1
|
Lepiarczyk E, Maździarz M, Paukszto Ł, Bossowska A, Majewski M, Kaleczyc J, Łopieńska-Biernat E, Jaśkiewicz Ł, Skowrońska A, Skowroński MT, Majewska M. Transcriptomic Characterization of the Porcine Urinary Bladder Trigone Following Intravesical Administration of Resiniferatoxin: Insights from High-Throughput Sequencing. Toxins (Basel) 2025; 17:127. [PMID: 40137900 PMCID: PMC11946646 DOI: 10.3390/toxins17030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Resiniferatoxin (RTX), a potent capsaicin analog, is being investigated as a therapeutic agent for neurogenic conditions, particularly those affecting bladder control. However, the transcriptomic effects of RTX on the urinary bladder remain largely unexplored. This study aimed to characterize the transcriptomic changes in the porcine urinary bladder trigone region removed seven days post-treatment with intravesical RTX administration (500 nmol per animal in 60 mL of 5% aqueous solution of ethyl alcohol). High-throughput sequencing identified 126 differentially expressed genes (DEGs; 66 downregulated, 60 upregulated), 5 differentially expressed long non-coding RNAs (DELs), and 22 other RNAs, collectively involved in 175 gene ontology (GO) processes. Additionally, differential alternative splicing events (DASes) and single nucleotide variants (SNVs) were detected. RTX significantly modulated signaling pathways related to nerve growth and myelination. Changes in genes associated with synaptic plasticity and neuromodulation were observed, particularly within serotoninergic and cholinergic signaling. RTX altered the expression of immune-related genes, particularly those involved in chemokine signaling and immune regulation. Notably, altered gene expression patterns suggest a potential anti-cancer role for RTX. These findings provide new insights into RTX's therapeutic effects beyond TRPV1 receptor interactions, filling a critical gap in our understanding of its molecular impact on bladder tissue.
Collapse
Affiliation(s)
- Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Mateusz Maździarz
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.M.); (Ł.P.)
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.M.); (Ł.P.)
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Mariusz Majewski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Łukasz Jaśkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Agnieszka Skowrońska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| |
Collapse
|
2
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
3
|
Szallasi A. Resiniferatoxin: Nature's Precision Medicine to Silence TRPV1-Positive Afferents. Int J Mol Sci 2023; 24:15042. [PMID: 37894723 PMCID: PMC10606200 DOI: 10.3390/ijms242015042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Resiniferatoxin (RTX) is an ultrapotent capsaicin analog with a unique spectrum of pharmacological actions. The therapeutic window of RTX is broad, allowing for the full desensitization of pain perception and neurogenic inflammation without causing unacceptable side effects. Intravesical RTX was shown to restore continence in a subset of patients with idiopathic and neurogenic detrusor overactivity. RTX can also ablate sensory neurons as a "molecular scalpel" to achieve permanent analgesia. This targeted (intrathecal or epidural) RTX therapy holds great promise in cancer pain management. Intra-articular RTX is undergoing clinical trials to treat moderate-to-severe knee pain in patients with osteoarthritis. Similar targeted approaches may be useful in the management of post-operative pain or pain associated with severe burn injuries. The current state of this field is reviewed, from preclinical studies through veterinary medicine to clinical trials.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
4
|
Yamaguchi T, Salavatian S, Kuwabara Y, Hellman A, Taylor BK, Howard-Quijano K, Mahajan A. Thoracic Dorsal Root Ganglion Application of Resiniferatoxin Reduces Myocardial Ischemia-Induced Ventricular Arrhythmias. Biomedicines 2023; 11:2720. [PMID: 37893094 PMCID: PMC10604235 DOI: 10.3390/biomedicines11102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND A myocardial ischemia/reperfusion (IR) injury activates the transient receptor potential vanilloid 1 (TRPV1) dorsal root ganglion (DRG) neurons. The activation of TRPV1 DRG neurons triggers the spinal dorsal horn and the sympathetic preganglionic neurons in the spinal intermediolateral column, which results in sympathoexcitation. In this