1
|
Gobrecht P, Gebel J, Leibinger M, Zeitler C, Chen Z, Gründemann D, Fischer D. Cnicin promotes functional nerve regeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155641. [PMID: 38718639 DOI: 10.1016/j.phymed.2024.155641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/24/2024] [Accepted: 04/13/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The limited regenerative capacity of injured axons hinders functional recovery after nerve injury. Although no drugs are currently available in the clinic to accelerate axon regeneration, recent studies show the potential of vasohibin inhibition by parthenolide, produced in Tanacetum parthenium, to accelerate axon regeneration. However, due to its poor oral bioavailability, parthenolide is limited to parenteral administration. PURPOSE This study investigates another sesquiterpene lactone, cnicin, produced in Cnicus benedictus for promoting axon regeneration. RESULTS Cnicin is equally potent and effective in facilitating nerve regeneration as parthenolide. In culture, cnicin promotes axon growth of sensory and CNS neurons from various species, including humans. Neuronal overexpression of vasohibin increases the effective concentrations comparable to parthenolide, suggesting an interaction between cnicin and vasohibin. Remarkably, intravenous administration of cnicin significantly accelerates functional recovery after severe nerve injury in various species, including the anastomosis of severed nerves. Pharmacokinetic analysis of intravenously applied cnicin shows a blood half-life of 12.7 min and an oral bioavailability of 84.7 % in rats. Oral drug administration promotes axon regeneration and recovery after nerve injury in mice. CONCLUSION These results highlight the potential of cnicin as a promising drug to treat axonal insults and improve recovery.
Collapse
Affiliation(s)
- Philipp Gobrecht
- Center of Pharmacology, Institute for Pharmacology, Medical Faculty and University of Cologne, Paul-Schallück-Straße 8, Cologne 50937, Germany
| | - Jeannette Gebel
- Center of Pharmacology, Institute for Pharmacology, Medical Faculty and University of Cologne, Paul-Schallück-Straße 8, Cologne 50937, Germany
| | - Marco Leibinger
- Center of Pharmacology, Institute for Pharmacology, Medical Faculty and University of Cologne, Paul-Schallück-Straße 8, Cologne 50937, Germany
| | - Charlotte Zeitler
- Center of Pharmacology, Institute for Pharmacology, Medical Faculty and University of Cologne, Paul-Schallück-Straße 8, Cologne 50937, Germany
| | - Zhendong Chen
- Center of Pharmacology, Institute for Pharmacology, Medical Faculty and University of Cologne, Paul-Schallück-Straße 8, Cologne 50937, Germany
| | - Dirk Gründemann
- Center of Pharmacology, Institute for Pharmacology, Medical Faculty and University of Cologne, Paul-Schallück-Straße 8, Cologne 50937, Germany
| | - Dietmar Fischer
- Center of Pharmacology, Institute for Pharmacology, Medical Faculty and University of Cologne, Paul-Schallück-Straße 8, Cologne 50937, Germany.
| |
Collapse
|
2
|
LoBianco FV, Krager KJ, Johnson E, Godwin CO, Allen AR, Crooks PA, Compadre CM, Borrelli MJ, Aykin-Burns N. Parthenolide induces rapid thiol oxidation that leads to ferroptosis in hepatocellular carcinoma cells. FRONTIERS IN TOXICOLOGY 2022; 4:936149. [PMID: 36591540 PMCID: PMC9795200 DOI: 10.3389/ftox.2022.936149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is both a devastating and common disease. Every year in the United States, about 24,500 men and 10,000 women are diagnosed with HCC, and more than half of those diagnosed patients die from this disease. Thus far, conventional therapeutics have not been successful for patients with HCC due to various underlying comorbidities. Poor survival rate and high incidence of recurrence after therapy indicate that the differences between the redox environments of normal surrounding liver and HCC are valuable targets to improve treatment efficacy. Parthenolide (PTL) is a naturally found therapeutic with anti-cancer and anti-inflammatory properties. PTL can alter HCC's antioxidant environment through thiol modifications leaving tumor cells sensitive to elevated reactive oxygen species (ROS). Investigating the link between altered thiol mechanism and increased sensitivity to iron-mediated lipid peroxidation will allow for improved treatment of HCC. HepG2 (human) and McARH7777 (rat) HCC cells treated with PTL with increasing concentrations decrease cell viability and clonogenic efficiency in vitro. PTL increases glutathione (GSH) oxidation rescued by the addition of a GSH precursor, N-acetylcysteine (NAC). In addition, this elevation in thiol oxidation results in an overall increase in mitochondrial dysfunction. To elucidate if cell death is through lipid peroxidation, using a lipid peroxidation sensor indicated PTL increases lipid oxidation levels after 6 h. Additionally, western blotting reveals glutathione peroxidase 4 (GPx4) protein levels decrease after treatment with PTL suggesting cells are incapable of preventing lipid peroxidation after exposure to PTL. An elevation in lipid peroxidation will lead to a form of cell death known as ferroptosis. To further establish ferroptosis as a critical mechanism of death for HCC in vitro, the addition of ferrostatin-1 combined with PTL demonstrates a partial recovery in a colony survival assay. This study reveals that PTL can induce tumor cell death through elevations in intracellular oxidation, leaving cells sensitive to ferroptosis.
