by a series of in vivo and in vitro assays. Downstream target genes of SPHK2 were investigated using transcriptome sequencing and validated by reverse transcription quantitative PCR (RT-qPCR). The effects of the SPHK2/IL-17 signaling pathway on inflammation, proliferation, and migration of OA-FLS were investigated using the IL-17 pathway inhibitor (secukinumab) and the activator (rhIL-17A). Results TNF-α stimulation promoted SPHK2 expression at mRNA and protein levels in OA-FLS. SPHK2 knockdown reduced IL-1β, IL-6, MMP-2, MMP-9, cyclinD1, and PCNA levels and suppressed proliferation and migration of OA-FLS. SPHK2 knockdown alleviated cartilage damage and synovial inflammation in the OA rat model. LRRIQ3, H4C8, CXCL1, CABP4, COL23A1, and PROK2 expression levels were regulated by SPHK2. SPHK2 knockdown inhibited the protein levels of IL-17A, IL-17RA, and Act1. The IL-17 pathway inhibitor secukinumab enhanced the inhibitory effect of SPHK2 knockdown on the proliferation and migration of OA-FLS, while the IL-17 pathway activator rhIL-17A exerted the opposite effect. Conclusion SPHK2 knockdown inhibits proliferation and migration of OA-FLS by blocking the IL-17 pathway, which provides a novel approach to the OA treatment.
Collapse
Affiliation(s)
- Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| | - Xiaolong Xiong
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| | - Ke Li
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| | - Huiyuan Cao
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| | - Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, Hainan Province, 570311, People’s Republic of China
| |
Collapse
|
5
|
Wang YH, Zhu LL, Li TL, Zhou Q. Imrecoxib: Advances in Pharmacology and Therapeutics. Drug Des Devel Ther 2024; 18:1711-1725. [PMID: 38799798 PMCID: PMC11128231 DOI: 10.2147/dddt.s464485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Imrecoxib, a cyclooxygenase-2 (COX-2) selective non-steroidal anti-inflammatory drug (NSAID), was discovered via the balanced inhibition strategy of COX-1/COX-2. It is indicated for the relief of painful symptoms of osteoarthritis. There have been some pharmacological and therapeutic advances since the approval of imrecoxib in 2011. However, an update review in this aspect is not yet available. Relevant literature until January 2024 was identified by search of PubMed, Web of science, Embase and CNKI. From the perspective of efficacy, imrecoxib provides relief of osteoarthritis symptoms, and potential off-label use for treatment of idiopathic pulmonary fibrosis, perioperative pain, hand-foot syndrome, axial spondyloarthritis, COVID-19, cartilage injury, and malignancies such as lung and colon cancer. From a safety point of view, imrecoxib showed adverse effects common to NSAIDs; however, it has lower incidence of new-onset hypertension than other types of selective COX-2 inhibitors, less gastrointestinal toxicities than non-selective NSAIDs, weaker risk of drug interaction than celecoxib, and more suitable for elderly patients due to balanced inhibition of COX-1/COX-2. From a pharmacoeconomic perspective, imrecoxib is more cost-effective than celecoxib and diclofenac for osteoarthritis patients. With the deepening of the disease pathophysiology study of osteoarthritis, new therapeutic schemes and pharmacological mechanisms are constantly discovered. In the field of osteoarthritis treatment, mechanisms other than the analgesic and anti-inflammatory effects of COX-2 inhibitors are also being explored. Taken together, imrecoxib is a moderate selective COX-2 inhibitor with some advantages, and there would be more clinical applications and research opportunities in the future.