study, we hypothesize that the selective epidural administration of resiniferatoxin (RTX) to DRGs may provide cardioprotection against ventricular arrhythmias by inhibiting afferent neurotransmission during IR injury. METHODS Yorkshire pigs (n = 21) were assigned to either the sham, IR, or IR + RTX group. A laminectomy and sternotomy were performed on the anesthetized animals to expose the left T2-T4 spinal dorsal root and the heart for IR intervention, respectively. RTX (50 μg) was administered to the DRGs in the IR + RTX group. The activation recovery interval (ARI) was measured as a surrogate for the action potential duration (APD). Arrhythmia risk was investigated by assessing the dispersion of repolarization (DOR), a marker of arrhythmogenicity, and measuring the arrhythmia score and the number of non-sustained ventricular tachycardias (VTs). TRPV1 and calcitonin gene-related peptide (CGRP) expressions in DRGs and CGRP expression in the spinal cord were assessed using immunohistochemistry. RESULTS The RTX mitigated IR-induced ARI shortening (-105 ms ± 13 ms in IR vs. -65 ms ± 11 ms in IR + RTX, p = 0.028) and DOR augmentation (7093 ms2 ± 701 ms2 in IR vs. 3788 ms2 ± 1161 ms2 in IR + RTX, p = 0.020). The arrhythmia score and VT episodes during an IR were decreased by RTX (arrhythmia score: 8.01 ± 1.44 in IR vs. 3.70 ± 0.81 in IR + RTX, p = 0.037. number of VT episodes: 12.00 ± 3.29 in IR vs. 0.57 ± 0.3 in IR + RTX, p = 0.002). The CGRP expression in the DRGs and spinal cord was decreased by RTX (DRGs: 6.8% ± 1.3% in IR vs. 0.6% ± 0.2% in IR + RTX, p < 0.001. Spinal cord: 12.0% ± 2.6% in IR vs. 4.5% ± 0.8% in IR + RTX, p = 0.047). CONCLUSIONS The administration of RTX locally to thoracic DRGs reduces ventricular arrhythmia in a porcine model of IR, likely by inhibiting spinal afferent hyperactivity in the cardio-spinal sympathetic pathways.
Collapse
Affiliation(s)
- Tomoki Yamaguchi
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
| | - Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
| | - Abigail Hellman
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
| | - Kimberly Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (T.Y.); (S.S.); (Y.K.); (A.H.); (B.K.T.); (K.H.-Q.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Grlickova-Duzevik E, Reimonn TM, Michael M, Tian T, Owyoung J, McGrath-Conwell A, Neufeld P, Mueth M, Molliver DC, Ward PJ, Harrison BJ. Members of the CUGBP Elav-like family of RNA-binding proteins are expressed in distinct populations of primary sensory neurons. J Comp Neurol 2023; 531:1425-1442. [PMID: 37537886 PMCID: PMC11792980 DOI: 10.1002/cne.25520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 06/10/2023] [Indexed: 08/05/2023]
Abstract
Primary sensory dorsal root ganglia (DRG) neurons are diverse, with distinct populations that respond to specific stimuli. Previously, we observed that functionally distinct populations of DRG neurons express mRNA transcript variants with different 3' untranslated regions (3'UTRs). 3'UTRs harbor binding sites for interaction with RNA-binding proteins (RBPs) for transporting mRNAs to subcellular domains, modulating transcript stability, and regulating the rate of translation. In the current study, analysis of publicly available single-cell RNA-sequencing data generated from adult mice revealed that 17 3'UTR-binding RBPs were enriched in specific populations of DRG neurons. This included four members of the CUG triplet repeat (CUGBP) Elav-like family (CELF): CELF2 and CELF4 were enriched in peptidergic, CELF6 in both peptidergic and nonpeptidergic, and CELF3 in tyrosine hydroxylase-expressing neurons. Immunofluorescence studies confirmed that 60% of CELF4+ neurons are small-diameter C fibers and 33% medium-diameter myelinated (likely Aδ) fibers and showed that CELF4 is distributed to peripheral termini. Coexpression analyses using transcriptomic data and immunofluorescence revealed that CELF4 is enriched in nociceptive neurons that express GFRA3, CGRP, and the capsaicin receptor TRPV1. Reanalysis of published transcriptomic data from macaque DRG revealed a highly similar distribution of CELF members, and reanalysis of single-nucleus RNA-sequencing data derived from mouse and rat DRG after sciatic injury revealed differential expression of CELFs in specific populations of sensory neurons. We propose that CELF RBPs may regulate the fate of mRNAs in populations of nociceptors, and may play a role in pain and/or neuronal regeneration following nerve injury.
