1
|
Liu H, Feng X, Zhang R, Yuan S, Tian Y, Luo P, Chen J, Zhou X. Safety of medicinal and edible herbs from fruit sources for human consumption: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118429. [PMID: 38851470 DOI: 10.1016/j.jep.2024.118429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal and edible herbs from fruit sources have been increasingly used in traditional Chinese medicine dietotherapy. There are no restrictions on who could consume the medicinal and edible fruits or on the dosage of consumption. However, their safety for human consumption has yet to be established. AIM OF THE STUDY This systematic review aimed to assess the safety of human consumption of 30 medicinal and edible fruits. MATERIALS AND METHODS Seven English and Chinese databases were searched up to May 31, 2023, to collect AE reports following human consumption of medicinal and edible fruits. Eligible reports should include details on the occurrence, symptoms, treatments, and outcomes of AEs. AEs that were life-threatening or caused death, permanent or severe disability/functional loss, or congenital abnormality/birth defects were classified as serious AEs (SAEs). The causality between the consumption of fruits and AEs was graded as one of four ranks: "certain", "probable", "possible", or "unlikely". RESULTS Thirty AE reports related to the consumption of medicinal and edible fruits were included, involving 12 species of fruits: Crataegi fructus, Gardeniae fructus, Mori fructus, Hippophae fructus, Cannabis fructus, Siraitiae fructus, Perillae fructus, Rubi fructus, Longan arillus, Anisi stellati fructus, Zanthoxyli pericarpium, and Lycii fructus. No AE reports were found for the remaining 18 species. A total of 97 AEs, featuring predominantly gastrointestinal symptoms, followed by allergic reactions and neuropsychiatric symptoms, were recorded. Thirty SAEs were noted, with Zanthoxyli pericarpium accounting for the most (14 cases), followed by Perillae fructus (7 cases), Anisi stellati fructus (6 cases), and Gardeniae fructus, Rubi fructus, and Mori fructus (1 case each). Mori fructus was associated with one death. All AEs were concordant with a causality to fruit consumption, judged to be "certain" for 37 cases, "probable" for 53 cases, and "possible" for 7 cases. CONCLUSIONS Our findings suggest that among medicinal and edible fruits, 12 species have AE reports with a causality ranging from "possible" to "definite". SAEs were not scarce. Most AEs may be associated with an excessive dose, prolonged consumption, or usage among infants or young children. No AE reports were found for the remaining 18 species.
Collapse
Affiliation(s)
- Huilin Liu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xianjie Feng
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Rui Zhang
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuai Yuan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yaqi Tian
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ping Luo
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianrong Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Xu Zhou
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China; Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Chengdu, China.
| |
Collapse
|
2
|
Ji W, Zhu H, Xing B, Chu C, Ji T, Ge W, Wang J, Peng X. Tetrastigma hemsleyanum suppresses neuroinflammation in febrile seizures rats via regulating PKC-δ/caspase-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116912. [PMID: 37451489 DOI: 10.1016/j.jep.2023.116912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum, Sanyeqing) has been used in the prevention and treatment of repetitive Febrile seizures (FS) over the centuries in China. AIM OF THE STUDY T. hemsleyanum exerts wide pharmacological action, which has been widely used for treating various diseases, including infantile febrile seizure. However, the systematic study on this herb's material basis and the functional mechanism is lacking. This study intended to systematically elucidate the mechanism of T. hemsleyanum against febrile seizures. MATERIALS AND METHODS The efficacy of T. hemsleyanum was estimated by using a hot bath as a model of FS, the onset and duration of seizure, morphological structure changes of hippocampal neurons as well as magnetoencephalography were applied to evaluate the effects. Meanwhile, the bioactive components of T. hemsleyanum responsible for the therapeutic effect of T. hemsleyanum on FS were identified by UPLC-MS/MS. Then we systematically elucidated the mechanism of T. hemsleyanum based on metabonomics, transcriptomics, network pharmacological and experimental validation. RESULTS In a hyperthermia-induced FS model of rats, T. hemsleyanum significantly increased the seizure latency and decreased seizure duration, alleviating the abnormal delta and gamma band activity during epileptic discharge. Furthermore, ten chemical components of ethanol extracts from T. hemsleyanum were identified by UPLC-MS/MS, including quercetin, kaempferol, and procyanidin B1 and so on, which was consistent with the network pharmacology prediction. The serum metabolomics indicated that T. hemsleyanum mainly acts on inflammation regulation and neuroprotection by the glycerophospholipid