1
|
Twomey JD, George S, Zhang B. Fc gamma receptor polymorphisms in antibody therapy: implications for bioassay development to enhance product quality. Antib Ther 2025; 8:87-98. [PMID: 40177643 PMCID: PMC11959696 DOI: 10.1093/abt/tbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 04/05/2025] Open
Abstract
The effectiveness of therapeutic antibodies is often associated with their Fc-mediated effector functions, such as antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. These functions rely on interactions between Fc gamma receptors (FcγRs) on immune cells and the Fc region of antibodies. Genetic variations in these receptors, known as FcγR polymorphisms, can influence therapeutic outcomes by altering receptor expression levels, affinity, and function. This review examines the impact of FcγR polymorphisms on antibody therapy, emphasizing their role in developing and optimizing functional bioassays to assess product quality. Understanding these polymorphisms is essential for refining bioassays, which are crucial for accurately characterizing antibody products and ensuring consistency in manufacturing processes.
Collapse
Affiliation(s)
- Julianne D Twomey
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Sasha George
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Baolin Zhang
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| |
Collapse
|
2
|
Cheng LS, Cheng YF, Liu WT, Shen A, Zhang D, Xu T, Yin W, Cheng M, Ma X, Wang F, Zhao Q, Zeng X, Zhang Y, Shen G. A humanized 4-1BB-targeting agonistic antibody exerts potent antitumor activity in colorectal cancer without systemic toxicity. Lab Invest 2022; 20:415. [PMID: 36076251 PMCID: PMC9461191 DOI: 10.1186/s12967-022-03619-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies and the patient survival rate remains unacceptably low. The anti-programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) antibody-based immune checkpoint inhibitors have been added to CRC treatment regimens, however, only a fraction of patients benefits. As an important co-stimulatory molecule, 4-1BB/CD137 is mainly expressed on the surface of immune cells including T and natural killer (NK) cells. Several agonistic molecules targeting 4-1BB have been clinically unsuccessful due to systemic toxicity or weak antitumor effects. We generated a humanized anti-4-1BB IgG4 antibody, HuB6, directed against a unique epitope and hypothesized that it would promote antitumor immunity with high safety. Methods The antigen binding specificity, affinity and activity of HuB6 were determined by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), biolayer interferometry (BLI) and flow cytometry. The antitumor effects were evaluated in humanized mice bearing syngeneic tumors, and possible toxicity was evaluated in humanized mice and cynomolgus monkeys. Results HuB6 showed high specificity and affinity for a binding epitope distinct from those of other known 4-1BB agonists, including utomilumab and urelumab, and induced CD8 + T, CD4 + T and NK cell stimulation dependent on Fcγ receptor (FcγR) crosslinking. HuB6 inhibited CRC tumor growth in a dose-dependent manner, and the antitumor effect was similar with urelumab and utomilumab in humanized mouse models of syngeneic CRC. Furthermore, HuB6 combined with an anti-PD-L1 antibody significantly inhibited CRC growth in vivo. Additionally, HuB6 induced antitumor immune memory in tumor model mice rechallenged with 4 × 106 tumor cells. Toxicology data for humanized 4-1BB mice and cynomolgus monkeys showed that HuB6 could be tolerated up to a 180 mg/kg dose without systemic toxicity. Conclusions This study demonstrated that HuB6 should be a suitable candidate for further clinical development and a potential agent for CRC immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03619-w.
Collapse
Affiliation(s)
- Lian-Sheng Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Yong-Feng Cheng
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Aolin Shen
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Tingjuan Xu
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Min Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Xiaopeng Ma
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Yan Zhang
- School of Health Service Management, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|
3
|
Suzuki T, Hashii N, Tada M, Ishii-Watabe A. The influence of antibody engineering on Fc conformation and Fc receptor binding properties: Analysis of FcRn-binding engineered antibodies and an Fc fusion protein. MAbs 2021; 13:1923366. [PMID: 34030575 PMCID: PMC8158039 DOI: 10.1080/19420862.2021.1923366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Therapeutic immunoglobulin G (IgG) antibodies have comparatively long half-lives because the neonatal Fc receptor (FcRn) binds to the IgG Fc at acidic pH in the endosome and protects IgG from degradation. To further prolong the half-lives, amino acid-substituted antibodies having high affinity to FcRn are being developed, and one such therapeutic antibody (ravulizumab) has been approved. In this study, we investigated the binding property to FcγR and the conformation of seven FcRn affinity-modulated adalimumab variants to clarify the impact of the amino acid substitutions on the function and conformation of IgG Fc. The amino acid substitutions in T254-P261 caused a change in deuterium uptake into some regions of Fc in HDX-MS analysis, but those at T311, M432 and N438 did not cause such a change. The conformations around F245-L255 (FLFPPKPKDTL) were particularly influenced by the amino acid substitution in M256-P261, and the conformational changes of this region were correlated with the decrease of the affinity to FcγRIIIa. Additionally, we investigated the conformational difference of Fc between a Fc fusion protein (etanercept) and a native IgG (adalimumab). Although the Fc fusion proteins were expected to have similar FcRn affinity to IgGs, the affinity of etanercept to FcRn was lower than that of adalimumab, and its half-life was shorter than those of the IgG antibodies. Differences in deuterium uptakes were observed in the two regions where they were also detected in the adalimumab variants, and the conformational differences appeared to be an important factor for the low FcRn affinity of etanercept.