Collapse
Affiliation(s)
- Eliza Grlickova-Duzevik
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Thomas M Reimonn
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Merilla Michael
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Tina Tian
- Medical Scientist Training Program, Emory University, Atlanta, Georgia, USA
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jordan Owyoung
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Aidan McGrath-Conwell
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- College of Arts and Sciences, University of New England, Biddeford, Maine, USA
| | - Peter Neufeld
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- College of Arts and Sciences, University of New England, Biddeford, Maine, USA
| | - Madison Mueth
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| | - Derek C Molliver
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| | - Patricia Jillian Ward
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Benjamin J Harrison
- Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, USA
| |
Collapse
|
6
|
Lepiarczyk E, Paukszto Ł, Wiszpolska M, Łopieńska-Biernat E, Bossowska A, Majewski MK, Majewska M. Molecular Influence of Resiniferatoxin on the Urinary Bladder Wall Based on Differential Gene Expression Profiling. Cells 2023; 12:cells12030462. [PMID: 36766804 PMCID: PMC9914288 DOI: 10.3390/cells12030462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Resiniferatoxin (RTX) is a potent capsaicin analog used as a drug for experimental therapy to treat neurogenic disorders associated with enhanced nociceptive transmission, including lower urinary tract symptoms. The present study, for the first time, investigated the transcriptomic profile of control and RTX-treated porcine urinary bladder walls. We applied multistep bioinformatics and discovered 129 differentially expressed genes (DEGs): 54 upregulated and 75 downregulated. Metabolic pathways analysis revealed five significant Kyoto Encyclopedia of Genes and Genomes (KEGG) items ('folate biosynthesis', 'metabolic pathways', 'sulfur relay system', 'sulfur metabolism' and 'serotonergic synapse') that were altered after RTX intravesical administration. A thorough analysis of the detected DEGs indicated that RTX treatment influenced the signaling pathways regulating nerve growth, myelination, axon specification, and elongation. Many of the revealed DEGs are involved in the nerve degeneration process; however, some of them were implicated in the initiation of neuroprotective mechanisms. Interestingly, RTX intravesical installation was followed by changes in the expression of genes involved in synaptic plasticity and neuromodulation, including 5-HT, H2S, glutamate, and GABA transmission. The obtained results suggest that the toxin may exert a therapeutic, antinociceptive effect not only by acting on TRPV1 receptors.
Collapse
Affiliation(s)
- Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-53-34; Fax: +48-89-524-53-07
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | - Marta Wiszpolska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
7
|
Liu C, Miao R, Raza F, Qian H, Tian X. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain. Eur J Med Chem 2022; 245:114893. [DOI: 10.1016/j.ejmech.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
8
|
Argôlo IDPR, Parisi JR, Silva JRTD, Silva MLD. Participation of Potential Transient Receptors in the Antinociceptive Effect of Pharmacopuncture. J Acupunct Meridian Stud 2022; 15:105-113. [DOI: 10.51507/j.jams.2022.15.2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 12/04/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Julia Risso Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | | |
Collapse
|
9
|
Long W, Johnson J, Kalyaanamoorthy S, Light P. TRPV1 channels as a newly identified target for vitamin D. Channels (Austin) 2021; 15:360-374. [PMID: 33825665 PMCID: PMC8032246 DOI: 10.1080/19336950.2021.1905248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Vitamin D is known to elicit many biological effects in diverse tissue types and is thought to act almost exclusively upon its canonical receptor within the nucleus, leading to gene transcriptional changes and the subsequent cellular response. However, not all the observed effects of vitamin D can be attributed to this sole mechanism, and other cellular targets likely exist but remain to be identified. Our recent discovery that vitamin D is a partial agonist of the Transient Receptor Potential Vanilloid family 1 (TRPV1) channel may provide new insights as to how this important vitamin exerts its biological effects either independently or in addition to the nuclear vitamin D receptor. In this review, we discuss the literature surrounding this apparent discrepancy in vitamin D signaling and compare vitamin D with known TRPV1 ligands with respect to their binding to TRPV1. Furthermore, we provide evidence supporting the notion that this novel vitamin D/TRPV1 axis may explain some of the beneficial actions of this vitamin in disease states where TRPV1 expression and vitamin D deficiency are known to overlap. Finally, we discuss whether vitamin D may also act on other members of the TRP family of ion channels.