metabolism pathway. Ninety-two potential targets of T. hemsleyanum on FS were identified by network pharmacology, and TNF, IL-6, and IL-1β were considered the pivotal targets. In the hippocampus transcriptomics, 17 KEGG pathways were identified after T. hemsleyanum treatment compared with the FS model group, among which 15 pathways overlapped with those identified by network pharmacology, and the PKC-δ/caspase-1 signaling pathway was a critical node. Finally, in vivo experiments also verified T. hemsleyanum inhibited the activation of microglia and resulted in a significant reduction in the level of PKCδ, NLRC4, caspase-1, IL-1β, IL-6 and TNF-α in hippocampus of FS rats. CONCLUSIONS Our study suggested that the therapeutic effect of T. hemsleyanum on FS might be regulated by inhibiting the neuroinflammation, thus exerting an anticonvulsant effect in vivo, and the mechanism might be related to regulating the PKC-δ/caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Weiwei Ji
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Huaqiang Zhu
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Bincong Xing
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, No. 666, Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, PR China.
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang Province, 310014, PR China.
| | - Tao Ji
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Wen Ge
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Juan Wang
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, No. 666, Siming Road, Fenghua District, Ningbo, Zhejiang Province, 315100, PR China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, No. 819, Liyuan North Road, Ningbo, Zhejiang Province, 315100, PR China.
| |
Collapse
|
3
|
Chowdhury CR, Kavitake D, Jaiswal KK, Jaiswal KS, Reddy GB, Agarwal V, Shetty PH. NMR-based metabolomics as a significant tool for human nutritional research and health applications. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Lai W, Du D, Chen L. Metabolomics Provides Novel Insights into Epilepsy Diagnosis and Treatment: A Review. Neurochem Res 2022; 47:844-859. [PMID: 35067830 DOI: 10.1007/s11064-021-03510-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023]
Abstract
Epilepsy is one of the most common diseases of the central nervous system. The diagnosis of epilepsy mainly depends on electroencephalograms and symptomatology, while diagnostic biofluid markers are still lacking. In addition, approximately 30% of patients with epilepsy (PWE) show a poor response to the currently available anti-seizure medicines. An increasing number of studies have reported alterations in the blood, brain tissue, cerebrospinal fluid and urine metabolome in PWE and animal models of epilepsy. The aim of this review was to identify potential metabolic biomarkers and pathways that might facilitate diagnostic, therapeutic and prognostic determination in PWE and the understanding of the pathogenesis of the disease. The PubMed and Embase databases were searched for metabolomic studies of PWE and epileptic models published before December 2020. The study objectives, types of models and reported differentially altered metabolites were examined and compared. Pathway analyses were performed using MetaboAnalyst 5.0 online software. Thirty-five studies were included in this review. Metabolites such as glutamate, lactate and citrate were disturbed in both PWE and epileptic models, which might be potential biomarkers of epilepsy. Metabolic pathways including alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism; glycerophospholipid metabolism; glyoxylate and dicarboxylate metabolism; and arginine and proline metabolism were involved in epilepsy. These pathways might play important roles in the pathogenesis of the disease. This review summarizes metabolites and metabolic pathways related to epilepsy and provides a novel perspective for the identification of potential biomarkers and therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Wanlin Lai
- Department of Neurology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Center, Advanced Mass Spectrometry Centre, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Sun M, Zhang J, Liang S, Du Z, Liu J, Sun Z, Duan J. Metabolomic characteristics of hepatotoxicity in rats induced by silica nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111496. [PMID: 33099137 DOI: 10.1016/j.ecoenv.2020.111496] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Silica nanoparticles (SiNPs) have become one of the most widely studied nanoparticles in nanotechnology for environmental health and safety. Although many studies have devoted to evaluating the hepatotoxicity of SiNPs, it is currently impossible to predict the extent of liver lipid metabolism disorder by identifying changes in metabolites. In the present study, 40 male Sprague-Dawley (SD) rats were randomly divided into control group and 3 groups with different doses (1.8 mg/kg body weight (bw), 5.4 mg/kg bw, 16.2 mg/kg bw), receiving intratracheal instillation of SiNPs. Liver tissue was taken for lipid level analysis, and serum was used for blood biochemical analysis. Then, the metabolites changes of liver tissue in rats were systematically