1
|
Liu J, Shi Y, Wu C, Hong B, Peng D, Yu N, Wang G, Wang L, Chen W. Comparison of Sweated and Non-Sweated Ethanol Extracts of Salvia miltiorrhiza Bge. (Danshen) Effects on Human and rat Hepatic UDP-Glucuronosyltransferase and Preclinic Herb-Drug Interaction Potential Evaluation. Curr Drug Metab 2022; 23:473-483. [PMID: 35585828 DOI: 10.2174/1389200223666220517115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ethanol of Danshen (DEE) preparation has been widely used to treat cardiac-cerebral disease and cancer. Sweating is one of the primary processing methods of Danshen, which greatly influenced its quality and pharmacological properties. Sweated and non-sweated DEE preparation combining with various synthetic drugs, adding up the possibility of herbal-drug interactions. OBJECTIVE This study explored the effects of sweated and non-sweated DEE on human and rat hepatic UGT enzymes expression and activity and proposed a potential mechanism. METHODS The expression of two processed DEE on rat UGT1A, UGT2B and nuclear receptors including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor α (PPARα) were investigated after intragastric administration in rats by Western blot. Enzyme activity of DEE and its active ingredients (Tanshinone I, Cryptotanshinone, and Tanshinone I) on UGT isoenzymes was evaluated by quantifying probe substrate metabolism and metabolite formation in vitro using Ultra Performance Liquid Chromatography. RESULTS The two processed DEE (5.40 g/kg) improved UGT1A (P<0.01) and UGT2B (P<0.05) protein expression, and the non-sweated DEE (2.70 g/kg) upregulated UGT2B expression protein (P<0.05), compared with the CMCNa group. On day 28, UGT1A protein expression was increased (P<0.05) both in two processed DEE groups, meanwhile the non-sweated DEE significantly enhanced UGT2B protein expression (P<0.05) on day 21, compared with the CMCNa group. The process underlying this mechanism involved with the activation of nuclear receptors CAR, PXR, and PPARα; In vitro, sweated DEE (0-80 μg/mL) significantly inhibited the activity of human UGT1A7 (P<0.05) and rat UGT1A1, 1A8, and 1A9 (P<0.05). Non-sweated DEE (0-80 μg/mL) dramatically suppressed the activity of human UGT1A1, 1A3, 1A6, 1A7, 2B4, and 2B15, and rat UGT1A1, 1A3, 1A7, and 1A9 (P<0.05); Tanshinone I (0-1 μM) inhibited the activity of human UGT1A3, 1A6, and 1A7 (P<0.01) and rat UGT1A3, 1A6, 1A7, and 1A8 (P<0.05). Cryptotanshinone (0-1 μM) remarkably inhibited the activity of human UGT1A3 and 1A7 (P<0.05) and rat UGT1A7, 1A8, and 1A9 (P<0.05). Nonetheless, Tanshinone IIA (0-2 μM) is not a potent UGT inhibitor both in humans and rats; Additionally, there existed significant differences between two processed DEE in expression of PXR, and the activity of human UGT1A1, 1A3, 1A6, and 2B15 and rat UGT1A3 and 2B15 (P<0.05). CONCLUSION The effects of two processed DEE on hepatic UGT enzyme expression and activity were different. Accordingly, the combined usage of related UGTs substrates with DEE and its monomer components preparations may call for caution, depending on the drug's exposure-response relationship and dose adjustment. Besides, it is vital to pay attention to the distinction between sweated and non-sweated Danshen in clinic, which exerted an important influence on its pharmacological activity.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Chengyuan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Bangzhen Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| |
Collapse
|
2
|
Zhang G, Xiao L, Qi L. Metabolite Profiling of Meridianin C In Vivo of Rat by UHPLC/Q-TOF MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:1382421. [PMID: 34721922 PMCID: PMC8553504 DOI: 10.1155/2021/1382421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Meridianin C (MC), as a marine alkaloid, is a potent protein kinase inhibitor which exhibits good anticancer activity. However, the in vivo metabolism of MC has not been described to date. In this study, an ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS) method is employed to investigate the in vivo metabolites of MC in rats. Plasma, bile, urine, and feces are collected after a single oral dose of MC. Protein precipitation, solid phase extraction (SPE), and ultrasonic extraction methods are used to prepare samples. Based on the mass spectral fragmentation patterns, elution order, and retrieving literatures, a total of 13 metabolites of MC were detected and tentatively identified, utilizing MetaboLynx software. The metabolic pathways of MC in rats include N- or O-glucuronidation, O-sulfation, N-hydroxylation, dihydroxylation, and trihydroxylation. The relative content of the metabolites in each kinds of biological samples is also evaluated. This study will help to understand the in vivo properties of MC for the future usage.