Collapse
Affiliation(s)
- Wentong Long
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Janyne Johnson
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | | | - Peter Light
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Mannozzi J, Al-Hassan MH, Lessanework B, Alvarez A, Senador D, O'Leary DS. Chronic ablation of TRPV1-sensitive skeletal muscle afferents attenuates the muscle metaboreflex. Am J Physiol Regul Integr Comp Physiol 2021; 321:R385-R395. [PMID: 34259041 DOI: 10.1152/ajpregu.00129.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Exercise intolerance is a hallmark symptom of cardiovascular disease and likely occurs via enhanced activation of muscle metaboreflex-induced vasoconstriction of the heart and active skeletal muscle which, thereby limits cardiac output and peripheral blood flow. Muscle metaboreflex vasoconstrictor responses occur via activation of metabolite-sensitive afferent fibers located in ischemic active skeletal muscle, some of which express transient receptor potential vanilloid 1 (TRPV1) cation channels. Local cardiac and intrathecal administration of an ultrapotent noncompetitive, dominant negative agonist resiniferatoxin (RTX) can ablate these TRPV1-sensitive afferents. This technique has been used to attenuate cardiac sympathetic afferents and nociceptive pain. We investigated whether intrathecal administration (L4-L6) of RTX (2 µg/kg) could chronically attenuate subsequent muscle metaboreflex responses elicited by reductions in hindlimb blood flow during mild exercise (3.2 km/h) in chronically instrumented conscious canines. RTX significantly attenuated metaboreflex-induced increases in mean arterial pressure (27 ± 5.0 mmHg vs. 6 ± 8.2 mmHg), cardiac output (1.40 ± 0.2 L/min vs. 0.28 ± 0.1 L/min), and stroke work (2.27 ± 0.2 L·mmHg vs. 1.01 ± 0.2 L·mmHg). Effects were maintained until 78 ± 14 days post-RTX at which point the efficacy of RTX injection was tested by intra-arterial administration of capsaicin (20 µg/kg). A significant reduction in the mean arterial pressure response (+45.7 ± 6.5 mmHg pre-RTX vs. +19.7 ± 3.1 mmHg post-RTX) was observed. We conclude that intrathecal administration of RTX can chronically attenuate the muscle metaboreflex and could potentially alleviate enhanced sympatho-activation observed in cardiovascular disease states.
Collapse
Affiliation(s)
- Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Beruk Lessanework
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Alberto Alvarez
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Danielle Senador
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
11
|
Pluskal T, Weng JK. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chem Soc Rev 2018; 47:1592-1637. [PMID: 28933478 DOI: 10.1039/c7cs00411g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Humans perceive physical information about the surrounding environment through their senses. This physical information is registered by a collection of highly evolved and finely tuned molecular sensory receptors. A multitude of bioactive, structurally diverse ligands have evolved in nature that bind these molecular receptors. The complex, dynamic interactions between the ligands and the receptors lead to changes in our sensory perception or mood. Here, we review our current knowledge of natural products and their derived analogues that interact specifically with human G protein-coupled receptors, ion channels, and nuclear hormone receptors to modulate the sensations of taste, smell, temperature, pain, and itch, as well as mood and its associated behaviour. We discuss the molecular and structural mechanisms underlying such interactions and highlight cases where subtle differences in natural product chemistry produce drastic changes in functional outcome. We also discuss cases where a single compound triggers complex sensory or behavioural changes in humans through multiple mechanistic targets. Finally, we comment on the therapeutic potential of the reviewed area of research and draw attention to recent technological developments in genomics, metabolomics, and metabolic engineering that allow us to tap the medicinal properties of natural product chemistry without taxing nature.