analyzed using 1H nuclear magnetic resonance (1H NMR) techniques in combination with multivariate statistical analysis. SiNPs induced serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and triglyceride (TG) elevation in treated groups; TG and low-density lipoprotein cholesterol (LDL-C) were significantly higher in SiNPs-treated groups of high-dose, however high-density lipoprotein cholesterol (HDL-C) showed a declining trend in liver tissue. The orthogonal partial least squares discriminant analysis (OPLS-DA) scores plots revealed different metabolic profiles between control and high-dose group (Q2 =0.495, R2Y=0.802, p = 0.037), and a total of 11 differential metabolites. Pathway analysis indicated that SiNPs treatment mainly affected 10 metabolic pathways including purine metabolism, glucose-alanine cycle and metabolism of various amino acids such as glutamate, cysteine and aspartate (impact value>0.1, false discovery rate (FDR)< 0.05). The result indicated that exposure to SiNPs caused liver lipid metabolism disorder in rats, the biochemical criterions related to lipid metabolism changed significantly. The obviously changed metabolomics in SiNPs-treated rats mostly occurred in amino acids, organic acids and nucleosides.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
6
|
Bioavailability and Pharmacokinetics of Anisatin in Mouse Blood by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2021; 2020:8835447. [PMID: 33426076 PMCID: PMC7775138 DOI: 10.1155/2020/8835447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Abstract
Background Anisatin is a neurotoxic sesquiterpene dilactone wildly found in plants of the family Illiciaceae. Due to morphological similarities among Illiciaceae fruits, fatal poisonings are frequent. Objective This study is aimed at developing a rapid, simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to determine anisatin's bioavailability in mouse blood and the method's application to pharmacokinetics. Methods Blood samples were preprocessed by protein precipitation using acetonitrile. Salicin (internal standard, IS) and anisatin were gradient-eluted by a mobile phase of methanol and water (0.1% formic acid) in a UPLC BEH C18 column. This step involved using an electrospray ionization source of anisatin at a mass-to-charge ratio (m/z) of 327.1 → 127.0 and IS at m/z 285.1 → 122.9 in the negative ion mode with multiple reaction monitoring. Results The calibration curve ranged from 1 to 2000 ng/ml (r > 0.995), with the method's accuracy ranging from 86.3% to 106.9%. Intraday and interday precision were lower than 14%, and the matrix effect was between 93.9% and 103.3%. The recovery rate was higher than 67.2%. Conclusions The developed UPLC-MS/MS method was successfully used for a pharmacokinetic study of oral (1 mg/kg) and intravenous (0.5 mg/kg) administration of anisatin to mice—the absolute bioavailability of anisatin in the mouse blood was 22.6%.
Collapse
|
7
|
Segers K, Zhang W, Aourz N, Bongaerts J, Declerck S, Mangelings D, Hankemeier T, De Bundel D, Vander Heyden Y, Smolders I, Ramautar R, Van Eeckhaut A. CE-MS metabolic profiling of volume-restricted plasma samples from an acute mouse model for epileptic seizures to discover potentially involved metabolomic features. Talanta 2020; 217:121107. [PMID: 32498853 DOI: 10.1016/j.talanta.2020.121107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/07/2023]
Abstract
Currently, a high variety of analytical techniques to perform metabolomics is available. One of these techniques is capillary electrophoresis coupled to mass spectrometry (CE-MS), which has emerged as a rather strong analytical technique for profiling polar and charged compounds. This work aims to discover with CE-MS potential metabolic consequences of evoked seizures in plasma by using a 6Hz acute corneal seizure mouse model. CE-MS is an appealing technique because of its capability to handle very small sample volumes, such as the 10 μL plasma samples obtained using capillary microsampling in this study. After liquid-liquid extraction, the samples were analyzed with CE-MS using low-pH separation conditions, followed by data analysis and biomarker identification. Both electrically induced seizures showed decreased values of methionine, lysine, glycine, phenylalanine, citrulline, 3-methyladenine and histidine in mice plasma. However, a second provoked seizure, 13 days later, showed a less pronounced decrease of the mean concentrations of these plasma metabolites, demonstrated by higher fold change ratios. Other obtained markers that can be related to seizure activities based on literature data, are isoleucine, serine, proline, tryptophan, alanine, arginine, valine and asparagine. Most amino acids showed relatively stable plasma concentrations between the basal levels (Time point 1) and after the 13-day wash-out period (Time point 3), which suggests its effectiveness. Overall, this work clearly demonstrated the possibility of profiling metabolite consequences related to seizure activities of an intrinsically low amount of body fluid using CE-MS. It would be useful to investigate and validate, in the future, the known and unknown metabolites in different animal models as well as in humans.
