1
|
Schejbal J, Šefraná Š, Řemínek R, Glatz Z. Capillary electrophoresis integrated immobilized enzyme reactor for kinetic and inhibition assays of β-secretase as the Alzheimer's disease drug target. J Sep Sci 2019; 42:1067-1076. [PMID: 30663871 DOI: 10.1002/jssc.201800947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/22/2023]
Abstract
Capillary electrophoresis integrated immobilized enzyme reactors are becoming an increasingly popular alternative for enzyme kinetic and inhibition assays thanks to their unique set of features including cost effectiveness, repeated use of the enzyme, minuscule sample consumption, rapid analysis time and easy automation. In this work we present the development and application of a capillary electrophoresis integrated immobilized enzyme reactor based on magnetic particles for kinetic and inhibition studies of β-secretase, a key enzyme in the development of Alzheimer's disease and a promising drug target. We document the optimization of the immobilization procedure, characterization of immobilized β-secretase, optimization of a mutually compatible incubation protocol and separation method as well as the production of the capillary electrophoresis integrated immobilized enzyme reactor. The applicability of the capillary electrophoresis integrated immobilized enzyme reactor was demonstrated by kinetic assay with an unlabelled substrate and by inhibition assays using three structurally different reference inhibitors. The resulting kinetic and inhibition parameters clearly support the applicability of the herein presented method as well as document the fundamental phenomena which need to be taken in account when comparing the results to other methods.
Collapse
Affiliation(s)
- Jan Schejbal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Šárka Šefraná
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Řemínek
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Schaduangrat N, Prachayasittikul V, Choomwattana S, Wongchitrat P, Phopin K, Suwanjang W, Malik AA, Vincent B, Nantasenamat C. Multidisciplinary approaches for targeting the secretase protein family as a therapeutic route for Alzheimer's disease. Med Res Rev 2019; 39:1730-1778. [PMID: 30628099 DOI: 10.1002/med.21563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/21/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022]
Abstract
The continual increase of the aging population worldwide renders Alzheimer's disease (AD) a global prime concern. Several attempts have been focused on understanding the intricate complexity of the disease's development along with the on- andgoing search for novel therapeutic strategies. Incapability of existing AD drugs to effectively modulate the pathogenesis or to delay the progression of the disease leads to a shift in the paradigm of AD drug discovery. Efforts aimed at identifying AD drugs have mostly focused on the development of disease-modifying agents in which effects are believed to be long lasting. Of particular note, the secretase enzymes, a group of proteases responsible for the metabolism of the β-amyloid precursor protein (βAPP) and β-amyloid (Aβ) peptides production, have been underlined for their promising therapeutic potential. This review article attempts to comprehensively cover aspects related to the identification and use of drugs targeting the secretase enzymes. Particularly, the roles of secretases in the pathogenesis of AD and their therapeutic modulation are provided herein. Moreover, an overview of the drug development process and the contribution of computational (in silico) approaches for facilitating successful drug discovery are also highlighted along with examples of relevant computational works. Promising chemical scaffolds, inhibitors, and modulators against each class of secretases are also summarized herein. Additionally, multitarget secretase modulators are also taken into consideration in light of the current growing interest in the polypharmacology of complex diseases. Finally, challenging issues and future outlook relevant to the discovery of drugs targeting secretases are also discussed.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Veda Prachayasittikul
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Saowapak Choomwattana
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Prapimpun Wongchitrat
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Centre National de la Recherche Scientifique, Paris, France
