1
|
Abdel Hamid M, Habib A, Mabrouk M, Hammad S, Elshahawy M. Formation of plasmonic silver nanoparticles by glucosamine reduction: Application to a colorimetric sensor for determination of glucosamine in its pharmaceutical preparations. J Pharm Biomed Anal 2023; 236:115705. [PMID: 37690186 DOI: 10.1016/j.jpba.2023.115705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
The purpose of this study is to develop a novel method for synthesizing silver nanoparticles using glucosamine as reducing agent and to utilize the developed method for colorimetric detection and quantitative determination of the non-chromophoric drug, glucosamine. Silver nanoparticles are prepared by reducing 0.02 mol/L silver nitrate by glucosamine in 0.075 mol/L ammonia and stabilizing the nanoparticles with 0.1% polyvinylpyrrolidone and the mixture is heated at 90 °C for 5 min. The prepared silver nanoparticles dispersed in water exhibit a bright yellow color due to a localized surface plasmon resonance band at 412 nm. The principle of glucosamine sensing is based on measuring the intensity of the surface plasmon resonance band at 412 nm which is directly proportional to the concentration of glucosamine with a linearity range (1 - 9 μg/mL), limit of detection 0.33 μg/mL and limit of quantitation 1.0 μg/mL. The proposed method was validated according to the ICH guidelines, and it was found to be accurate, precise, selective, and robust. The method was applied for determination of glucosamine in Joflex® capsules using the standard addition approach with mean % recovery ± standard deviation of 100.077 ± 1.786. The method is simple, rapid, and cost-effective and can be used for determination of glucosamine in bulk and in its pharmaceutical preparations.
Collapse
Affiliation(s)
- Mohamed Abdel Hamid
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed Habib
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mokhtar Mabrouk
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mahmoud Elshahawy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
2
|
Do YN, Kieu TLP, Dang THM, Nguyen QH, Dang TH, Tran CS, Vu AP, Do TT, Nguyen TN, Dinh SL, Nguyen TMT, Pham TNM, Hoang AQ, Pham B, Nguyen TAH. Green Analytical Method for Simultaneous Determination of Glucosamine and Calcium in Dietary Supplements by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:2765508. [PMID: 36760655 PMCID: PMC9904918 DOI: 10.1155/2023/2765508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Accepted: 11/24/2022] [Indexed: 06/18/2023]
Abstract
The need for analytical methods that are fast, affordable, and ecologically friendly is expanding. Because of its low solvent consumption, minimal waste production, and speedy analysis, capillary electrophoresis is considered a "green" choice among analytical separation methods. With these "green" features, we have utilized the capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE-C4D) to simultaneously determine glucosamine and Ca2+ in dietary supplements. The CE analysis was performed in fused silica capillaries (50 μm inner diameter, 40 cm total length, 30 cm effective length), and the analytical time was around 5 min. After optimization, the CE conditions for selective determination of glucosamine and Ca2+ were obtained, including a 10 mM tris (hydroxymethyl) aminomethane/acetic acid (Tris/Ace) buffer of pH 5.0 as the background electrolyte; separation voltage of 20 kV; and hydrodynamic injection (siphoning) at 25 cm height for 30 s. The method illustrated good linearity over the concentration range of 5.00 to 200 mg/L of for glucosamine (R 2 = 0.9994) and 1.00 to 100 mg/L for Ca2+ (R 2 = 0.9994). Under the optimum conditions, the detection limit of glucosamine was 1.00 mg/L, while that of Ca2+ was 0.05 mg/L. The validated method successfully analyzed glucosamine and Ca2+ in seven dietary supplement samples. The measured concentrations were generally in line with the values of label claims and with cross-checking data from reference methods (HPLC and ICP-OES).