Collapse
Affiliation(s)
- Karen Segers
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Wei Zhang
- Biomedical Microscale Analytics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands.
| | - Najat Aourz
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Jana Bongaerts
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Sven Declerck
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Debby Mangelings
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Thomas Hankemeier
- Biomedical Microscale Analytics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands.
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Rawi Ramautar
- Biomedical Microscale Analytics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands.
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
8
|
Tan X, Tu Z, Han W, Song X, Cheng L, Chen H, Tu S, Li P, Liu W, Jiang L. Anticonvulsant and Neuroprotective Effects of Dexmedetomidine on Pilocarpine-Induced Status Epilepticus in Rats Using a Metabolomics Approach. Med Sci Monit 2019; 25:2066-2078. [PMID: 30892279 PMCID: PMC6437718 DOI: 10.12659/msm.912283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Status epilepticus (SE) is the most extreme form of seizure. It is a medical and neurological emergency that requires prompt and appropriate treatment and early neuroprotection. Dexmedetomidine (DEX) is mainly used for its sedative, analgesic, anxiolytic, and neuroprotective effects with light respiratory depression. The purpose of this study was to comprehensively analyze the metabolic events associated with anticonvulsion and neuroprotection of DEX on pilocarpine-induced status epilepticus rats by LC-MS/MS-based on metabolomics methods combined with histopathology. Material/Methods In this research, rats were divided into 3 groups: a normal group, an SE group, and an SE+DEX group. Hippocampus of rats from each group were collected for further LC-MS/MS-based metabolomic analysis. We collected brains for HE staining and Nissl staining. Multivariate analysis and KEGG enrichment analysis were performed. Results Results of metabolic profiles of the hippocampus tissues of rats proved that dexmedetomidine relieved rats suffering from the status epilepticus by restoring the damaged neuromodulatory metabolism and neurotransmitters, reducing the disturbance in energy, improving oxidative stress, and alleviating nucleic acid metabolism and amino acid in pilocarpine-induced status epilepticus rats. Conclusions This integral metabolomics research provides an extremely effective method to access the therapeutic effects of DEX. This research will further development of new treats for status epilepticus and provide new insights into the anticonvulsive and neuroprotective effects of DEX on status epilepticus.