Collapse
Affiliation(s)
- Guozhe Zhang
- Department of Translational Medicine, Jiangsu Vocational College of Medicine, 283 South of Republic Road, Yancheng 224005, China
| | - Linxia Xiao
- Department of Translational Medicine, Jiangsu Vocational College of Medicine, 283 South of Republic Road, Yancheng 224005, China
| | - Liang Qi
- Department of Translational Medicine, Jiangsu Vocational College of Medicine, 283 South of Republic Road, Yancheng 224005, China
| |
Collapse
|
3
|
Dong X, Li X, Li N, Zhao H, GuLa A, Zhang X, Zhang P, Bao B. A target-group-change couple with mass defect filtering strategy to identify the metabolites of "Dogel ebs" in rats plasma, urine and bile. J Sep Sci 2019; 42:3382-3389. [PMID: 31503388 DOI: 10.1002/jssc.201900466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Abstract
"Dogel ebs" was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp-heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of "Dogel ebs" in vivo was still unclear. To explore the mechanism of "Dogel ebs," the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in "Dogel ebs" in a single run. And a target-group-change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high-performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of "Dogel ebs," including three hydroxyls bonding xanthohumol, formononetin-7-O-glucuronide, 2'-hydroxyl-isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α-hydroxysophoramine-O-glucuronide, etc. were reported for the first time.
Collapse
Affiliation(s)
- Xin Dong
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - XiaoNa Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - Na Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - HongMei Zhao
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - A GuLa
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - Xuan Zhang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - Ping Zhang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| | - BaoQuan Bao
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, P. R. China
| |
Collapse
|
4
|
Shi W, Ling J, Jiang LL, Zhao DS, Wang LL, Wu ZT, Li P, Wei YJ, Li HJ. Metabolism of five diterpenoid lactones from Dioscorea bulbifera tubers in zebrafish. RSC Adv 2018; 8:7765-7773. [PMID: 35539098 PMCID: PMC9078502 DOI: 10.1039/c7ra12910f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Diterpenoid lactones (DLs) have been reported to be the main hepatotoxic constituents in Dioscorea bulbifera tubers (DBT), a traditional Chinese medicinal herb. The acquisition of early information regarding its metabolism is critical for evaluating the potential hepatotoxicity of DLs. We investigated, for the first time, the main metabolites of diosbulbin A (DIOA), diosbulbin C (DIOC), diosbulbin (DIOG), diosbulbin (DIOM) and diosbulbin (DIOF) in adult zebrafish. By using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS), 6, 2, 7, 5 and 4 metabolites of DIOA, DIOC, DIOF, DIOM and DIOG were identified in the zebrafish body and the aqueous solution, respectively. Both phase-I and phase-II metabolites were observed in the metabolic profiles and the metabolic pathways involved in hydroxyl reduction, glucuronidation, glutathione conjugation and sulfation. The above results indicated that hepatocytic metabolism might be the major route of clearance for DLs. This study provided important information for the understanding of the metabolism of DLs in DBT.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Jie Ling
- The Third Clinical School of Medicine, Nanjing University of Chinese Medicine 100 Shizi Street Nanjing 210028 China
| | - Li-Long Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Dong-Sheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Ling-Li Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Zi-Tian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Ying-Jie Wei
- The Third Clinical School of Medicine, Nanjing University of Chinese Medicine 100 Shizi Street Nanjing 210028 China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| |
Collapse
|
5
|
Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 2017; 49:105-138. [PMID: 28266877 DOI: 10.1080/03602532.2017.1293682] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.
Collapse
Affiliation(s)
- Guangyi Yang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China.,b Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine , Shiyan , Hubei , China
| | - Shufan Ge
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Rashim Singh
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Sumit Basu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Katherine Shatzer
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Ming Zen
- d Department of Thoracic and Cardiomacrovascular Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jiong Liu
- e Department of Digestive Diseases Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Yifan Tu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Chenning Zhang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jinbao Wei
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jian Shi
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Lijun Zhu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Zhongqiu Liu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Yuan Wang
- g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Song Gao
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Ming Hu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| |
Collapse
|
6
|
Tong Y, Xu W, Wu Y, Ou L, Zhang M, Xu X, Zhang C. Metabolic profiles of neotuberostemonine and tuberostemonine in rats by high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2017; 141:210-221. [PMID: 28448890 DOI: 10.1016/j.jpba.2017.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 10/19/2022]
Abstract
Neotuberostemonine (NS) and tuberostemonine (TS), a pair of stereoisomers, are the active components contained in Stemona tuberosa, an antitussive herbal medicine in China. Two isomers have different pharmacological efficacies, which will be related with their in vivo disposition. However, the metabolic fates of NS and TS remain unknown. A method of high performance liquid chromatography/quadrupole time-of-flight mass spectrometry coupled with mass detect filter technique was established to investigate the metabolites in rat plasma, bile, urine, and feces after oral administration of the equal doses of NS and TS. The results showed that NS produced 48 phase I metabolites, including NS, 3 hydrolyzed, 14 hydroxylated, 20 monohydrolyzed+hydroxylated and 10 dihydrolyzed+hydroxylated metabolites. The number of detected NS metabolites was 11, 39, 22 and 30 in plasma, bile, urine and feces. TS yielded 23 phase I metabolites, including TS, 3 hydrolyzed, 7 hydroxylated, 9 monohydrolyzed+hydroxylated and 3 dihydrolyzed+hydroxylated metabolites. Besides, TS yielded 9 phase II metabolites, including 1 glucuronic acid and 2 glutathione conjugates, and the later further degraded and modified into cysteine-glycine, cysteine and N-acetylcysteine conjugates. The number of detected TS metabolites was 9, 24, 24 and 15 in plasma, bile, urine and feces. Different metabolic patterns may be one of the main reasons leading to different pharmacological effects of NS and TS.