Collapse
Affiliation(s)
- Francesca V. LoBianco
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kimberly J. Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Erica Johnson
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher O. Godwin
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antino R. Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael J. Borrelli
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
3
|
Chinta PK, Tambe S, Umrani D, Pal AK, Nandave M. Effect of parthenolide, an NLRP3 inflammasome inhibitor, on insulin resistance in high-fat diet-obese mice. Can J Physiol Pharmacol 2022; 100:272-281. [PMID: 35119950 DOI: 10.1139/cjpp-2021-0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The activation of Nod-like receptor proteins (NLRP3) containing the pyrin domain inflammasome is a hallmark of the pathogenesis of metabolic disorders. Inhibition of the NLRP3 inflammasome by phytoconstituents has been attempted as a strategy to mitigate these disorders. Therefore, the present study aimed to evaluate the efficacy of an NLRP3 inflammasome inhibitor, parthenolide (PN; 5 mg/kg i.p.) against inflammation and insulin resistance in high-fat diet (HFD) - obese mice. Treatment with PN and pioglitazone (PIO; 30 mg/kg p.o.) attenuated lipopolysaccharide (LPS; 1 ng/ml) - induced elevation of tumor necrosis factor-α and interleukin-1β in mouse peritoneal macrophages in a dose-dependent manner. Sixty days of PN and PIO treatment marginally reduced obesity-induced insulin resistance in HFD-obese mice. PN treatment also decreased blood glucose from 14th to 60th day, supporting the hypothesis of simultaneous attenuation of inflammation and insulin resistance in obese mice. Thus, PN treatment was also evident with significant improvement in glucose tolerance and peripheral insulin resistance validated through the respective tolerance tests. Therefore, the present study suggests that PN, an NLRP3 inflammasome inhibitor, could be a possible therapeutic agent for attenuating obesity-induced insulin resistance.
Collapse
Affiliation(s)
| | | | | | - Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi-110017, INDIA
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi-110017, INDIA
| |
Collapse
|
4
|
The Association of Tanacetum parthenium and Salix alba Extracts Reduces Cortex Serotonin Turnover, in an Ex Vivo Experimental Model of Migraine. Processes (Basel) 2022. [DOI: 10.3390/pr10020280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mixture of water extracts from Tanacetum parthenium and Salix alba was studied in an ex vivo assessment of neurotoxicity constituted by isolated mouse cortex specimens challenged with K+ 60 mM Krebs–Ringer buffer (neurotoxicity stimulus). The effects of the mixture on lactate dehydrogenase (LDH), nitrite and serotonin levels were investigated. The phytochemical profile of the mixture was also evaluated. A docking approach was conducted to predict, albeit partially, the putative mechanism underlying the observed effects. The extracts displayed a good profile of polyphenolic compounds (22 chromatographic peaks detected), with caftaric acid and epicatechin being the prominent phenols. In isolated cortex, the association of T. parthenium and S. alba extracts was effective in reducing the K+ 60 mM-induced levels of LDH and nitrites, whereas the neurotoxicity stimulus-induced serotonin depletion was prevented by the treatment. Regarding the inhibition of serotonin catabolism, epicatechin (44.65 µg/mg) and caftaric acid (10.51 µg/mg) were putatively the main compounds involved in the inhibition of monoamineoxidase-A, which is known to play a master role in serotonin turnover. Collectively, the results of the present study point to the efficacy of the present extract mixture as an innovative pharmacological tool to prevent the onset of migraine.