Collapse
Affiliation(s)
- Yan-hong Wang
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ling-ling Zhu
- VIP Geriatric Ward, Division of Nursing, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tian-lang Li
- Department of VIP Care and Geriatric Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Quan Zhou
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
6
|
Han T, Zhu T, Lu Y, Wang Q, Bian H, Chen J, Qiao L, He TC, Zheng Q. Collagen type X expression and chondrocyte hypertrophic differentiation during OA and OS development. Am J Cancer Res 2024; 14:1784-1801. [PMID: 38726262 PMCID: PMC11076255 DOI: 10.62347/jwgw7377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chondrocyte hypertrophy and the expression of its specific marker, the collagen type X gene (COL10A1), constitute key terminal differentiation stages during endochondral ossification in long bone development. Mutations in the COL10A1 gene are known to cause schmid type metaphyseal chondrodysplasia (SMCD) and spondyloepiphyseal dyschondrodysplasia (SMD). Moreover, abnormal COL10A1 expression and aberrant chondrocyte hypertrophy are strongly correlated with skeletal diseases, notably osteoarthritis (OA) and osteosarcoma (OS). Throughout the progression of OA, articular chondrocytes undergo substantial changes in gene expression and phenotype, including a transition to a hypertrophic-like state characterized by the expression of collagen type X, matrix metalloproteinase-13, and alkaline phosphatase. This state is similar to the process of endochondral ossification during cartilage development. OS, the most common pediatric bone cancer, exhibits characteristics of abnormal bone formation alongside the presence of tumor tissue containing cartilaginous components. This observation suggests a potential role for chondrogenesis in the development of OS. A deeper understanding of the shifts in collagen X expression and chondrocyte hypertrophy phenotypes in OA or OS may offer novel insights into their pathogenesis, thereby paving the way for potential therapeutic interventions. This review systematically summarizes the findings from multiple OA models (e.g., transgenic, surgically-induced, mechanically-loaded, and chemically-induced OA models), with a particular focus on their chondrogenic and/or hypertrophic phenotypes and possible signaling pathways. The OS phenotypes and pathogenesis in relation to chondrogenesis, collagen X expression, chondrocyte (hypertrophic) differentiation, and their regulatory mechanisms were also discussed. Together, this review provides novel insights into OA and OS therapeutics, possibly by intervening the process of abnormal endochondral-like pathway with altered collagen type X expression.
Collapse
Affiliation(s)
- Tiaotiao Han
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Tianxiang Zhu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Yaojuan Lu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
| | - Qian Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Department of Human Anatomy, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Huiqin Bian
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Jinnan Chen
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Longwei Qiao
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Tong-Chuan He
- The Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
- The Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| |
Collapse
|
7
|
Ye T, Wang C, Yan J, Qin Z, Qin W, Ma Y, Wan Q, Lu W, Zhang M, Tay FR, Jiao K, Niu L. Lysosomal destabilization: A missing link between pathological calcification and osteoarthritis. Bioact Mater 2024; 34:37-50. [PMID: 38173842 PMCID: PMC10761323 DOI: 10.1016/j.bioactmat.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Calcification of cartilage by hydroxyapatite is a hallmark of osteoarthritis and its deposition strongly correlates with the severity of osteoarthritis. However, no effective strategies are available to date on the prevention of hydroxyapatite deposition within the osteoarthritic cartilage and its role in the pathogenesis of this degenerative condition is still controversial. Therefore, the present work aims at uncovering the pathogenic mechanism of intra-cartilaginous hydroxyapatite in osteoarthritis and developing feasible strategies to counter its detrimental effects. With the use of in vitro and in vivo models of osteoarthritis, hydroxyapatite crystallites deposited in the cartilage are found to be phagocytized by resident chondrocytes and processed by the lysosomes of those cells. This results in lysosomal membrane permeabilization (LMP) and release of cathepsin B (CTSB) into the cytosol. The cytosolic CTSB, in turn, activates NOD-like receptor protein-3 (NLRP3) inflammasomes and subsequently instigates chondrocyte pyroptosis. Inhibition of LMP and CTSB in vivo are effective in managing the progression of osteoarthritis. The present work provides a conceptual therapeutic solution for the prevention of osteoarthritis via alleviation of lysosomal destabilization.
Collapse
Affiliation(s)
- Tao Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chenyu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Zixuan Qin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yuxuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qianqian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Weicheng Lu
- Department of Stomatology, Tangdu Hospital, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Mian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin R. Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Lina Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| |
Collapse
|
8
|
Jo HG, Baek CY, Kim D, Kim S, Han Y, Park C, Song HS, Lee D. Network analysis, in vivo, and in vitro experiments identified the mechanisms by which Piper longum L. [Piperaceae] alleviates cartilage destruction, joint inflammation, and arthritic pain. Front Pharmacol 2024; 14:1282943. [PMID: 38328576 PMCID: PMC10847597 DOI: 10.3389/fphar.2023.1282943] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is characterized by irreversible joint destruction, pain, and dysfunction. Piper longum L. [Piperaceae] (PL) is an East Asian herbal medicine with reported anti-inflammatory, analgesic, antioxidant, anti-stress, and anti-osteoporotic effects. This study aimed to evaluate the efficacy of PL in inhibiting pain and progressive joint destruction in OA based on its anti-inflammatory activity, and to explore its potential mechanisms using in vivo and in vitro models of OA. We predicted the potential hub targets and signaling pathways of PL through network analysis and molecular docking. Network analysis results showed that the possible hub targets of PL against OA were F2R, F3, MMP1, MMP2, MMP9, and PTGS2. The molecular docking results predicted strong binding affinities for the core compounds in PL: piperlongumine, piperlonguminine, and piperine. In vitro experiments showed that PL inhibited the expression of LPS-induced pro-inflammatory factors, such as F2R, F3, IL-1β, IL-6, IL-17A, MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, NOS2, PTGS2, PGE2, and TNF-β. These mechanisms and effects were dose-dependent in vivo models. Furthermore, PL inhibited cartilage degradation in an OA-induced rat model. Thus, this study demonstrated that multiple components of PL may inhibit the multilayered pathology of OA by acting on multiple targets and pathways. These findings highlight the potential of PL as a disease-modifying OA drug candidate, which warrants further investigation.