| | - Chanin Nantasenamat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Immobilized Enzyme Reactors: an Overview of Applications in Drug Discovery from 2008 to 2018. Chromatographia 2018. [DOI: 10.1007/s10337-018-3663-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Machálková M, Schejbal J, Glatz Z, Preisler J. A label-free MALDI TOF MS-based method for studying the kinetics and inhibitor screening of the Alzheimer’s disease drug target β-secretase. Anal Bioanal Chem 2018; 410:7441-7448. [DOI: 10.1007/s00216-018-1354-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 01/19/2023]
|
5
|
Řemínek R, Slezáčková L, Schejbal J, Glatz Z. Development and comprehensive comparison of two on-line capillary electrophoretic methods for β-secretase inhibitor screening. J Chromatogr A 2017; 1518:89-96. [DOI: 10.1016/j.chroma.2017.08.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023]
|
6
|
Liu R, Liu YC, Meng J, Zhu H, Zhang X. A microfluidics-based mobility shift assay to identify new inhibitors of β-secretase for Alzheimer’s disease. Anal Bioanal Chem 2017; 409:6635-6642. [DOI: 10.1007/s00216-017-0617-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
|
7
|
Schejbal J, Slezáčková L, Řemínek R, Glatz Z. A capillary electrophoresis-mass spectrometry based method for the screening of β-secretase inhibitors as potential Alzheimer's disease therapeutics. J Chromatogr A 2017; 1487:235-241. [DOI: 10.1016/j.chroma.2017.01.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/16/2017] [Accepted: 01/22/2017] [Indexed: 02/06/2023]
|
8
|
The Role of Chromatography in Alzheimer’s Disease Drug Discovery. ADVANCES IN CHROMATOGRAPHY 2016. [DOI: 10.1201/9781315370385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Chlebek J, De Simone A, Hošťálková A, Opletal L, Pérez C, Pérez DI, Havlíková L, Cahlíková L, Andrisano V. Application of BACE1 immobilized enzyme reactor for the characterization of multifunctional alkaloids from Corydalis cava (Fumariaceae) as Alzheimer's disease targets. Fitoterapia 2016; 109:241-7. [DOI: 10.1016/j.fitote.2016.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
|
10
|
André C, Kapustikova I, Lethier L, Guillaume YC. A Particulate Biochromatographic Support for the Research of Arginase Inhibitors Doped with Nanomaterials: Differences Observed Between Carbon and Boron Nitride Nanotubes. Application to Three Plant Extracts. Chromatographia 2014. [DOI: 10.1007/s10337-014-2752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
De Simone A, Seidl C, Santos CAM, Andrisano V. Reprint of: Liquid chromatographic enzymatic studies with on-line Beta-secretase immobilized enzyme reactor and 4-(4-dimethylaminophenylazo) benzoic acid/5-[(2-aminoethyl) amino] naphthalene-1-sulfonic acid peptide as fluorogenic substrate. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 968:94-100. [PMID: 24932540 DOI: 10.1016/j.jchromb.2014.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High throughput screening (HTS) techniques are required for the fast hit inhibitors selection in the early discovery process. However, in Beta-secretase (BACE1) inhibitors screening campaign, the most frequently used methoxycoumarin based peptide substrate (M-2420) is not widely applicable when aromatic or heterocycle compounds of natural source show auto-fluorescence interferences. Here, in order to overcome these drawbacks, we propose the use of a highly selective 4-(4-dimethylaminophenylazo)benzoic acid/5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid (DABCYL/1,5-EDANS) based peptide substrate (Substrate IV), whose cleavage product is devoid of spectroscopic interference. HrBACE1-IMER was prepared and characterized in terms of units of immobilised hrBACE1. BACE1 catalyzed Substrate IV cleavage was on-line kinetically characterized in terms of KM and vmax, in a classical Michaelis and Menten study. The on-line kinetic constants were found consistent with those obtained with the in solution fluorescence resonance energy transfer (FRET) standard method. In order to further validate the use of Substrate IV for inhibition studies, the inhibitory potency of the well-known BACE1 peptide InhibitorIV (IC₅₀: 0.19 ± 0.02 μM) and of the natural compound Uleine (IC₅₀: 0.57 ± 0.05) were determined in the optimized on-line hrBACE1-IMER. The IC₅₀ values on the hrBACE1-IMER system were found in agreement with that obtained by the conventional methods confirming the applicability of Substrate IV for on-line BACE1 kinetic and inhibition studies.
Collapse
Affiliation(s)
- Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Rimini, Italy
| | - Claudia Seidl
- Department of Pharmacy, University Federal of Paraná, Curitiba, Brazil
| | | | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Rimini, Italy.
