1
|
Pálla T, Noszál B, Mirzahosseini A. Prediction of Antioxidant Capacity of Thiolate-Disulfide Systems Using Species-Specific Basicity Values. Antioxidants (Basel) 2024; 13:1053. [PMID: 39334712 PMCID: PMC11428801 DOI: 10.3390/antiox13091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The principal reactions that maintain redox homeostasis in living systems are the deprotonation of thiols, followed by the oxidative conversion of the produced thiolates into disulfides, which thus reduce the harmful oxidizing agents. The various biological thiols have different molecule-specific propensities to carry on the co-dependent deprotonation and redox processes. This study utilizes the known correlation between thiolate basicities and oxidizabilities, to quantify antioxidant or reducing capacities and pH-dependences of thiol-disulfide antioxidant systems, as a tool to find adequate molecules against oxidative stress.
Collapse
Affiliation(s)
- Tamás Pálla
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary; (T.P.); (B.N.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| | - Béla Noszál
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary; (T.P.); (B.N.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| | - Arash Mirzahosseini
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary; (T.P.); (B.N.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
2
|
Wang X, Hu S, Wang J, Zhang T, Ye K, Wen A, Zhu G, Vegas A, Zhang L, Yan W, Liu X, Liu P. Biochemical and Structural Characterization of OvoA Th2: A Mononuclear Nonheme Iron Enzyme from Hydrogenimonas thermophila for Ovothiol Biosynthesis. ACS Catal 2023; 13:15417-15426. [PMID: 38058600 PMCID: PMC10696552 DOI: 10.1021/acscatal.3c04026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Ovothiol A and ergothioneine are thiol-histidine derivatives with sulfur substitutions at the δ-carbon or ε-carbon of the l-histidine imidazole ring, respectively. Both ovothiol A and ergothioneine have protective effects on many aging-related diseases, and the sulfur substitution plays a key role in determining their chemical and biological properties, while factors governing sulfur incorporation regioselectivities in ovothiol and ergothioneine biosynthesis in the corresponding enzymes (OvoA, Egt1, or EgtB) are not yet known. In this study, we have successfully obtained the first OvoA crystal structure, which provides critical information to explain their C-S bond formation regioselectivity. Furthermore, OvoATh2 exhibits several additional activities: (1) ergothioneine sulfoxide synthase activity akin to Egt1 in ergothioneine biosynthesis; (2) cysteine dioxygenase activity using l-cysteine and l-histidine analogues as substrates; (3) cysteine dioxygenase activity upon mutation of an active site tyrosine residue (Y406). The structural insights and diverse chemistries demonstrated by OvoATh2 pave the way for future comprehensive structure-function correlation studies.
Collapse
Affiliation(s)
- Xinye Wang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sha Hu
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jun Wang
- School
of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Tao Zhang
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Ke Ye
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aiwen Wen
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Guoliang Zhu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Arturo Vegas
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Lixin Zhang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wupeng Yan
- School
of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Xueting Liu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pinghua Liu
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Fully Symmetric Cyclodextrin Polycarboxylates: How to Determine Reliable Protonation Constants from NMR Titration Data. Int J Mol Sci 2022; 23:ijms232214448. [PMID: 36430926 PMCID: PMC9696085 DOI: 10.3390/ijms232214448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Acid-base properties of cyclodextrins (CDs), persubstituted at C-6 by 3-mercaptopropionic acid, sualphadex (Suα-CD), subetadex (Suβ-CD) and sugammadex (Suγ-CD, the antidote of neuromuscular blocking steroids) were studied by 1H NMR-pH titrations. For each CD, the severe overlap in protonation steps prevented the calculation of macroscopic pKa values using the standard data fitting model. Considering the full symmetry of polycarboxylate structures, we reduced the number of unknown NMR parameters in the "Q-fitting" or the novel "equidistant macroscopic" evaluation approaches. These models already provided pKa values, but some of them proved to be physically unrealistic, deceptively suggesting cooperativity in carboxylate protonations. The latter problem could be circumvented by adapting the microscopic site-binding (cluster expansion) model by Borkovec, which applies pairwise interactivity parameters to quantify the mutual basicity-decreasing effect of carboxylate protonations. Surprisingly, only a single averaged interactivity parameter could be calculated reliably besides the carboxylate 'core' microconstant for each CD derivative. The speciation of protonation isomers hence could not be resolved, but the optimized microscopic basicity parameters could be converted to the following sets of macroscopic pKa values: 3.84, 4.35, 4.81, 5.31, 5.78, 6.28 for Suα-CD; 3.82, 4.31, 4.73, 5.18, 5.64, 6.06, 6.54 for Suβ-CD and 3.83, 4.28, 4.65, 5.03, 5.43, 5.81, 6.18, 6.64 for Suγ-CD. The pH-dependent charge of these compounds can now be accurately calculated, in support of designing new analytical methods to exploit their charge-dependent molecular recognition such as in cyclodextrin-aided chiral capillary electrophoresis.