Collapse
Affiliation(s)
- Xingqin Tan
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Zhenzhen Tu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Wei Han
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| | - Xiaojie Song
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| | - Li Cheng
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| | - Hengsheng Chen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland)
| | - Shengfen Tu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Pan Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Wei Liu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Li Jiang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (mainland).,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
9
|
Ruan LY, Fan JT, Hong W, Zhao H, Li MH, Jiang L, Fu YH, Xing YX, Chen C, Wang JS. Isoniazid-induced hepatotoxicity and neurotoxicity in rats investigated by 1H NMR based metabolomics approach. Toxicol Lett 2018; 295:256-269. [DOI: 10.1016/j.toxlet.2018.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/09/2018] [Accepted: 05/27/2018] [Indexed: 10/28/2022]
|
10
|
Witkin JM, Shenvi RA, Li X, Gleason SD, Weiss J, Morrow D, Catow JT, Wakulchik M, Ohtawa M, Lu HH, Martinez MD, Schkeryantz JM, Carpenter TS, Lightstone FC, Cerne R. Pharmacological characterization of the neurotrophic sesquiterpene jiadifenolide reveals a non-convulsant signature and potential for progression in neurodegenerative disease studies. Biochem Pharmacol 2018; 155:61-70. [PMID: 29940173 DOI: 10.1016/j.bcp.2018.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022]
Abstract
The 'neurotrophic sesquiterpenes' refer to a group of molecules derived from the Illicium genus of flowering plant. They display neurotrophic effects in cultured neuron preparations and have been suggested to be cognitive enhancers and potential therapeutics for neurodegenerative disorders and dementias. Recent synthetic advances generated sufficient quantities of jiadifenolide for in vivo investigation into its biological effects. Jiadifenolide did not induce convulsions in mice nor did it enhance or diminish convulsions induced by pentylenetetrazole. Other negative allosteric modulators of GABAA receptors, picrotoxin, tetramethylenedisulfotetramine (TETS), and bilobalide all induced convulsions. Either i.p. or i.c.v. dosing generated micromolar plasma and brain levels of jiadifenolide but only small effects on locomotion of mice. However, jiadifenolide decreased d-amphetamine-induced hyperlocomotion in mice, an antipsychotic-like drug effect. Jiadifenolide did not significantly alter body temperature or behavior in the forced-swim test in mice. Molecular simulation data suggested a potential site in the pore/M2 helix region that is at an overlapping, yet lower position than those observed for other 'cage convulsant' compounds such as TETS and picrotoxin. We hypothesize that a position nearer to the entrance of the pore channel may allow for easier displacement of jiadifenolide from its blocking location leading to lower potency and lower side-effect liability. Like jiadifenolide, memantine (Namenda), one of the few drugs used in the symptomatic treatment of dementias, occupies a unique site on the NMDA receptor complex that creates low binding affinity that is associated with its reduced side-effect profile. Given the potential therapeutic applications of jiadifenolide and its relatively inert effects on overt behavior, the possibility of clinical utility for jiadifenolide and related compounds becomes intriguing.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Xia Li
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Scott D Gleason
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Julie Weiss
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Denise Morrow
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - John T Catow
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mark Wakulchik
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Masaki Ohtawa
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Hai-Hua Lu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael D Martinez
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Rok Cerne
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
11
|
Workflow methodology for rat brain metabolome exploration using NMR, LC–MS and GC–MS analytical platforms. J Pharm Biomed Anal 2017; 142:270-278. [DOI: 10.1016/j.jpba.2017.03.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/20/2017] [Accepted: 03/31/2017] [Indexed: 12/26/2022]
|
12
|
Kaur A, Singla N, Dhawan DK. Low dose X-irradiation mitigates diazepam induced depression in rat brain. Regul Toxicol Pharmacol 2016; 80:82-90. [PMID: 27316553 DOI: 10.1016/j.yrtph.2016.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/02/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
Depression is considered as one of the most prevalent health ailments. Various anti-depressant drugs have been used to provide succour to this ailment, but with little success and rather have resulted in many side effects. On the other hand, low dose of ionizing radiations are reported to exhibit many beneficial effects on human body by stimulating various biological processes. The present study was conducted to investigate the beneficial effects of low doses of X-rays, if any, during diazepam induced depression in rats. Female Sprague Dawley rats were segregated into four different groups viz: Normal control, Diazepam treated, X-irradiated and Diazepam + X-irradiated. Depression model was created in rats by subjecting them to diazepam treatment at a dosage of 2 mg/kg b.wt./day for 3 weeks. The skulls of animals belonging to X-irradiated and Diazepam + X-irradiated rats were X-irradiated with a single fraction of 0.5 Gy, given twice a day for 3 days, thereby delivered dose of 3 Gy. Diazepam treated animals showed significant alterations in the neurobehavior and neuro-histoarchitecture, which were improved after X-irradiation. Further, diazepam exposure significantly decreased the levels of neurotransmitters and acetylcholinesterase activity, but increased the monoamine oxidase activity in brain. Interestingly, X-rays exposure to diazepam treated rats increased the levels of neurotransmitters, acetylcholinesterase activity and decreased the monoamine oxidase activity. Further, depressed rats also showed increased oxidative stress with altered antioxidant parameters, which were normalized on X-rays exposure. The present study, suggests that low dose of ionizing radiations, shall prove to be an effective intervention and a novel therapy in controlling depression and possibly other brain related disorders.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - D K Dhawan
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|