Collapse
Affiliation(s)
- Yongbin Tong
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 21198, China
| | - Weitong Xu
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 21198, China
| | - Yan Wu
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 21198, China
| | - Liting Ou
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 21198, China
| | - Mian Zhang
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 21198, China.
| | - Xianghong Xu
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 21198, China
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 21198, China.
| |
Collapse
|
7
|
Luo K, Shi Q, Feng F. Characterization of global metabolic profile of Zhi-Zi-Hou-Po decoction in rat bile, urine and feces after oral administration based on a strategy combining LC–MS and chemometrics. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1040:260-272. [DOI: 10.1016/j.jchromb.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022]
|
8
|
Cui Q, Pan Y, Bai X, Zhang W, Chen L, Liu X. Systematic characterization of the metabolites of echinacoside and acteoside from Cistanche tubulosa in rat plasma, bile, urine and feces based on UPLC-ESI-Q-TOF-MS. Biomed Chromatogr 2016; 30:1406-15. [PMID: 26856531 DOI: 10.1002/bmc.3698] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/26/2016] [Accepted: 02/03/2016] [Indexed: 11/08/2022]
Abstract
Echinacoside (ECH) and acteoside (ACT), as the most and major active components of Cistanche tubulosa, were reported to possess cardioactive, neuroprotective and hepatocyte protective effects, as well as antibacterial, antioxidative effects. Recently, more studies have focused on their pharmacological activities. However, their metabolic profiles in vivo have not been sufficiently investigated. This study proposes an approach for rapidly identifying the complicated and unpredictable metabolites of ECH and ACT in rat plasma, bile, urine and feces, and systematically and comprehensively revealing their major metabolic pathways, based on powerful ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Plasma, bile, urine and feces were collected from rats after a single 200 mg/kg oral dose. A total of 49 metabolites were detected in rat biological samples. Through analyzing metabolites in bile samples, it was found that ECH and ACT were subjected to a marked hepatic first-pass effect in liver. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qingling Cui
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yingni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xuewei Bai
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Wei Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Lixia Chen
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
9
|
Miltirone exhibits antileukemic activity by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways. Sci Rep 2016; 6:20585. [PMID: 26848099 PMCID: PMC4742825 DOI: 10.1038/srep20585] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/07/2016] [Indexed: 01/01/2023] Open
Abstract
In this study, we investigated the effects of miltirone in human leukemia cell lines, primary leukemia cells, and nude mice U937 xenograft. Treatment of cells with miltirone resulted in apoptosis, mitochondria membrane potential (MMP) collapses, increase of Bax/Bcl-2 ratio, and cytochrome c release. Miltirone triggered the endoplasmic reticulum (ER) stress identified through several key molecules of the unfolded protein response, including phosphorylated PERK, eIF2a, GRP78, GRP94, and caspase-12. Miltrone treatment also resulted in the release of Ca2+ from the ER stores and mitochondrial Ca2+ loading in the cells. Further research revealed that miltirone resulted in dose-dependent decrease in complex III activity and elevated reactive oxygen species (ROS) production in these cells. Miltirone-induced apoptosis, dissipation of MMP and ER stress were dramatically blocked by pretreatment with antioxidant N-acetylcysteine (NAC). In contrast, treatment with ER stress inhibitor TUDCA significantly attenuated miltirone-induced ROS and apoptosis in leukemia cells. Moreover, our in vivo findings showed that administration of miltirone markedly inhibited tumor growth and induced apoptosis in U937 xenograft model with low systemic toxicity. Taken together, these findings indicate that miltirone may exert its antileukemic activity by inducing apoptosis through a ROS-dependent destructive cycle involving ER stress and mitochondrial dysfunction.
Collapse
|
10
|
Wang H, Chen C, Liu Y, Yang X, Xiao H. Metabolic profile of Yi-Xin-Shu capsule in rat by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. RSC Adv 2015. [DOI: 10.1039/c5ra14260a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study, the metabolite profiles of YXS in different biofluids of rats were investigated.
Collapse
Affiliation(s)
- Hongping Wang
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Chang Chen
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Yan Liu
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Xiaowei Yang
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Hongbin Xiao
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| |
Collapse
|