1
|
Wu JH, Bao QW, Wang SK, Zhou PY, Xu SG. Mechanisms of the Masquelet technique to promote bone defect repair and its influencing factors. Chin J Traumatol 2025; 28:157-163. [PMID: 38734563 DOI: 10.1016/j.cjtee.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024] Open
Abstract
The Masquelet technique, also known as the induced membrane technique, is a surgical technique for repairing large bone defects based on the use of a membrane generated by a foreign body reaction for bone grafting. This technique is not only simple to perform, with few complications and quick recovery, but also has excellent clinical results. To better understand the mechanisms by which this technique promotes bone defect repair and the factors that require special attention in practice, we examined and summarized the relevant research advances in this technique by searching, reading, and analysing the literature. Literature show that the Masquelet technique may promote the repair of bone defects through the physical septum and molecular barrier, vascular network, enrichment of mesenchymal stem cells, and high expression of bone-related growth factors, and the repair process is affected by the properties of spacers, the timing of bone graft, mechanical environment, intramembrane filling materials, artificial membrane, and pharmaceutical/biological agents/physical stimulation.
Collapse
Affiliation(s)
- Jiang-Hong Wu
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China; Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Quan-Wei Bao
- Trauma Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shao-Kang Wang
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Pan-Yu Zhou
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shuo-Gui Xu
- Department of Trauma Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Wang X, Jia C, Wu H, Luo F, Hou T, Li G, Lin S, Xie Z. Activated allograft combined with induced menbrane technique for the reconstruction of infected segmental bone defects. Sci Rep 2024; 14:12587. [PMID: 38821992 PMCID: PMC11143316 DOI: 10.1038/s41598-024-63202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
This study was desinged to evaluate the efficacy and safety of activated allograft combined with the induced membrane technique for reconstruction of infected segment bone defects of lower limbs. A retrospective analysis was conducted on 19 patients from May 2015 to February 2017. After debridements, the bone defects were filled with antibiotic bone cement to form the induced membrane. Autologous mesenchymal stem cells were seeded onto allografts to construct activated allograft, which was implanted into the induced membrane after infection was controlled. The clinical efficacy and complications were observed. 19 patients with 20 infected segment bone defect were evaluated. The average deficit size was 11.08 (4-17) cm in length. After a mean follow-up of 71.84 (61-82) months, bone union was achieved in 16 patients (17 sites), resulting in a final union rate of 84.21% (16/19 patients). The average bone union time was 10.18 (5-28) months. There were 2 patients with recurrence of infection, 3 patients with graft absorption, and 1 patient with malunion due to implant breakage. There were no graft-related complications. This study provides clinical significance for the treatment of patients with insufficient autologous bone.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Chao Jia
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Hongri Wu
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Department of Orthopaedics, Navy 905 Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Tianyong Hou
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China
| | - Sien Lin
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China.
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, People's Republic of China.
| | - Zhao Xie
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
3
|
Siverino C, Vanvelk N, Nehrbass D, Mischler D, Geoff Richards R, Morgenstern M, Zeiter S, Arens D, Fintan Moriarty T. Comparative bone healing with induced membrane technique (IMT) versus empty defects in septic and aseptic conditions in a novel rabbit humerus model. BMC Musculoskelet Disord 2023; 24:886. [PMID: 37964215 PMCID: PMC10644571 DOI: 10.1186/s12891-023-07031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Long bone defects resulting from primary trauma or secondary to debridement of fracture-related infection (FRI) remain a major clinical challenge. One approach often used is the induced membrane technique (IMT). The effectiveness of the IMT in infected versus non-infected settings remains to be definitively established. In this study we present a new rabbit humerus model and compare the IMT approach between animals with prior infection and non-infected equivalents. METHODS A 5 mm defect was created in the humerus of New Zealand White rabbits (n = 53) and fixed with a 2.5 mm stainless steel plate. In the non-infected groups, the defect was either left empty (n = 6) or treated using the IMT procedure (PMMA spacer for 3 weeks, n = 6). Additionally, both approaches were applied in animals that were inoculated with Staphylococcus aureus 4 weeks prior to defect creation (n = 5 and n = 6, respectively). At the first and second revision surgeries, infected and necrotic tissues were debrided and processed for bacteriological quantification. In the IMT groups, the PMMA spacer was removed 3 weeks post implantation and replaced with a beta-tricalcium phosphate scaffold and bone healing observed for a further 10 weeks. Infected groups also received systemic antibiotic therapy. The differences in bone healing between the groups were evaluated radiographically using a modification of the radiographic union score for tibial fractures (RUST) and by semiquantitative histopathology on Giemsa-Eosin-stained sections. RESULTS The presence of S. aureus infection at revision surgery was required for inclusion to the second stage. At the second revision surgery all collected samples were culture negative confirming successful treatment. In the empty defect group, bone healing was increased in the previously infected animals compared with non-infected controls as revealed by radiography with significantly higher RUST values at 6 weeks (p = 0.0281) and at the end of the study (p = 0.0411) and by histopathology with increased cortical bridging (80% and 100% in cis and trans cortical bridging in infected animals compared to 17% and 67% in the non-infected animals). With the IMT approach, both infected and non-infected animals had positive healing assessments. CONCLUSION We successfully developed an in vivo model of bone defect healing with IMT with and without infection. Bone defects can heal after an infection with even better outcomes compared to the non-infected setting, although in both cases, the IMT achieved better healing.
Collapse
Affiliation(s)
- Claudia Siverino
- AO Research Institute Davos, Clavadelerstrasse 1, Davos-Platz, 7270, Switzerland
| | - Niels Vanvelk
- AO Research Institute Davos, Clavadelerstrasse 1, Davos-Platz, 7270, Switzerland
| | - Dirk Nehrbass
- AO Research Institute Davos, Clavadelerstrasse 1, Davos-Platz, 7270, Switzerland
| | - Dominic Mischler
- AO Research Institute Davos, Clavadelerstrasse 1, Davos-Platz, 7270, Switzerland
| | | | - Mario Morgenstern
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - Stephan Zeiter
- AO Research Institute Davos, Clavadelerstrasse 1, Davos-Platz, 7270, Switzerland
| | - Daniel Arens
- AO Research Institute Davos, Clavadelerstrasse 1, Davos-Platz, 7270, Switzerland
| | - Thomas Fintan Moriarty
- AO Research Institute Davos, Clavadelerstrasse 1, Davos-Platz, 7270, Switzerland.
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Qin L. "Innovation and translation of biological and biomaterial treatment for challenging musculoskeletal disorders". J Orthop Translat 2023; 42:A1-A2. [PMID: 38144230 PMCID: PMC10746561 DOI: 10.1016/j.jot.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Affiliation(s)
- Ling Qin
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| |
Collapse
|