Collapse
Affiliation(s)
- Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
12
|
Abstract
Cold exposure and a variety of types of mild stress increase pain in patients with painful disorders such as fibromyalgia syndrome. Acutely, stress induces thermogenesis by increasing sympathetic activation of beta-3 (β3) adrenergic receptors in brown adipose tissue. Chronic stress leads to the hypertrophy of brown adipose, a phenomenon termed adaptive thermogenesis. Based on the innervation of skeletal muscle by collaterals of nerves projecting to brown adipose, we theorized an association between brown adipose tissue activity and musculoskeletal hyperalgesia and tested this hypothesis in mice. Exposure to a cold swim or injection of BRL37344 (β3 adrenergic agonist) each enhanced musculoskeletal hyperalgesia, as indicated by morphine-sensitive decreases in grip force responses, whereas SR59230A (β3 adrenergic antagonist) attenuated swim-induced hyperalgesia. Chemical ablation of interscapular brown adipose, using Rose Bengal, attenuated the development of hyperalgesia in response to either swim stress or BRL37344. In addition, elimination of the gene expressing uncoupling protein-1 (UCP1), the enzyme responsible for thermogenesis, prevented musculoskeletal hyperalgesia in response to either a swim or BRL37344, as documented in UCP1-knockout (UCP1-KO) mice compared with wild-type controls. Together, these data provide a convergence of evidence suggesting that activation of brown adipose contributes to stress-induced musculoskeletal hyperalgesia.
Collapse
|
13
|
Scheich B, Vincze P, Szőke É, Borbély É, Hunyady Á, Szolcsányi J, Dénes Á, Környei Z, Gaszner B, Helyes Z. Chronic stress-induced mechanical hyperalgesia is controlled by capsaicin-sensitive neurones in the mouse. Eur J Pain 2017; 21:1417-1431. [PMID: 28444833 DOI: 10.1002/ejp.1043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Clinical studies demonstrated peripheral nociceptor deficit in stress-related chronic pain states, such as fibromyalgia. The interactions of stress and nociceptive systems have special relevance in chronic pain, but the underlying mechanisms including the role of specific nociceptor populations remain unknown. We investigated the role of capsaicin-sensitive neurones in chronic stress-related nociceptive changes. METHOD Capsaicin-sensitive neurones were desensitized by the capsaicin analogue resiniferatoxin (RTX) in CD1 mice. The effects of desensitization on chronic restraint stress (CRS)-induced responses were analysed using behavioural tests, chronic neuronal activity assessment in the central nervous system with FosB immunohistochemistry and peripheral cytokine concentration measurements. RESULTS Chronic restraint stress induced mechanical and cold hypersensitivity and increased light preference in the light-dark box test. Open-field and tail suspension test activities were not altered. Adrenal weight increased, whereas thymus and body weights decreased in response to CRS. FosB immunopositivity increased in the insular cortex, dorsomedial hypothalamic and dorsal raphe nuclei, but not in the spinal cord dorsal horn after the CRS. CRS did not affect the cytokine concentrations of hindpaw tissues. Surprisingly, RTX pretreatment augmented stress-induced mechanical hyperalgesia, abolished light preference and selectively decreased the CRS-induced neuronal activation in the insular cortex. RTX pretreatment alone increased the basal noxious heat threshold without influencing the CRS-evoked cold hyperalgesia and augmented neuronal activation in the somatosensory cortex and interleukin-1α and RANTES production. CONCLUSIONS Chronic restraint stress induces hyperalgesia without major anxiety, depression-like behaviour or peripheral inflammatory changes. Increased stress-induced mechanical hypersensitivity in RTX-pretreated mice is presumably mediated by central mechanisms including cortical plastic changes. SIGNIFICANCE These are the first data demonstrating the complex interactions between capsaicin-sensitive neurones and chronic stress and their impact on nociception. Capsaicin-sensitive neurones are protective against stress-induced mechanical hyperalgesia by influencing neuronal plasticity in the brain.