Collapse
Affiliation(s)
- Yen Nhi Do
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Thi Lan Phuong Kieu
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
- National Institute for Food Control (NIFC), 65 Pham Than Duat, Hanoi 10000, Vietnam
| | - Thi Huyen My Dang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Quang Huy Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
- Faculty of Pharmacy, University of Medicine and Pharmacy, Thai Nguyen University, 284 Luong Ngoc Quyen, Thai Nguyen 24000, Vietnam
| | - Thu Hien Dang
- National Institute for Food Control (NIFC), 65 Pham Than Duat, Hanoi 10000, Vietnam
| | - Cao Son Tran
- National Institute for Food Control (NIFC), 65 Pham Than Duat, Hanoi 10000, Vietnam
| | - Anh Phuong Vu
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong, Hanoi 10000, Vietnam
| | - Thi Trang Do
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong, Hanoi 10000, Vietnam
| | - Thi Ngan Nguyen
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong, Hanoi 10000, Vietnam
| | - Son Luong Dinh
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong, Hanoi 10000, Vietnam
| | - Thi Minh Thu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Thi Ngoc Mai Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Bach Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Thi Anh Huong Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Vietnam
| |
Collapse
|
3
|
Development of a method for dansylation of metabolites using organic solvent-compatible buffer systems for amine/phenol submetabolome analysis. Anal Chim Acta 2022; 1189:339218. [PMID: 34815039 DOI: 10.1016/j.aca.2021.339218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 11/21/2022]
Abstract
Metabolomics, which serves as a readout of biological processes and diseases monitoring, is an informative research area for disease biomarker discovery and systems biology studies. In particular, reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) has become a powerful and popular tool for metabolomics analysis, enabling the detection of most metabolites. Very polar and ionic metabolites, however, are less easily detected because of their poor retention in RP columns. Dansylation of metabolites simplifies the sub-metabolome analysis by reducing its complexity and increasing both hydrophobicity and ionization ability. However, the various metabolite concentrations in clinical samples have a wide dynamic range with highly individual variation in total metabolite amount, such as in saliva. The bicarbonate buffer typically used in dansylation labeling reactions induces solvent stratification, resulting in poor reproducibility, selective sample loss and an increase in false-determined metabolite peaks. In this study, we optimized the dansylation protocol for samples with wide concentration range of metabolites, utilizing diisopropylethylamine (DIPEA) or tri-ethylamine (TEA) in place of bicarbonate buffer, and presented the results of a systemic investigation of the influences of individual processes involved on the overall performance of the protocol. In addition to achieving high reproducibility, substitution of DIPEA or TEA buffer resulted in similar labeling efficiency of most metabolites and more efficient labeling of some metabolites with a higher pKa. With this improvement, compounds that are only present in samples in trace amounts can be detected, and more comprehensive metabolomics profiles can be acquired for biomarker discovery or pathway analysis, making it possible to analyze clinical samples with limited amounts of metabolites.
Collapse
|
4
|
Liquid chromatography-diode array-mass spectrometric analysis of amino and mercapto compounds coupled with chloroimino derivatization reagent. J Chromatogr A 2020; 1621:461078. [DOI: 10.1016/j.chroma.2020.461078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022]
|
5
|
Pazourek J. Determination of glucosamine and monitoring of its mutarotation by hydrophilic interaction liquid chromatography with evaporative light scattering detector. Biomed Chromatogr 2018; 32:e4368. [PMID: 30120782 DOI: 10.1002/bmc.4368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 01/19/2023]
Abstract
Saccharides and their derivatives are typical polar analytes without a suitable UV-chromophore that are nowadays analyzed by HPLC (high-performance liquid chromatography) under HILIC (hydrophilic interaction liquid chromatography) mode. Usually an evaporative light scattering detector (ELSD) is utilized which, however, gives a nonlinear response. A procedure to overcome the problem of mutarotating (time-varying) analytes recorded with such a nonlinear response detector is described. The procedure was applied for determination of glucosamine in two commercially available pharmaceutical formulations containing the common inorganic ions that the detector gives a response to. Under optimized conditions, both the anomers of glucosamine were separated and could be determined separately. Owing to the short retention time of the analyte (a run time <4 min) and relatively slow kinetics of the anomeric conversion (equilibration time 2.5 h), mutarotation could be monitored and corresponding rate constants calculated.
