1
|
Steijns JSJJ, Green D, Peeters LCW, Emans PJ, Boymans TA, Stassen RH, van den Akker GGH, Cremers A, Jutten LMC, Anderson JR, Peffers MJ, Caron MMJ, Welting TJM. Proteomic characterization of regenerated cartilage following knee joint distraction; a human case-study. Connect Tissue Res 2024; 65:486-496. [PMID: 39688003 DOI: 10.1080/03008207.2024.2440716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE Knee joint distraction is a surgical procedure with cartilage-regenerating properties. The composition of joint distraction-regenerated cartilage in human patients is poorly documented. In this case-study, provided a unique opportunity to biomolecularly characterize the regenerated tissue from a patient who underwent bilateral distraction and later knee replacements. METHODS Knee joint distraction was conducted using an external fixation frame and total knee arthroplasty was performed several years later. Radiographic imaging was performed to assess the status of the knee joint prior, during and after clinical interventions. Following total knee replacement, cartilage biopsies were collected and processed for tissue sectioning and histochemical staining. Tandem mass-spectrometry proteomics analysis was used to characterize and compare the proteomic composition. RESULTS Both knee joints showed joint-space improvement pre- and post-knee joint distraction. Regenerated cartilage was white with an irregular surface, while native (lateral) cartilage had a yellow appearance and smooth surface. Histochemical staining showed higher Safranin-O positivity in native cartilage compared to regenerated cartilage, and differences in collagen structure. Proteomic analysis did not reveal major differences in cartilage extracellular matrix protein abundance. Bioinformatic analyses revealed enrichment in ribosomal proteins (regenerated cartilage) and RNA Polymerase II Transcription Termination (native cartilage). CONCLUSION Histologically, knee joint distraction-regenerated cartilage showed less glycosaminoglycans and disorganized collagen compared to native cartilage. However, mass-spectrometry has no major differences in extracellular matrix protein abundance, with proteomic clues suggesting protein translation regulation as a potential mechanism for regeneration.
Collapse
Affiliation(s)
- Jessica S J J Steijns
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Daniel Green
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Laura C W Peeters
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
- Joint-Preserving Clinic, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Center for Translational Mobility Research (CTMR), Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim A Boymans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
- Joint-Preserving Clinic, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Center for Translational Mobility Research (CTMR), Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Roderick H Stassen
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Liesbeth M C Jutten
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
- Joint-Preserving Clinic, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Center for Translational Mobility Research (CTMR), Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - James R Anderson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Mandy J Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Gardashli M, Baron M, Huang C, Kaplan LD, Meng Z, Kouroupis D, Best TM. Mechanical loading and orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA): a comprehensive review. Front Bioeng Biotechnol 2024; 12:1401207. [PMID: 38978717 PMCID: PMC11228341 DOI: 10.3389/fbioe.2024.1401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The importance of mechanical loading and its relationship to orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA) is beginning to receive attention. This review explores the current efficacy of orthobiologic interventions, notably platelet-rich plasma (PRP), bone marrow aspirate (BMA), and mesenchymal stem/stromal cells (MSCs), in combating PTOA drawing from a comprehensive review of both preclinical animal models and human clinical studies. This review suggests why mechanical joint loading, such as running, might improve outcomes in PTOA management in conjunction with orthiobiologic administration. Accumulating evidence underscores the influence of mechanical loading on chondrocyte behavior and its pivotal role in PTOA pathogenesis. Dynamic loading has been identified as a key factor for optimal articular cartilage (AC) health and function, offering the potential to slow down or even reverse PTOA progression. We hypothesize that integrating the activation of mechanotransduction pathways with orthobiologic treatment strategies may hold a key to mitigating or even preventing PTOA development. Specific loading patterns incorporating exercise and physical activity for optimal joint health remain to be defined, particularly in the clinical setting following joint trauma.