Collapse
Affiliation(s)
- Takuo Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
4
|
Sun Y, Izadi S, Callahan M, Deperalta G, Wecksler AT. Antibody-receptor interactions mediate antibody-dependent cellular cytotoxicity. J Biol Chem 2021; 297:100826. [PMID: 34044019 PMCID: PMC8214220 DOI: 10.1016/j.jbc.2021.100826] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Binding of antibodies to their receptors is a core component of the innate immune system. Understanding the precise interactions between antibodies and their Fc receptors has led to the engineering of novel mAb biotherapeutics with tailored biological activities. One of the most significant findings is that afucosylated monoclonal antibodies demonstrate increased affinity toward the receptor FcγRIIIa, with a commensurate increase in antibody-dependent cellular cytotoxicity. Crystal structure analysis has led to the hypothesis that afucosylation in the Fc region results in reduced steric hindrance between antibody–receptor intermolecular glycan interactions, enhancing receptor affinity; however, solution-phase data have yet to corroborate this hypothesis. In addition, recent work has shown that the fragment antigen-binding (Fab) region may directly interact with Fc receptors; however, the biological consequences of these interactions remain unclear. By probing differences in solvent accessibility between native and afucosylated immunoglobulin G1 (IgG1) using hydroxyl radical footprinting–MS, we provide the first solution-phase evidence that an IgG1 bearing an afucosylated Fc region appears to require fewer conformational changes for FcγRIIIa binding. In addition, we performed extensive molecular dynamics (MD) simulations to understand the molecular mechanism behind the effects of afucosylation. The combination of these techniques provides molecular insight into the steric hindrance from the core Fc fucose in IgG1 and corroborates previously proposed Fab–receptor interactions. Furthermore, MD-guided rational mutagenesis enabled us to demonstrate that Fab–receptor interactions directly contribute to the modulation of antibody-dependent cellular cytotoxicity activity. This work demonstrates that in addition to Fc–polypeptide and glycan-mediated interactions, the Fab provides a third component that influences IgG–Fc receptor biology.
Collapse
Affiliation(s)
- Yue Sun
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Saeed Izadi
- Pharmaceutical Development Department, Genentech Inc, South San Francisco, California, USA
| | - Matthew Callahan
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Galahad Deperalta
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Aaron T Wecksler
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA.
| |
Collapse
|
5
|
Wadhwa M, Bird C, Atkinson E, Cludts I, Rigsby P. The First WHO International Standard for Adalimumab: Dual Role in Bioactivity and Therapeutic Drug Monitoring. Front Immunol 2021; 12:636420. [PMID: 33936049 PMCID: PMC8082443 DOI: 10.3389/fimmu.2021.636420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
The expanded availability of adalimumab products continues to widen patient access and reduce costs with substantial benefit to healthcare systems. However, the long-term success of these medicines is highly dependent on maintaining consistency in quality, safety and efficacy while minimizing any risk of divergence during life-cycle management. In recognition of this need and demand from global manufacturers, the World Health Organization (WHO) Expert Committee on Biological standardization established the WHO 1st International standard (IS) for Adalimumab (coded 17/236) in October 2019 with a defined unitage ascribed to each of the individual bioactivities evaluated in the study namely, TNF-α binding, TNF-α neutralization, complement dependent cytotoxicity and antibody-dependent cellular cytotoxicity. For development of the IS, two candidate standards were manufactured as per WHO recommendations. Analysis of extensive datasets generated by testing of a common set of samples including the candidate standards by multiple stakeholders including regulatory agencies using their own qualified assays in a large international collaborative study showed comparable biological activity for the tested candidates for the different activities. Use of a common standard significantly decreased the variability of bioassays and improved agreement in potency estimates. Data from this study clearly supports the utility of the IS as an important tool for assuring analytical assay performance, for bioassay calibration and validation, for identifying and controlling changes in bioactivity during life-cycle management and for global harmonization of adalimumab products. In addition, in a separate multi-center study which included involvement of hospital and clinical diagnostic laboratories, the suitability of the adalimumab IS for therapeutic drug monitoring assays was examined by analysis of data from testing of a common blind coded panel of adalimumab spiked serum samples representative of the clinical scenario along with the IS and in-house standards in diverse immunoassays/platforms. Both commercially available and in-house assays that are routinely used for assessing adalimumab trough levels were included. Excellent agreement in estimates for adalimumab content in the spiked samples was observed regardless of the standard or the method with inter-laboratory variability also similar regardless of the standard employed. This data, for the first time, provides support for the extended applicability of the IS in assays in use for therapeutic drug monitoring based on the mass content of the IS. The adalimumab IS, in fulfilling clinical demand, can help toward standardizing and harmonizing clinical monitoring assays for informed clinical decisions and/or personalized treatment strategies for better patient outcomes. Collectively, a significant role for the adalimumab IS in assuring the quality, safety and efficacy of adalimumab products globally is envisaged.