| |
Collapse
|
12
|
De Simone A, Seidl C, Santos CAM, Andrisano V. Liquid chromatographic enzymatic studies with on-line Beta-secretase immobilized enzyme reactor and 4-(4-dimethylaminophenylazo) benzoic acid/5-[(2-aminoethyl) amino] naphthalene-1-sulfonic acid peptide as fluorogenic substrate. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954:108-14. [PMID: 24590190 DOI: 10.1016/j.jchromb.2014.01.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/22/2014] [Accepted: 01/31/2014] [Indexed: 11/26/2022]
Abstract
High throughput screening (HTS) techniques are required for the fast hit inhibitors selection in the early discovery process. However, in Beta-secretase (BACE1) inhibitors screening campaign, the most frequently used methoxycoumarin based peptide substrate (M-2420) is not widely applicable when aromatic or heterocycle compounds of natural source show auto-fluorescence interferences. Here, in order to overcome these drawbacks, we propose the use of a highly selective 4-(4-dimethylaminophenylazo)benzoic acid/5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid (DABCYL/1,5-EDANS) based peptide substrate (Substrate IV), whose cleavage product is devoid of spectroscopic interference. HrBACE1-IMER was prepared and characterized in terms of units of immobilised hrBACE1. BACE1 catalyzed Substrate IV cleavage was on-line kinetically characterized in terms of KM and vmax, in a classical Michaelis and Menten study. The on-line kinetic constants were found consistent with those obtained with the in solution fluorescence resonance energy transfer (FRET) standard method. In order to further validate the use of Substrate IV for inhibition studies, the inhibitory potency of the well-known BACE1 peptide InhibitorIV (IC50: 0.19±0.02μM) and of the natural compound Uleine (IC50: 0.57±0.05) were determined in the optimized on-line hrBACE1-IMER. The IC50 values on the hrBACE1-IMER system were found in agreement with that obtained by the conventional methods confirming the applicability of Substrate IV for on-line BACE1 kinetic and inhibition studies.
Collapse
Affiliation(s)
- Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Rimini, Italy
| | - Claudia Seidl
- Department of Pharmacy, University Federal of Paraná, Curitiba, Brazil
| | | | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Rimini, Italy.
| |
Collapse
|
13
|
de Moraes MC, Vanzolini KL, Cardoso CL, Cass QB. New trends in LC protein ligand screening. J Pharm Biomed Anal 2014; 87:155-66. [DOI: 10.1016/j.jpba.2013.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
14
|
De Simone A, Mancini F, Cosconati S, Marinelli L, La Pietra V, Novellino E, Andrisano V. Human recombinant beta-secretase immobilized enzyme reactor for fast hits' selection and characterization from a virtual screening library. J Pharm Biomed Anal 2012; 73:131-4. [PMID: 22502908 DOI: 10.1016/j.jpba.2012.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 12/12/2022]
Abstract
In the present work, a human recombinant BACE1 immobilized enzyme reactor (hrBACE1-IMER) has been applied for the sensitive fast screening of 38 compounds selected through a virtual screening approach. HrBACE1-IMER was inserted into a liquid chromatograph coupled with a fluorescent detector. A fluorogenic peptide substrate (M-2420), containing the β-secretase site of the Swedish mutation of APP, was injected and cleaved in the on-line HPLC-hrBACE1-IMER system, giving rise to the fluorescent product. The compounds of the library were tested for their ability to inhibit BACE1 in the immobilized format and to reduce the area related to the chromatographic peak of the fluorescent enzymatic product. The results were validated in solution by using two different FRET methods. Due to the efficient virtual screening methodology, more than fifty percent of the selected compounds showed a measurable inhibitory activity. One of the most active compound (a bis-indanone derivative) was characterized in terms of IC(50) and K(i) determination on the hrBACE1-IMER. Thus, the hrBACE1-IMER has been confirmed as a valid tool for the throughput screening of different chemical entities with potency lower than 30μM for the fast hits' selection and for mode of action determination.
Collapse
Affiliation(s)
- Angela De Simone
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Immobilized enzyme reactors in HPLC and its application in inhibitor screening: A review. J Pharm Anal 2011; 2:83-89. [PMID: 29403726 PMCID: PMC5760896 DOI: 10.1016/j.jpha.2011.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/22/2011] [Indexed: 11/21/2022] Open
Abstract
This paper sets out to summarize the literatures based on immobilized enzyme bio-chromatography and its application in inhibitors screening in the last decade. In order to screen enzyme inhibitors from a mass of compounds in preliminary screening, multi-pore materials with good biocompatibility are used for the supports of immobilizing enzymes, and then the immobilized enzyme reactor applied as the immobilized enzyme stationary phase in HPLC. Therefore, a technology platform of high throughput screening is gradually established to screen the enzyme inhibitors as new anti-tumor drugs. Here, we briefly summarize the selective methods of supports, immobilization techniques, co-immobilized enzymes system and the screening model.
Collapse
|
16
|
Mancini F, De Simone A, Andrisano V. Beta-secretase as a target for Alzheimer’s disease drug discovery: an overview of in vitro methods for characterization of inhibitors. Anal Bioanal Chem 2011; 400:1979-96. [DOI: 10.1007/s00216-011-4963-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/09/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
|