Collapse
Affiliation(s)
- Mahammad Gardashli
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Max Baron
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charles Huang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Feng J, Zhang Q, Pu F, Zhu Z, Lu K, Lu WW, Tong L, Yu H, Chen D. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif 2024; 57:e13600. [PMID: 38199244 PMCID: PMC11150147 DOI: 10.1111/cpr.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent disorder of synovial joint affecting multiple joints. In the past decade, we have witnessed conceptual switch of OA pathogenesis from a 'wear and tear' disease to a disease affecting entire joint. Extensive studies have been conducted to understand the underlying mechanisms of OA using genetic mouse models and ex vivo joint tissues derived from individuals with OA. These studies revealed that multiple signalling pathways are involved in OA development, including the canonical Wnt/β-catenin signalling and its interaction with other signalling pathways, such as transforming growth factor β (TGF-β), bone morphogenic protein (BMP), Indian Hedgehog (Ihh), nuclear factor κB (NF-κB), fibroblast growth factor (FGF), and Notch. The identification of signalling interaction and underlying mechanisms are currently underway and the specific molecule(s) and key signalling pathway(s) playing a decisive role in OA development need to be evaluated. This review will focus on recent progresses in understanding of the critical role of Wnt/β-catenin signalling in OA pathogenesis and interaction of β-catenin with other pathways, such as TGF-β, BMP, Notch, Ihh, NF-κB, and FGF. Understanding of these novel insights into the interaction of β-catenin with other pathways and its integration into a complex gene regulatory network during OA development will help us identify the key signalling pathway of OA pathogenesis leading to the discovery of novel therapeutic strategies for OA intervention.
Collapse
Affiliation(s)
- Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Qing Zhang
- Department of EmergencyRenmin Hospital, Wuhan UniversityWuhanHubeiChina
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Zhenglin Zhu
- Department of Orthopedic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ke Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - William W. Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Huan Yu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Di Chen
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
4
|
Liao Z, Umar M, Huang X, Qin L, Xiao G, Chen Y, Tong L, Chen D. Transient receptor potential vanilloid 1: A potential therapeutic target for the treatment of osteoarthritis and rheumatoid arthritis. Cell Prolif 2024; 57:e13569. [PMID: 37994506 PMCID: PMC10905355 DOI: 10.1111/cpr.13569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/24/2023] Open
Abstract
This study aims to determine the molecular mechanisms and analgesic effects of transient receptor potential vanilloid 1 (TRPV1) in the treatments of osteoarthritis (OA) and rheumatoid arthritis (RA). We summarize and analyse current studies regarding the biological functions and mechanisms of TRPV1 in arthritis. We search and analyse the related literature in Google Scholar, Web of Science and PubMed databases from inception to September 2023 through the multi-combination of keywords like 'TRPV1', 'ion channel', 'osteoarthritis', 'rheumatoid arthritis' and 'pain'. TRPV1 plays a crucial role in regulating downstream gene expression and maintaining cellular function and homeostasis, especially in chondrocytes, synovial fibroblasts, macrophages and osteoclasts. In addition, TRPV1 is located in sensory nerve endings and plays an important role in nerve sensitization, defunctionalization or central sensitization. TRPV1 is a non-selective cation channel protein. Extensive evidence in recent years has established the significant involvement of TRPV1 in the development of arthritis pain and inflammation, positioning it as a promising therapeutic target for arthritis. TRPV1 likely represents a feasible therapeutic target for the treatment of OA and RA.
Collapse
Affiliation(s)
- Zhidong Liao
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co‐constructed by the Province and MinistryGuangxi Medical UniversityNanningGuangxiChina
| | - Muhammad Umar
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Xingyun Huang
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong KongHong KongChina
| | - Guozhi Xiao
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yan Chen
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Liping Tong
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Di Chen
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| |
Collapse
|
5
|
Peng L, Li R, Xu S, Ding K, Wu Y, Li H, Wang Y. Harnessing joint distraction for the treatment of osteoarthritis: a bibliometric and visualized analysis. Front Bioeng Biotechnol 2023; 11:1309688. [PMID: 38026890 PMCID: PMC10666289 DOI: 10.3389/fbioe.2023.1309688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Osteoarthritis (OA) stands as a prevalent degenerative joint ailment, demanding immediate attention towards the development of efficacious therapeutic interventions. Presently, a definitive cure for OA remains elusive, and when conservative treatment modalities prove ineffective, resorting to a joint prosthesis becomes imperative. Temporary distraction emerges as a pivotal joint-preserving intervention in human OA patients, conferring both clinical amelioration and structural enhancements. Although extant clinical investigations exist, they are characterized by relatively modest sample sizes. Nonetheless, these studies furnish compelling evidence affirming that joint distraction engenders sustained clinical amelioration and structural refinement. Despite substantial strides in the last decade, a bibliometric analysis of joint distraction within the realm of osteoarthritis treatment research has been conspicuously absent. In this context, we have undertaken a comparative investigation utilizing bibliometric methodologies to scrutinize the landscape of joint distraction within osteoarthritis treatment. Our comprehensive analysis encompassed 469 scholarly articles. Our findings evince a consistent escalation in global research interest and publication output pertaining to this subject. The United States emerged as the frontrunner in international collaboration, publication count, and citation frequency, underscoring its preeminence in this domain. The journal "Osteoarthritis and Cartilage" emerged as the principal platform for disseminating research output on this subject. Notably, Mastbergen SC emerged as the most prolific contributor in terms of authorship. The identified keywords predominantly revolved around non-surgical interventions and joint arthroscopy procedures. This bibliometric analysis, augmented by visual representations, furnishes invaluable insights into the evolutionary trajectory of joint distraction as an osteoarthritis treatment modality spanning from 2003 to 2023. These insights will serve as a compass for the scientific community, facilitating further exploration in this promising domain.