Collapse
Affiliation(s)
- Hee Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
- Naturalis Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Donghwan Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sangjin Kim
- National Institute for Korean Medicine Development, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Yewon Han
- National Institute for Korean Medicine Development, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Chanlim Park
- Smart Software Lab Inc., Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Ho Sueb Song
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
9
|
Chen S, Kang P, Zhao Z, Zhang H, Li J, Xu K, Gong D, Jiao F, Wang H, Zhang M. Danggui-Shaoyao-San (DSS) ameliorates the progression of osteoarthritis via suppressing the NF-κB signaling pathway: an in vitro and in vivo study combined with bioinformatics analysis. Aging (Albany NY) 2024; 16:648-664. [PMID: 38194722 PMCID: PMC10817397 DOI: 10.18632/aging.205410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a common chronic age-related joint disease characterized primarily by inflammation of synovial membrane and degeneration of articular cartilage. Accumulating evidence has demonstrated that Danggui-Shaoyao-San (DSS) exerts significant anti-inflammatory effects, suggesting that it may play an important role in the treatment of knee osteoarthritis (KOA). METHODS In the present study, DSS was prepared and analyzed by high-performance liquid chromatography (HPLC). Bioinformatics analyses were carried out to uncover the functions and possible molecular mechanisms by which DSS against KOA. Furthermore, the protective effects of DSS on lipopolysaccharide (LPS)-induced rat chondrocytes and cartilage degeneration in a rat OA model were investigated in vivo and in vitro. RESULTS In total, 114 targets of DSS were identified, of which 60 candidate targets were related to KOA. The target enrichment analysis suggested that the NF-κB signaling pathway may be an effective mechanism of DSS. In vitro, we found that DSS significantly inhibited LPS-induced upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP3), and matrix metalloproteinase-13 (MMP13). Meanwhile, the degradation of collagen II was also reversed by DSS. Mechanistically, DSS dramatically suppressed LPS-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. In vivo, DSS treatment prevented cartilage degeneration in a rat OA model. CONCLUSIONS DSS could ameliorate the progression of OA through suppressing the NF-κB signaling pathway. Our findings indicate that DSS may be a promising therapeutic approach for the treatment of KOA.
Collapse
Affiliation(s)
- Shuai Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Pan Kang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhuanglin Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Hongyi Zhang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Jianliang Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Kun Xu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Dawei Gong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Feng Jiao
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510800, Guangdong, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Meng Zhang
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, Henan, China
| |
Collapse
|
10
|
Yang S, Zhou X, Jia Z, Zhang M, Yuan M, Zhou Y, Wang J, Xia D. Epigenetic regulatory mechanism of ADAMTS12 expression in osteoarthritis. Mol Med 2023; 29:86. [PMID: 37400752 DOI: 10.1186/s10020-023-00661-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/01/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease with lacking effective prevention targets. A disintegrin and metalloproteinase with thrombospondin motifs 12 (ADAMTS12) is a member of the ADAMTS family and is upregulated in OA pathologic tissues with no fully understood molecular mechanisms. METHODS The anterior cruciate ligament transection (ACL-T) method was used to establish rat OA models, and interleukin-1 beta (IL-1β) was administered to induce rat chondrocyte inflammation. Cartilage damage was analyzed via hematoxylin-eosin, Periodic Acid-Schiff, safranin O-fast green, Osteoarthritis Research Society International score, and micro-computed tomography assays. Chondrocyte apoptosis was detected by flow cytometry and TdT dUTP nick-end labeling. Signal transducer and activator of transcription 1 (STAT1), ADAMTS12, and methyltransferase-like 3 (METTL3) levels were detected by immunohistochemistry, quantitative polymerase chain reaction (qPCR), western blot, or immunofluorescence assay. The binding ability was confirmed by chromatin immunoprecipitation-qPCR, electromobility shift assay, dual-luciferase reporter, or RNA immunoprecipitation (RIP) assay. The methylation level of STAT1 was analyzed by MeRIP-qPCR assay. STAT1 stability was investigated by actinomycin D assay. RESULTS The STAT1 and ADAMTS12 expressions were significantly increased in the human and rat samples of cartilage injury, as well as in IL-1β-treated rat chondrocytes. STAT1 is bound to the promoter region of ADAMTS12 to activate its transcription. METTL3/ Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) mediated N6-methyladenosine modification of STAT1 promoted STAT1 mRNA stability, resulting in increased expression. ADAMTS12 expression was reduced and the IL-1β-induced inflammatory chondrocyte injury was attenuated by silencing METTL3. Additionally, knocking down METTL3 in ACL-T-produced OA rats reduced ADAMTS12 expression in their cartilage tissues, thereby alleviating cartilage damage. CONCLUSION METTL3/IGF2BP2 axis increases STAT1 stability and expression to promote OA progression by up-regulating ADAMTS12 expression.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Xuanping Zhou