Collapse
|
5
|
Xu Y, Wei H, Gao J. Natural Terpenoids as Neuroinflammatory Inhibitors in LPS-stimulated BV-2 Microglia. Mini Rev Med Chem 2021; 21:520-534. [PMID: 31198113 DOI: 10.2174/1389557519666190611124539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 05/19/2019] [Indexed: 11/22/2022]
Abstract
Neuroinflammation is a typical feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Microglia, the resident immune cells of the brain, readily become activated in response to an infection or an injury. Uncontrolled and overactivated microglia can release pro-inflammatory and cytotoxic factors and are the major culprits in neuroinflammation. Hence, research on novel neuroinflammatory inhibitors is of paramount importance for the treatment of neurodegenerative diseases. Bacterial lipopolysaccharide, widely used in the studies of brain inflammation, initiates several major cellular activities that critically contribute to the pathogenesis of neuroinflammation. This review will highlight the progress on terpenoids, an important and structurally diverse group of natural compounds, as neuroinflammatory inhibitors in lipopolysaccharidestimulated BV-2 microglial cells over the last 20 years.
Collapse
Affiliation(s)
- Yuanzhen Xu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Yu Z, Chen Z, Li Q, Yang K, Huang Z, Wang W, Zhao S, Hu H. What dominates the changeable pharmacokinetics of natural sesquiterpene lactones and diterpene lactones: a review focusing on absorption and metabolism. Drug Metab Rev 2020; 53:122-140. [PMID: 33211987 DOI: 10.1080/03602532.2020.1853151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sesquiterpene lactones (STLs) and diterpene lactones (DTLs) are two groups of common phytochemicals with similar structures. It's frequently reported that both exhibit changeable pharmacokinetics (PK) in vivo, especially the unstable absorption and extensive metabolism. However, the recognition of their PK characteristics is still scattered. In this review, representative STLs (atractylenolides, alantolactone, costunolide, artemisinin, etc.) and DTLs (ginkgolides, andrographolide, diosbulbins, triptolide, etc.) as typical cases are discussed in detail. We show how the differences of treatment regimens and subjects alter the PK of STLs and DTLs, with emphasis on the effects from absorption and metabolism. These compounds tend to be quite permeable in intestinal epithelium, but gastrointestinal pH and efflux transporters (represented by P-glycoprotein) have great impact and result in the unstable absorption. As the only characteristic functional moiety, the metabolic behavior of lactone ring is not dominant. The α, β-unsaturated lactone moiety has the strongest metabolic activity. While with the increase of low-activity saturated lactone moieties, the metabolism is led by other groups more easily. The phase I (oxidation, reduction and hydrolysis reaction) and II metabolism (conjugation reaction) are both extensive. CYP450s, mainly CYP3A4, are largely involved in biotransformation. However, only UGTs (UGT1A3, UGT1A4, UGT2B4 and UGT2B7) has been mentioned in studies about phase II metabolic enzymes. Our work offers a beneficial reference for promoting the safety evaluation and maximizing the utilization of STLs and DTLs.
Collapse
Affiliation(s)
- Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qijuan Li
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wang
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Zhao
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) in practice: analysis of drugs and pharmaceutical formulations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2019. [DOI: 10.1186/s43094-019-0007-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
UHPLC-MS/MS is connected in various research facilities for the qualitative and quantitative investigation of a pharmaceutical substance, pharmaceutical items, and biological specimen.
Main body
The commence review article is an endeavor to offer pervasive awareness around assorted aspects and details about the UHPLC-MS/MS and related techniques with the aim on practice to an estimation of medicinal active agents in the last 10 years. The article also focused on isolation, separation, and characterization of present impurity in drug and biological samples.
Conclusion
Review article compiles a general overview of medicinally important drugs and their analysis with UHPLC-MS/MS. It gives fundamental thought regarding applications of UHPLC-MS/MS for the study on safety limit. The summary of developed UHPLC-MS/MS methods gives a contribution to the future trend and limitations in this area of research.