Collapse
Affiliation(s)
- Liqing Peng
- Department of Orthopedics, First People’s Hospital of Shuangliu District, Chengdu, China
| | - Runmeng Li
- School of Medicine, Nankai University, Tianjin, China
| | - Shengxi Xu
- Department of Orthopedics, First People’s Hospital of Shuangliu District, Chengdu, China
| | - Keyuan Ding
- Department of Orthopedics, First People’s Hospital of Shuangliu District, Chengdu, China
| | - Yan Wu
- Department of Orthopedics, First People’s Hospital of Shuangliu District, Chengdu, China
| | - Hao Li
- School of Medicine, Nankai University, Tianjin, China
| | - Yong Wang
- Department of Orthopedics, First People’s Hospital of Shuangliu District, Chengdu, China
| |
Collapse
|
6
|
2023 January issue Journal of Orthopaedic Translation. J Orthop Translat 2023; 38:A1-A3. [PMID: 36874059 PMCID: PMC9975467 DOI: 10.1016/j.jot.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
7
|
Tuan RS, Zhang Y, Chen L, Guo Q, Yung PSH, Jiang Q, Lai Y, Yu J, Luo J, Xia J, Xu C, Lei G, Su J, Luo X, Zou W, Qu J, Song B, Zhao X, Ouyang H, Li G, Ding C, Wan C, Chan BP, Yang L, Xiao G, Shi D, Xu J, Cheung LWH, Bai X, Xie H, Xu R, Li ZA, Chen D, Qin L. Current progress and trends in musculoskeletal research: Highlights of NSFC-CUHK academic symposium on bone and joint degeneration and regeneration. J Orthop Translat 2022; 37:175-184. [PMID: 36605329 PMCID: PMC9791426 DOI: 10.1016/j.jot.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rocky S. Tuan
- The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Lin Chen
- Daping Hospital, The Third Military (Army) Medical University, China
| | - Quanyi Guo
- Chinese PLA General Hospital, Chinese PLA Medical School, China
| | - Patrick SH. Yung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qing Jiang
- Nanjing Drum Tower Hospital, Nanjing University, China
| | - Yuxiao Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jiakuo Yu
- Peking University Third Hospital, China
| | - Jian Luo
- School of Medicine, Tongji University, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Guanghua Lei
- Xiangya Hospital Central South University, China
| | - Jiacan Su
- Changhai Hospital, People's Liberation Army Naval Medical University, China
| | | | - Weiguo Zou
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China
| | - Jing Qu
- Institute of Zoology, Chinese Academy of Sciences, China
| | - Bing Song
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Gang Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Changhai Ding
- Zhujiang Hospital of Southern Medical University, Menzies Institute of Medical Research, University of Tasmania, Australia
| | - Chao Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Barbara P. Chan
- Faculty of Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Liu Yang
- Institute of Orthopaedics, Xijing Hospital, Air Force Medical University, China
| | - Guozhi Xiao
- Department of Biology, Southern University of Science and Technology, China
| | - Dongquan Shi
- Nanjing Drum Tower Hospital, Nanjing University, China
| | - Jiankun Xu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Louis WH. Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaochun Bai
- School of Basic Medical Sciences, Southern Medical University, China
| | - Hui Xie
- Xiangya Hospital Central South University, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Xiamen University, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Di Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|