- Department of Orthopedics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, People's Republic of China
| | - Zhen Jia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Mali Zhang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Minghao Yuan
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Jing Wang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| | - Duo Xia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
11
|
Kaneguchi A, Yamaoka K, Ozawa J. The effects of the amount of weight bearing on articular cartilage early after ACL reconstruction in rats. Connect Tissue Res 2023; 64:186-204. [PMID: 36334016 DOI: 10.1080/03008207.2022.2141627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Osteoarthritis that develops after anterior cruciate ligament (ACL) reconstruction is a critical issue. We examined the effects of the amount of weight bearing early after ACL reconstruction on articular cartilage. MATERIALS AND METHODS Rats were divided into groups according to the treatment received: untreated control, ACL reconstruction (ACLR), ACL reconstruction plus hindlimb unloading (ACLR + HU), and ACL reconstruction plus morphine administration (ACLR + M). ACL reconstruction was performed on the right knee throughout the groups. To assess the amount of weight bearing, one-hindlimb standing time ratio (STR; operated side/contralateral side) during treadmill locomotion was evaluated during the experimental period. At day 7 or 14 post-surgery, cartilage degeneration of the medial tibial plateau was histologically assessed. RESULTS In the ACLR group, reduction in weight bearing characterized by significantly reduced STR was observed between day 1 and 7. Reduction in weight bearing was partially attenuated by morphine administration. Compared with the control group, the ACLR group exhibited an increased Mankin score that was accompanied by increased cyclooxygenase-2 expression in the anterior region. In the ACLR + HU group, Mankin scores were significantly higher in the middle and posterior regions, and cartilage thickness in these regions was significantly thinner than those in the ACLR group. In the ACLR + M group, although chondrocyte density in the anterior region was increased, all other parameters were not significantly different from those in the ACLR group. CONCLUSIONS Our results suggest that early weight bearing after ACL reconstruction is important to reduce cartilage degeneration.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Japan
| |
Collapse
|
12
|
Li G, Liu S, Xu H, Chen Y, Deng J, Xiong A, Wang D, Weng J, Yu F, Gao L, Ding C, Zeng H. Potential effects of teriparatide (PTH (1-34)) on osteoarthritis: a systematic review. Arthritis Res Ther 2023; 25:3. [PMID: 36609338 PMCID: PMC9817404 DOI: 10.1186/s13075-022-02981-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) is a common and prevalent degenerative joint disease characterized by degradation of the articular cartilage. However, none of disease-modifying OA drugs is approved currently. Teriparatide (PTH (1-34)) might stimulate chondrocyte proliferation and cartilage regeneration via some uncertain mechanisms. Relevant therapies of PTH (1-34) on OA with such effects have recently gained increasing interest, but have not become widespread practice. Thus, we launch this systematic review (SR) to update the latest evidence accordingly. A comprehensive literature search was conducted in PubMed, Web of Science, MEDLINE, the Cochrane Library, and Embase from their inception to February 2022. Studies investigating the effects of the PTH (1-34) on OA were obtained. The quality assessment and descriptive summary were made of all included studies. Overall, 307 records were identified, and 33 studies were included. In vivo studies (n = 22) concluded that PTH (1-34) slowed progression of OA by alleviating cartilage degeneration and aberrant remodeling of subchondral bone (SCB). Moreover, PTH (1-34) exhibited repair of cartilage and SCB, analgesic, and anti-inflammatory effects. In vitro studies (n = 11) concluded that PTH (1-34) was important for chondrocytes via increasing the proliferation and matrix synthesis but preventing apoptosis or hypertrophy. All included studies were assessed with low or unclear risk of bias in methodological quality. The SR demonstrated that PTH (1-34) could alleviate the progression of OA. Moreover, PTH (1-34) had beneficial effects on osteoporotic OA (OPOA) models, which might be a therapeutic option for OA and OPOA treatment.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Huihui Xu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Jiapeng Deng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany.