Collapse
Affiliation(s)
- B Scheich
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - P Vincze
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - É Szőke
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Pécs, Hungary
| | - É Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Á Hunyady
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - J Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.,PharmInVivo Ltd., Pécs, Hungary
| | - Á Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zs Környei
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - B Gaszner
- Department of Anatomy, University of Pécs Medical School, Hungary
| | - Zs Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Hungary.,János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Pécs, Hungary.,PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
14
|
Abstract
Epilepsy has 2-3% incidence worldwide. However, present antiepileptic drugs provide only partial control of seizures. Calcium ion accumulation in hippocampal neurons has long been known as a major contributor to the etiology of epilepsy. TRPV1 is a calcium-permeable channel and mediator of epilepsy in the hippocampus. TRPV1 is expressed in epileptic brain areas such as CA1 area and dentate gyrus of the hippocampus. Here the author reviews the patent literature on novel molecules targeting TRPV1 that are currently being investigated in the laboratory and are candidates for future clinical evaluation in the management of epilepsy. A limited number of recent reports have implicated TRPV1 in the induction or treatment of epilepsy suggesting that this may be new area for potential drugs targeting this debilitating disease. Thus activation of TRPV1 by oxidative stress, resiniferatoxin, cannabinoid receptor (CB1) activators (i.e. anandamide) or capsaicin induced epileptic effects, and these effects could be reduced by appropriate inhibitors, including capsazepine (CPZ), 5'-iodoresiniferatoxin (IRTX), resolvins, and CB1 antagonists. It has been also reported that CPZ and IRTX reduced spontaneous excitatory synaptic transmission through modulation of glutaminergic systems and desensitization of TRPV1 channels in the hippocampus of rats. Immunocytochemical studies indicated that TRPV1 channel expression increased in the hippocampus of mice and patients with temporal lobe epilepsy. Taken together, findings in the current literature support a role for calcium ion accumulation through TRPV1 channels in the etiology of epileptic seizures, indicating that inhibition of TRPV1 in the hippocampus may possibly be a novel target for prevention of epileptic seizures.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Director of Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey.
| |
Collapse
|
15
|
Kim Y, Kim EH, Lee KS, Lee K, Park SH, Na SH, Ko C, Kim J, Yooon YW. The effects of intra-articular resiniferatoxin on monosodium iodoacetate-induced osteoarthritic pain in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:129-36. [PMID: 26807032 PMCID: PMC4722186 DOI: 10.4196/kjpp.2016.20.1.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 01/19/2023]
Abstract
This study was performed to investigate whether an intra-articular injection of transient receptor potential vanilloid 1 (TRPV1) receptor agonist, resiniferatoxin (RTX) would alleviate behavioral signs of arthritic pain in a rat model of osteoarthritis (OA). We also sought to determine the effect of RTX treatment on calcitonin gene-related peptide (CGRP) expression in the spinal cord. Knee joint inflammation was induced by intra-articular injection of monosodium iodoacetate (MIA, 8 mg/50 µl) and weight bearing percentage on right and left hindpaws during walking, paw withdrawal threshold to mechanical stimulation, and paw withdrawal latency to heat were measured to evaluate pain behavior. Intra-articular administration of RTX (0.03, 0.003 and 0.0003%) at 2 weeks after the induction of knee joint inflammation significantly improved reduction of weight bearing on the ipsilateral hindlimb and increased paw withdrawal sensitivity to mechanical and heat stimuli. The reduction of pain behavior persisted for 3~10 days according to each behavioral test. The MIA-induced increase in CGRP immunoreactivity in the spinal cord was decreased by RTX treatment in a dose-dependent manner. The present study demonstrated that a single intra-articular administration of RTX reduced pain behaviors for a relatively long time in an experimental model of OA and could normalize OA-associated changes in peptide expression in the spinal cord.