Collapse
|
4
|
Naowarojna N, Huang P, Cai Y, Song H, Wu L, Cheng R, Li Y, Wang S, Lyu H, Zhang L, Zhou J, Liu P. In Vitro Reconstitution of the Remaining Steps in Ovothiol A Biosynthesis: C–S Lyase and Methyltransferase Reactions. Org Lett 2018; 20:5427-5430. [DOI: 10.1021/acs.orglett.8b02332] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nathchar Naowarojna
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Pei Huang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200032, China
| | - Yujuan Cai
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Heng Song
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Lian Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ronghai Cheng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yan Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shu Wang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Huijue Lyu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Lixin Zhang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jiahai Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Mazák K, Noszál B. Advances in microspeciation of drugs and biomolecules: Species-specific concentrations, acid-base properties and related parameters. J Pharm Biomed Anal 2016; 130:390-403. [PMID: 27066736 DOI: 10.1016/j.jpba.2016.03.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/14/2023]
Abstract
The pharmacokinetic and pharmacodynamic behaviour of drugs and the interacting biomolecules are highly influenced by their species-specific physico-chemical properties. The first of such bio-relevant, structure-dependent properties were the species-specific acid-base constants and the co-dependent concentrations, but the past decade brought significant advances to previously uncharted territories, including the experimental determination of species-specific partition coefficients, solubilities and redox equilibrium constants. This review gives an overview of the types and definitions of species-specific physico-chemical and analytical properties. We survey the pertinent literature, the fundamental relationships, and summarize some of our recent work that enabled the determination of species-specific partition coefficients for coexisting, inseparable protonation isomers and pH-independent, microscopic redox equilibrium constants. The thorough insight provided by these species-specific properties improves our understanding of the submolecular mechanism of pharmacokinetic processes. As a result, there are some pieces of clear-cut evidence of practical significance. A few of them are as follows: - passive diffusion into lipophilic media is not necessarily predominated by the non-charged species, contrary to the widespread misbelief. - the reactive microspecies in structure-controlled, highly specific biochemical reactions is not necessarily the major one. - a preventive defence system against oxidative stress can be based upon thiol-disulfide equilibria of custom-tailored redox potentials.
Collapse
Affiliation(s)
- Károly Mazák
- Semmelweis University, Department of Pharmaceutical Chemistry, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences Hőgyes E. u. 9., H-1092 Budapest, Hungary
| | - Béla Noszál
- Semmelweis University, Department of Pharmaceutical Chemistry, Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences Hőgyes E. u. 9., H-1092 Budapest, Hungary.
| |
Collapse
|
6
|
Castellano I, Migliaccio O, D’Aniello S, Merlino A, Napolitano A, Palumbo A. Shedding light on ovothiol biosynthesis in marine metazoans. Sci Rep 2016; 6:21506. [PMID: 26916575 PMCID: PMC4768315 DOI: 10.1038/srep21506] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/26/2016] [Indexed: 01/23/2023] Open
Abstract
Ovothiol, isolated from marine invertebrate eggs, is considered one of the most powerful antioxidant with potential for drug development. However, its biological functions in marine organisms still represent a matter of debate. In sea urchins, the most accepted view is that ovothiol protects the eggs by the high oxidative burst at fertilization. In this work we address the role of ovothiol during sea urchin development to give new insights on ovothiol biosynthesis in metazoans. The gene involved in ovothiol biosynthesis OvoA was identified in Paracentrotus lividus genome (PlOvoA). PlOvoA embryo expression significantly increased at the pluteus stage and was up-regulated by metals at concentrations mimicking polluted sea-water and by cyclic toxic algal blooms, leading to ovothiol biosynthesis. In silico analyses of the PlOvoA upstream region revealed metal and stress responsive elements. Structural protein models highlighted conserved active site residues likely responsible for ovothiol biosynthesis. Phylogenetic analyses indicated that OvoA evolved in most marine metazoans and was lost in bony vertebrates during the transition from the aquatic to terrestrial environment. These results highlight the crucial role of OvoA in protecting embryos released in seawater from environmental cues, thus allowing the survival under different conditions.
Collapse
Affiliation(s)
- Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Oriana Migliaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples “Federico II”, Italy
| | | | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
7
|
Mirzahosseini A, Noszál B. Species-specific thiol-disulfide equilibrium constants of ovothiol A and penicillamine with glutathione. RSC Adv 2016. [DOI: 10.1039/c6ra01778a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The correlation between species-specific redox equilibrium constants and the difference of thiolate protonation constants was determined for the ovothiol–glutathione system.
Collapse
Affiliation(s)
- Arash Mirzahosseini
- Department of Pharmaceutical Chemistry
- Semmelweis University
- H-1092 Budapest
- Hungary
- Research Group of Drugs of Abuse and Doping Agents
| | - Béla Noszál
- Department of Pharmaceutical Chemistry
- Semmelweis University
- H-1092 Budapest
- Hungary
- Research Group of Drugs of Abuse and Doping Agents
| |
Collapse
|