- Sino Euro Orthopaedics Network (SEON), Berlin, Germany.
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
| |
Collapse
|
13
|
Tong L, Yu H, Huang X, Shen J, Xiao G, Chen L, Wang H, Xing L, Chen D. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 2022; 10:60. [PMID: 36127328 PMCID: PMC9489702 DOI: 10.1038/s41413-022-00226-9] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease that causes painful swelling and permanent damage to the joints in the body. The molecular mechanisms of OA are currently unknown. OA is a heterogeneous disease that affects the entire joint, and multiple tissues are altered during OA development. To better understand the pathological mechanisms of OA, new approaches, methods, and techniques need to be used to understand OA pathogenesis. In this review, we first focus on the epigenetic regulation of OA, with a particular focus on DNA methylation, histone modification, and microRNA regulation, followed by a summary of several key mediators in OA-associated pain. We then introduce several innovative techniques that have been and will continue to be used in the fields of OA and OA-associated pain, such as CRISPR, scRNA sequencing, and lineage tracing. Next, we discuss the timely updates concerning cell death regulation in OA pathology, including pyroptosis, ferroptosis, and autophagy, as well as their individual roles in OA and potential molecular targets in treating OA. Finally, our review highlights new directions on the role of the synovial lymphatic system in OA. An improved understanding of OA pathogenesis will aid in the development of more specific and effective therapeutic interventions for OA.
Collapse
Affiliation(s)
- Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
| | - Huan Yu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xingyun Huang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Shen
- Department of Orthopedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huaiyu Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lianping Xing
- Department of Pathology and Laboratory of Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Zhang Y, Hou M, Liu Y, Liu T, Chen X, Shi Q, Geng D, Yang H, He F, Zhu X. Recharge of chondrocyte mitochondria by sustained release of melatonin protects cartilage matrix homeostasis in osteoarthritis. J Pineal Res 2022; 73:e12815. [PMID: 35726138 DOI: 10.1111/jpi.12815] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Recent evidence indicates that the mitochondrial functions of chondrocytes are impaired in the pathogenesis of osteoarthritis (OA). Melatonin can attenuate cartilage degradation through its antioxidant functions. This study aims to investigate whether melatonin could rescue the impaired mitochondrial functions of OA chondrocytes and protect cartilage metabolism. OA chondrocytes showed a compromised matrix synthesis capacity associated with mitochondrial dysfunction and aberrant oxidative stress. In vitro treatments with melatonin promoted the expression of cartilage extracellular matrix (ECM) components, improved adenosine triphosphate production, and attenuated mitochondrial oxidative stress. Mechanistically, either silencing of SOD2 or inhibition of SIRT1 abolished the protective effects of melatonin on mitochondrial functions and ECM synthesis. To achieve a sustained release effect, a melatonin-laden drug delivery system (DDS) was developed and intra-articular injection with DDS successfully improved cartilage matrix degeneration in a posttraumatic rat OA model. These findings demonstrate that melatonin-mediated recharge of mitochondria to rescue the mitochondrial functions of chondrocytes represents a promising therapeutic strategy to protect cartilage from OA.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Yu C, Li L, Liang D, Wu A, Dong Q, Jia S, Li Y, Li Y, Guo X, Zang H. Glycosaminoglycan-based injectable hydrogels with multi-functions in the alleviation of osteoarthritis. Carbohydr Polym 2022; 290:119492. [DOI: 10.1016/j.carbpol.2022.119492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
|
16
|
Hopkins C, Qin L. The importance of microstructure in R&D and applications of biomaterials and biological modulation in orthopaedics. J Orthop Translat 2021; 30:A1-A2. [PMID: 34804797 PMCID: PMC8569221 DOI: 10.1016/j.jot.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Chelsea Hopkins
- The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Orthopaedics & Traumatology, Shatin, N.T, Hong Kong, China
| | - Ling Qin
- The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Orthopaedics & Traumatology, Shatin, N.T, Hong Kong, China
| |
Collapse
|