Collapse
Affiliation(s)
- Jiří Pazourek
- Department of Chemical Drugs, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
6
|
Zhang Z, He M, Liu L, Xiong X, Fang X, Xu W. Electro-kinetic assisted electrospray ionization for enhanced complex sample analysis. Talanta 2017; 164:45-51. [DOI: 10.1016/j.talanta.2016.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023]
|
7
|
Mu X, Qi L, Qiao J, Yang X, Ma H. Enantioseparation of dansyl amino acids and dipeptides by chiral ligand exchange capillary electrophoresis based on Zn(II)-L-hydroxyproline complexes coordinating with γ-cyclodextrins. Anal Chim Acta 2014; 846:68-74. [PMID: 25220143 DOI: 10.1016/j.aca.2014.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/08/2014] [Accepted: 07/12/2014] [Indexed: 11/25/2022]
Abstract
A chiral ligand exchange capillary electrophoresis (CLE-CE) method using Zn(II) as the central ion and L-4-hydroxyproline as the chiral ligand coordinating with γ-cyclodextrin (γ-CD) was developed for the enantioseparation of amino acids (AAs) and dipeptides. The effects of various separation parameters, including the pH of the running buffer, the ratio of Zn(II) to L-4-hydroxyproline, the concentration of complexes and cyclodextrins (CDs) were systematically investigated. After optimization, it has been found that eight pairs of labeled AAs and six pairs of labeled dipeptides could be baseline-separated with a running electrolyte of 100.0mM boric acid, 5.0mM ammonium acetate, 3.0mM Zn(II), 6.0mM L-hydroxyproline and 4.0mM γ-CD at pH 8.2. The quantitation of AAs and dipeptides was conducted and good linearity (r(2)≥0.997) and favorable repeatability (RSD≤3.6%) were obtained. Furthermore, the proposed method was applied in determining the enantiomeric purity of AAs and dipeptides. Meanwhile, the possible enantiorecognition mechanism based on the synergistic effect of chiral metal complexes and γ-CD was explored and discussed briefly.
Collapse
Affiliation(s)
- Xiaoyu Mu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Juan Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xinzheng Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
8
|
Sanches-Silva A, Ribeiro T, Albuquerque TG, Paseiro P, Sendón R, de Quirós AB, López-Cervantes J, Sánchez-Machado DI, Valdez HS, Angulo I, Aurrekoetxea GP, Costa HS. Ultra-high pressure LC determination of glucosamine in shrimp by-products and migration tests of chitosan films. J Sep Sci 2012; 35:633-40. [PMID: 22517638 DOI: 10.1002/jssc.201100855] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chitosan, a multiple applications molecule, was isolated from shrimp by-products by fermentation. The amount of chitosan in the solid fraction of the fermented extract was measured after its conversion in the respective glucosamine units. The procedure includes an acid hydrolysis (110 °C, 4 h with HCl 8 M) and a derivatization with 9-fluorenylmethyl chloroformate (Fmoc-Cl). Ultra-high-pressure liquid chromatography method was developed and optimized. Excellent peaks resolution was achieved in just 10 min. The method was evaluated in what concerns to validation parameters such as linearity, repeatability, quantification limit, and recovery. Migration tests of films prepared with chitosan were carried out in two simulants: ultrapure water and ethanol 95% (v/v).
Collapse
Affiliation(s)
- Ana Sanches-Silva
- Food and Nutrition Department, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jin P, Yan X, Wang Z, Wu X, Zou D, Hu X, Sun C. DEVELOPMENT, COMPARISON, AND PEAK VALIDATION OF A HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY METHOD FOR DIRECT DETERMINATION OF GLUCOSAMINE HYDROCHLORIDE IN PHARMACEUTICAL FORMULATIONS. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.591032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Pengfei Jin
- a Department of Pharmaceutical Science , Beijing Hospital , Beijing , China
| | - Xiaoyan Yan
- a Department of Pharmaceutical Science , Beijing Hospital , Beijing , China
| | - Zhihong Wang
- a Department of Pharmaceutical Science , Beijing Hospital , Beijing , China
| | - Xuejun Wu
- a Department of Pharmaceutical Science , Beijing Hospital , Beijing , China
| | - Ding Zou
- a Department of Pharmaceutical Science , Beijing Hospital , Beijing , China
| | - Xin Hu
- a Department of Pharmaceutical Science , Beijing Hospital , Beijing , China
| | - Chunhua Sun
- a Department of Pharmaceutical Science , Beijing Hospital , Beijing , China
| |
Collapse
|
10
|
Chiappetta G, Ndiaye S, Demey E, Haddad I, Marino G, Amoresano A, Vinh J. Dansyl-peptides matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) and tandem mass spectrometric (MS/MS) features improve the liquid chromatography/MALDI-MS/MS analysis of the proteome. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3021-3032. [PMID: 20872635 DOI: 10.1002/rcm.4734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Peptide tagging is a useful tool to improve matrix-assisted laser desorption/ionization tandem mass spectrometric (MALDI-MS/MS) analysis. We present a new application of the use of the dansyl chloride (DNS-Cl). DNS-Cl is a specific primary amine reagent widely used in protein biochemistry. It adds a fluorescent dimethylaminonaphthalene moiety to the molecule. The evaluation of MALDI-MS and MS/MS analyses of dansylated peptides shows that dansylation raises the ionization efficiency of the most hydrophilic species compared with the most hydrophobic ones. Consequently, higher Mascot scores and protein sequence coverage are obtained by combining MS and MS/MS data of native and tagged samples. The N-terminal DNS-Cl sulfonation improves the peptide fragmentation and promotes the generation of b-fragments allowing better peptide sequencing. In addition, we set up a labeling protocol based on the microwave chemistry. Peptide dansylation proved to be a rapid and cheap method to improve the performance of liquid chromatography (LC)/MALDI-MS/MS analysis at the proteomic scale in terms of peptide detection and sequence coverage.