Collapse
|
8
|
Comparison of the Effect of Tanacethum Parthenium, 5-Hydroxy Tryptophan, and Magnesium (Aurastop) versus Magnesium Alone on Aura Phenomenon and Its Evolution. Pain Res Manag 2019; 2019:6320163. [PMID: 31687058 PMCID: PMC6803726 DOI: 10.1155/2019/6320163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/04/2019] [Accepted: 09/11/2019] [Indexed: 01/03/2023]
Abstract
None of the clinical trials on migraine conducted thus far have focused on the possibility to modulate the phenomenon of aura. Furthermore, whether proper management of aura results in a better control of the headache phase has been poorly investigated. In the setting of a single-center, pilot, clinical trial, we aimed at comparing the effects of Aurastop (a combination of tanacetum parthenium (150 mg extracted at 0.8% = 1.2 mg di of active parthenolide), griffonia simplicifoila (20 mg of 5-hydroxy tryptophan), and magnesium (185 mg of magnesium pidolatum)) with those of magnesium alone (2.25 grams/tablet, corresponding to 184 mg of Mg++) in the treatment of acute attacks of migraine with aura. Between June 2017 and June 2018, 50 consecutive patients (27/23 male/female; mean age, 31 [18–57] years) with at least 3 episodes of aura per year were included (t0). Participants were instructed to keep track of the following 4 episodes of migraine with aura (t1) and invited to assume (1) a tablet of Aurastop at the beginning of the following 2 episodes of aura and (2) a magnesium tablet alone at the occurrence of the third and fourth aura attacks. Forty-eight patients (96.0%) had >50% reduction in aura duration when treated with Aurastop vs. 7 patients (14.0%) when treated with magnesium alone (p < 0.001); 48 patients (96.0%) had >50% reduction of aura-related disability when receiving Aurastop vs. 5 patients (10.0%) when treated with magnesium alone (p < 0.001); however, patients receiving Aurastop did not need to take pain killers in 35% of aura attacks vs. 3% when assuming magnesium (p < 0.001). These results support the hypothesis that Aurastop might be effective in interfering with the phenomenon of aura and provide evidence that the clinical benefit attributable to this combination of molecules might be greater than that obtained with single compounds of proven effect on the biology of migraine.
Collapse
|
9
|
Kurbanoglu S, Karsavurdan O, Ozkan SA. Recent Advances on Drug Analyses Using Ultra Performance Liquid Chromatographic Techniques and their Application to the Biological Samples. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180423152612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction:
Ultra-Performance Liquid Chromatographic (UPLC) method enables analyst
to establish an analysis at higher pressure than High Performance Liquid Chromatographic (HPLC)
method towards liquid chromatographic methods. UPLC method provides the opportunity to study a
higher pressure compared to HPLC, and therefore smaller column in terms of particle size and internal
diameter are generally used in drug analysis. The UPLC method has attracted gradually due to its advantages
such as short analysis time, the small amount of waste reagents and the significant savings in
the cost of their destruction process. In this review, the recent selected studies related to the UPLC
method and its method validation are summarized. The drug analyses and the results of the studies
which were investigated by UPLC method, with certain parameters from literature are presented.
Background:
Quantitative determination of drug active substances by High-Performance Liquid
Chromatography (HPLC) from Liquid Chromatography (LC) methods has been carried out since the
1970's with the use of standard analytical LC methods. In today's conditions, rapid and very fast even
ultra-fast, flow rates are achieved compared to conventional HPLC due to shortening analysis times,
increasing method efficiency and resolution, reducing sample volume (and hence injection volume),
reducing waste mobile phase. Using smaller particles, the speed and peak capacity are expanding to
new limit and this technology is named as Ultra Performance Liquid Chromatography. In recent years,
as a general trend in liquid chromatography, ultra-performance liquid chromatography has taken the
place of HPLC methods. The time of analysis was for several minutes, now with a total analysis time
of around 1-2 minutes. The benefits of transferring HPLC to UPLC are much better understood when
considering the thousands of analyzes performed for each active substance, in order to reduce the cost
of analytical laboratories where relevant analysis of drug active substances are performed without
lowering the cost of research and development activities.
Methods:
The German Chemist Friedrich Ferdinand Runge, proposed the use of reactive impregnated
filter paper for the identification of dyestuffs in 1855 and at that time the first chromatographic method
in which a liquid mobile phase was used, was reviewed. Christian Friedrich Chönbein, who reported
that the substances were dragged at different speeds in the filter paper due to capillary effect, was
followed by the Russian botanist Mikhail S. Tswet, who planted studies on color pigment in 1906.
Tswet observes the color separations of many plant pigments, such as chlorophyll and xanthophyll
when he passes the plant pigment extract isolated from plant through the powder CaCO3 that he filled
in the glass column. This method based on color separation gives the name of "chromatographie"
chromatography by using the words "chroma" meaning "Latin" and "graphein" meaning writing.
Results and Conclusion:
Because the UPLC method can be run smoothly at higher pressures than the
HPLC method, it offers the possibility of analyzing using much smaller column sizes and column diameters.
Moreover, UPLC method has advantages, such as short analysis time, the small amount of
waste reagents and the significant savings in the cost of their destruction process. The use of the
UPLC method especially analyses in biological samples such as human plasma, brain sample, rat
plasma, etc. increasingly time-consuming due to the fact that the analysis time is very short compared
to the HPLC, because of the small amount of waste analytes and the considerable savings in their cost.