Collapse
Affiliation(s)
- Meenu Wadhwa
- Biotherapeutics Division, National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Chris Bird
- Biotherapeutics Division, National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Eleanor Atkinson
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Isabelle Cludts
- Biotherapeutics Division, National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Peter Rigsby
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| |
Collapse
|
6
|
Gurjar SA, Wheeler JX, Wadhwa M, Thorpe R, Kimber I, Derrick JP, Dearman RJ, Metcalfe C. The impact of thioredoxin reduction of allosteric disulfide bonds on the therapeutic potential of monoclonal antibodies. J Biol Chem 2019; 294:19616-19634. [PMID: 31727737 PMCID: PMC6926469 DOI: 10.1074/jbc.ra119.010637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Therapeutic mAbs are used to manage a wide range of cancers and autoimmune disorders. However, mAb-based treatments are not always successful, highlighting the need for a better understanding of the factors influencing mAb efficacy. Increased levels of oxidative stress associated with several diseases are counteracted by the activities of various oxidoreductase enzymes, such as thioredoxin (Trx), which also reduces allosteric disulfide bonds in proteins, including mAbs. Here, using an array of in vitro assays, we explored the functional effects of Trx-mediated reduction on the mechanisms of action of six therapeutic mAbs. We found that Trx reduces the interchain disulfide bonds of the mAbs, after which they remain intact but have altered function. In general, this reduction increased antigen-binding capacity, resulting in, for example, enhanced tumor necrosis factor (TNF) neutralization by two anti-TNF mAbs. Conversely, Trx reduction decreased the antiproliferative activity of an anti-tyrosine kinase-type cell-surface receptor HER2 mAb. In all of the mAbs, Fc receptor binding was abrogated by Trx activity, with significant loss in both complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC) activity of the mAbs tested. We also confirmed that without alkylation, Trx-reduced interchain disulfide bonds reoxidize, and ADCC activity is restored. In summary, Trx-mediated reduction has a substantial impact on the functional effects of an mAb, including variable effects on antigen binding and Fc function, with the potential to significantly impact mAb efficacy in vivo.
Collapse
Affiliation(s)
- Shalom A Gurjar
- Division of Biotherapeutics, The National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Jun X Wheeler
- Division of Technology Development and Infrastructure, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Meenu Wadhwa
- Division of Biotherapeutics, The National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Robin Thorpe
- Division of Biotherapeutics, The National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Ian Kimber
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Rebecca J Dearman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Clive Metcalfe
- Division of Biotherapeutics, The National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| |
Collapse
|
7
|
González-González E, Camacho-Sandoval R, Jiménez-Uribe A, Montes-Luna A, Cortés-Paniagua I, Sánchez-Morales J, Muñoz-García L, Tenorio-Calvo AV, López-Morales CA, Velasco-Velázquez MA, Pavón L, Pérez-Tapia SM, Medina-Rivero E. Validation of an ADCC assay using human primary natural killer cells to evaluate biotherapeutic products bearing an Fc region. J Immunol Methods 2019; 464:87-94. [PMID: 30395815 DOI: 10.1016/j.jim.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/28/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
The development of biotherapeutics requires continuous improvement in analytical methodologies for the assessment of their quality attributes. A subset of biotherapeutics is designed to interact with specific antigens that are exposed on the membranes of target cells or circulating in a soluble form, and effector functions are achieved via recognition of their Fc region by effector cells that induce mechanisms such as antibody-dependent cell-mediated cytotoxicity (ADCC). Thus, ADCC induction is a critical quality attribute (CQA) that must be evaluated to ensure biotherapeutic efficacy. Induction of ADCC can be evaluated by employing effector cells from different sources, such as peripheral blood mononuclear cells (PBMC) and genetically modified cell lines (e.g., transfected NKs or Jurkat cells), and different approaches can be used for detection and results interpretation depending on the type of effector cells used. In this regard, validation of the assays is relevant to ensure the reliability of the results according to the intended purpose. Herein, we show the standardization and validation of ADCC assays to test the potency of three biotherapeutic proteins using primary NK cells obtained from fresh blood as effector cells and detecting cell death by flow cytometry. The advantage of using primary NKs instead of modified cells is that the response is closer to that occurring in vivo since cytotoxicity is evaluated in a direct manner. Our results indicate that in all cases, the assays exhibited a characteristic sigmoidal dose/response curve complying with accurate, precise and specific parameters. Thereby, the validated ADCC assay is an appropriate alternative to evaluate the biological activities of these type of biotherapeutics.
Collapse
Affiliation(s)
- Edith González-González
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rosa Camacho-Sandoval
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alexis Jiménez-Uribe
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alejandra Montes-Luna
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ilselena Cortés-Paniagua
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jazmín Sánchez-Morales
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leslie Muñoz-García
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alejandra V Tenorio-Calvo
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carlos A López-Morales
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Marco A Velasco-Velázquez
- Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Traslacional (CMN 20 de noviembre, ISSSTE), Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México, Mexico.
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|