Collapse
Affiliation(s)
- Giovanni Chiappetta
- USR 3149 CNRS/ESPCI ParisTech, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Qi L, Yang G. Enantioseparation of dansyl amino acids by ligand-exchange capillary electrophoresis with zinc(II)-L
-phenylalaninamide complex. J Sep Sci 2009; 32:3209-14. [DOI: 10.1002/jssc.200900328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Qi L, Cui K, Qiao J, Yang G, Chen Y. Use of MEKC for the analysis of reactant and product of Baylis-Hillman reaction. J Sep Sci 2009; 32:1480-6. [DOI: 10.1002/jssc.200800612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Volpi N. Capillary electrophoresis determination of glucosamine in nutraceutical formulations after labeling with anthranilic acid and UV detection. J Pharm Biomed Anal 2009; 49:868-71. [PMID: 19200685 DOI: 10.1016/j.jpba.2009.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
A new robust CE method for the determination of the glucosamine (GlcN) content in nutraceutical formulations is described after its derivatization with anthranilic acid (2-aminobenzoic acid, AA). The CE separation of derivatized GlcN with AA was performed on an uncoated fused-silica capillary tube (50 microm I.D.) using an operating pH 7.0 buffer of 150 mM boric acid/50 mM NaH2PO4 and UV detection at 214 nm. The method was validated for specificity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). The detector response for GlcN was linear over the selected concentration range from 240 to 2400 pg (40-400 microg/mL) with a correlation coefficient greater than 0.980. The intra- and inter-day variations (CV%) were between 0.5 and 0.9 for migration time, and between 2.8 and 4.3 for peak area, respectively. The LOD and the LOQ of the method were approximately 200 and 500 pg, respectively. The intra- and inter-day accuracy was estimated to range from 2.8% to 5.1%, while the percent recoveries of GlcN in formulations were calculated to be about 100% after simple centrifugation for 10 min, lyophilization and derivatization with AA. The CE method was applied to the determination of GlcN content, in the form of GlcN-hydrochloride or GlcN-sulfate, of several nutraceutical preparations in the presence of other ingredients, i.e. chondroitin sulfate, vitamin C and/or methylsulfonylmethane (MSM) as well as salts and other agents. The quantitative results obtained were in total conformity with the label claims.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Biologia Animale, University of Modena and Reggio Emilia, Via Campi 213/d, 41100 Modena, Italy.
| |
Collapse
|
14
|
Affiliation(s)
- Vratislav Kostal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Joseph Katzenmeyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
15
|
Chen Y, Guo Z, Wang X, Qiu C. Sample preparation. J Chromatogr A 2007; 1184:191-219. [PMID: 17991475 DOI: 10.1016/j.chroma.2007.10.026] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 11/17/2022]
Abstract
A panorama of sample preparation methods has been composed from 481 references, with a highlight of some promising methods fast developed during recent years and a somewhat brief introduction on most of the well-developed methods. All the samples were commonly referred to molecular composition, being extendable to particles including cells but not to organs, tissues and larger bodies. Some criteria to evaluate or validate a sample preparation method were proposed for reference. Strategy for integration of several methods to prepare complicated protein samples for proteomic studies was illustrated and discussed.
Collapse
Affiliation(s)
- Yi Chen
- Beijing National Laboratory of Molecular Science, Laboratory of Analytical Chemistry for Life Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China.
| | | | | | | |
Collapse
|