Collapse
Affiliation(s)
- Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Ozer Karsavurdan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Xuejing D, Wenyu W, Hong W, Zhengrong Z, Li D, Jun F, Ran D, Feng L, Yan W, Xiang Z. UHPLC–MS/MS analysis of sphingosine 1‐phosphate in joint cavity dialysate and hemodialysis solution of adjuvant arthritis rats: Application to geniposide pharmacodynamic study. Biomed Chromatogr 2019; 33:e4526. [DOI: 10.1002/bmc.4526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Dai Xuejing
- Anhui University of Chinese Medicine Hefei China
- Anhui Province Key Laboratory of Xin'an Medicine, Ministry of Education Hefei China
- Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei China
| | - Wang Wenyu
- Anhui University of Chinese Medicine Hefei China
- Anhui Province Key Laboratory of Xin'an Medicine, Ministry of Education Hefei China
- Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei China
| | - Wu Hong
- Anhui University of Chinese Medicine Hefei China
- Anhui Province Key Laboratory of Xin'an Medicine, Ministry of Education Hefei China
| | - Zhang Zhengrong
- Anhui University of Chinese Medicine Hefei China
- Anhui Province Key Laboratory of Xin'an Medicine, Ministry of Education Hefei China
- Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei China
| | - Dai Li
- Anhui University of Chinese Medicine Hefei China
- Anhui Province Key Laboratory of Xin'an Medicine, Ministry of Education Hefei China
| | - Fu Jun
- Anhui University of Chinese Medicine Hefei China
- Anhui Province Key Laboratory of Xin'an Medicine, Ministry of Education Hefei China
- Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei China
| | - Deng Ran
- Anhui University of Chinese Medicine Hefei China
- Anhui Province Key Laboratory of Xin'an Medicine, Ministry of Education Hefei China
- Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei China
| | - Li Feng
- Anhui University of Chinese Medicine Hefei China
- Anhui Province Key Laboratory of Xin'an Medicine, Ministry of Education Hefei China
- Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei China
| | - Wang Yan
- Anhui University of Chinese Medicine Hefei China
- Anhui Province Key Laboratory of Xin'an Medicine, Ministry of Education Hefei China
- Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei China
| | - Zhan Xiang
- Anhui University of Chinese Medicine Hefei China
- Anhui Province Key Laboratory of Xin'an Medicine, Ministry of Education Hefei China
- Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei China
| |
Collapse
|
11
|
Jin X, Zhou J, Zhang Z, Lv H. The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S931-S942. [PMID: 30307334 DOI: 10.1080/21691401.2018.1518913] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Combinations of natural products with low toxicities using tumor-targeting carriers may improve cancer treatment. The combined parthenolide and ginsenoside compound K (CK) within tLyp-1 liposomes, with the aim of improving the efficacy of lung cancer treatment. RESULTS In vitro studies in A549 human pulmonary adenocarcinoma cells demonstrated that parthenolide/CK tLyp-1 liposomes increased reactive oxygen species levels and induced mitochondrial apoptosis. It enters into cells via receptor-mediated uptake and micropinocytosis, followed by endosomal/lysosomal escape. In vivo studies illustrated that it produced a greater antitumor effect than combined administration of these compounds, with minimal toxicity. CONCLUSION The findings of this study indicated that combined application of natural products in nanocarriers could offer attractive therapeutic options.
Collapse
Affiliation(s)
- Xin Jin
- a Department of Hospital Pharmacy , Suqian Branch Jiangsu Province Hospital , Suqian , China.,b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Jianping Zhou
- b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Zhenhai Zhang
- c Jiangsu Province Hospital on Integration of Chinese and Western Medicine , Nanjing University of Chinese Medicine , Nanjing , China
| | - Huixia Lv
- b Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
12
|
Zhang M, Liu RT, Zhang P, Zhang N, Yang CL, Yue LT, Li XL, Liu Y, Li H, Du J, Duan RS. Parthenolide inhibits the initiation of experimental autoimmune neuritis. J Neuroimmunol 2017; 305:154-161. [DOI: 10.1016/j.jneuroim.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/05/2017] [Accepted: 02/05/2017] [Indexed: 01/29/2023]
|
13
|
Determination of 25-OCH3-PPD and the related substances by UPLC–MS/MS and their cytotoxic activity. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1022:274-280. [DOI: 10.1016/j.jchromb.2016.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/31/2016] [Accepted: 04/16/2016] [Indexed: 11/23/2022]
|