Collapse
Affiliation(s)
- Youngkyung Kim
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea.; Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Eun-Hye Kim
- Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Kyu Sang Lee
- School of Health and Fitness Management, College of Health and Welfare, Woosong University, Daejeon 34606, Korea
| | - Koeun Lee
- Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea.; Department of Rehabilitation Policy and Standardization, National Rehabilitation Research Institute (KNRRI), Seoul 01022, Korea
| | - Sung Ho Park
- Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea.; Department of Physical Therapy, Korea University College of Health Science, Seoul 02841, Korea
| | - Sook Hyun Na
- Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Cheolwoong Ko
- Advanced Biomedical and Welfare Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea
| | - Junesun Kim
- Rehabilitation Science Program, Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea.; Department of Physical Therapy, Korea University College of Health Science, Seoul 02841, Korea
| | - Young Wook Yooon
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
16
|
The influence of intravesical administration of resiniferatoxin (RTX) on the chemical coding of sympathetic chain ganglia (SChG) neurons supplying the porcine urinary bladder. Histochem Cell Biol 2015; 144:479-89. [PMID: 26194530 DOI: 10.1007/s00418-015-1355-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 12/19/2022]
Abstract
Resiniferatoxin (RTX) is used as an experimental drug in therapy of neurogenic urinary bladder disorders. The present study investigated the chemical coding of sympathetic chain ganglia (SChG) neurons supplying porcine urinary bladder after intravesical RTX instillation. The SChG neurons were visualized with retrograde tracing method and their chemical profile was disclosed with double-labeling immunohistochemistry using antibodies against dopamine β-hydroxylase (DβH; marker of noradrenergic neurons), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin, Leu(5)-enkephalin and neuronal nitric oxide synthase (nNOS). It was found that in both the control (n = 5) and RTX-treated pigs (n = 5), the vast majority (90.4 ± 2.8 and 89.7 ± 2.3%, respectively) of FB-positive (FB+) nerve cells were DβH+. RTX instillation caused a decrease in the number of FB+/DβH+ neurons immunopositive to NPY (71.1 ± 12.1 vs 43.2 ± 6.7%), VIP (21.3 ± 10.7 vs 5.3 ± 4.3%) or SOM (16.5 ± 4.6 vs 2.3 ± 2.6%) and a distinct increase in the number of FB+/DβH+ neurons immunoreactive to nNOS (0.8 ± 1 vs 5.3 ± 1.9 %). The present study for the first time has provided some information that therapeutic effects of RTX on the mammalian urinary bladder can be partly mediated by SChG neurons.
Collapse
|
17
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
18
|
Stress-induced hyperalgesia. Prog Neurobiol 2014; 121:1-18. [DOI: 10.1016/j.pneurobio.2014.06.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/17/2014] [Accepted: 06/29/2014] [Indexed: 12/25/2022]
|
19
|
Abdelhamid RE, Kovács KJ, Nunez MG, Larson AA. After a cold conditioning swim, UCP2-deficient mice are more able to defend against the cold than wild type mice. Physiol Behav 2014; 135:168-73. [PMID: 24952267 DOI: 10.1016/j.physbeh.2014.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 11/25/2022]
Abstract
Uncoupling protein 2 (UCP2) is widely distributed throughout the body including the brain, adipose tissue and skeletal muscles. In contrast to UCP1, UCP2 does not influence resting body temperature and UCP2-deficient (-/-) mice have normal thermoregulatory responses to a single exposure to cold ambient temperatures. Instead, UCP2-deficient mice are more anxious, exhibit anhedonia and have higher circulating corticosterone than wild type mice. To test the possible role of UCP2 in depressive behavior we exposed UCP2-deficient and wild type mice to a cold (26°C) forced swim and simultaneously measured rectal temperatures during and after the swim. The time that UCP2-deficient mice spent immobile did not differ from wild type mice and all mice floated more on day 2. However, UCP2-deficient mice were more able to defend against the decrease in body temperature during a second daily swim at 26°C than wild type mice (area under the curve for wild type mice: 247.0±6.4; for UCP2-deficient mice: 284.4±3.8, P<0.0001, Student's t test). The improved thermoregulation of wild type mice during a second swim at 26°C correlated with their greater immobility whereas defense against the warmth during a swim at 41°C correlated better with greater immobility of UCP2-deficient mice. Together these data indicate that while the lack of UCP2 has no acute effect on body temperature, UCP2 may inhibit rapid improvements in defense against cold, in contrast to UCP1, whose main function is to promote thermogenesis.
Collapse
Affiliation(s)
- Ramy E Abdelhamid
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Katalin J Kovács
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Myra G Nunez
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Alice A Larson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|