1
|
Birudukota S, Mangalapu B, Ramakrishna RA, Halder S. Risk-based in silico mutagenic assessment of benzodiazepine impurities using three QSAR tools. Toxicol Rep 2025; 14:102008. [PMID: 40230516 PMCID: PMC11995136 DOI: 10.1016/j.toxrep.2025.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Benzodiazepines, widely prescribed psychoactive drugs, may contain DNA-reactive (mutagenic) impurities formed during synthesis, posing significant health risks. Owing to animal testing requirements, traditional in vitro and in vivo methods for assessing mutagenicity are time-consuming, costly, and ethically challenging. Computational approaches, particularly in silico (Q)SAR models, provide an efficient alternative for predicting toxicity based on chemical structure. This study evaluated the mutagenic potential of 88 benzodiazepine-related impurities using three freely accessible (Q)SAR tools: TOXTREE (Ames Test Alert by ISS), Toxicity Estimation Software Tool (TEST) with nearest neighbour and consensus models, and VEGA, a QSAR tool that integrates multiple mutagenicity prediction models, including the CAESAR Ames Mutagenicity Model. The tools were validated using a dataset of 99 chemicals with known Ames test results. TOXTREE exhibited the highest sensitivity (80.7 %) and accuracy (72.2 %) for predicting mutagenicity, whereas VEGA and TEST provided balanced accuracy (66.2 % and 66.7 %, respectively) and high specificity (74.5 % and 76.6 %, respectively). The risk assessment categorised 21 impurities as high risk, 11 as moderate-high risk, 28 as moderate-low risk, 22 as low risk, and 6 as equivocal, with expert review finalising classifications. The findings emphasise the integration of multiple (Q)SAR tools for early mutagenicity detection, regulatory compliance, and reduced reliance on animal testing. Further refinement of predictive models and additional computational approaches are recommended to enhance the accuracy of the risk assessment.
Collapse
Affiliation(s)
- Srinivas Birudukota
- Department of Chemistry, School of Applied Sciences, Rukmini Knowledge Park, REVA University, Kattigenahalli, Yelahanka, Bangalore 560064, India
- Trroy Life Sciences Pvt Ltd., Yelahanka New Town, Bangalore 560106, India
| | - Bhaskar Mangalapu
- Department of Chemistry, School of Applied Sciences, Rukmini Knowledge Park, REVA University, Kattigenahalli, Yelahanka, Bangalore 560064, India
- Flowchem Pharma Pvt Ltd., Gollapuram Industrial Park, Hindupur, Srisatyasai 515211, India
| | | | - Swagata Halder
- Department of Chemistry, School of Applied Sciences, Rukmini Knowledge Park, REVA University, Kattigenahalli, Yelahanka, Bangalore 560064, India
| |
Collapse
|
2
|
Xu A, Xue Y, Zeng Y, Li J, Zhou H, Wang Z, Chen Y, Chen H, Jin J, Zhuang T. Isolation and Characterization of an Unknown Process-Related Impurity in Furosemide and Validation of a New HPLC Method. Molecules 2023; 28:molecules28052415. [PMID: 36903659 PMCID: PMC10005432 DOI: 10.3390/molecules28052415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Furosemide is a widely used loop diuretic in the treatment of congestive heart failure and edema. During the preparation of furosemide, a new process-related impurity G in the levels ranging from 0.08% to 0.13% was detected in pilot batches by a new high performance liquid chromatography (HPLC) method. The new impurity was isolated and characterized by comprehensive analysis of FT-IR, Q-TOF/LC-MS, 1D-NMR (1H, 13C, and DEPT), and 2D-NMR (1H-1H-COSY, HSQC, and HMBC) spectroscopy data. The possible formation pathway of impurity G was also discussed in detail. Moreover, a novel HPLC method was developed and validated for the determination of impurity G and the other six known impurities registered in the European Pharmacopoeia as per ICH guidelines. The HPLC method was validated with respect to system suitability, linearity, the limit of quantitation, the limit of detection, precision, accuracy, and robustness. The characterization of impurity G and the validation of its quantitative HPLC method were reported for the first time in this paper. Finally, the toxicological properties of impurity G were predicted by the in silico webserver ProTox-II.
Collapse
Affiliation(s)
- Ao Xu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yunlin Xue
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuyu Zeng
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Li
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huiling Zhou
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhen Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- Xuzhou Institute for Food and Drug Control, Xuzhou 221000, China
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (J.J.); (T.Z.); Tel.: +86-0518-85895786 (T.Z.)
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (J.J.); (T.Z.); Tel.: +86-0518-85895786 (T.Z.)
| |
Collapse
|
3
|
Minhas MU, Khan KU, Sarfraz M, Badshah SF, Munir A, Barkat K, Basit A, Arafat M. Polyvinylpyrrolidone K-30-Based Crosslinked Fast Swelling Nanogels: An Impeccable Approach for Drug's Solubility Improvement. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5883239. [PMID: 36060130 PMCID: PMC9439932 DOI: 10.1155/2022/5883239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Poor solubility is a global issue of copious pharmaceutical industries as large number of drugs in development stage as well as already marketed products are poorly soluble which results in low dissolution and ultimately dosage increase. Current study is aimed at developing a polyvinylpyrrolidone- (PVP-K30-) based nanogel delivery system for solubility enhancement of poorly soluble drug olanzapine (OLP), as solubilization enhancement is the most noteworthy application of nanosystems. Crosslinking polymerization with subsequent condensation technique was used for the synthesis of nanogels, a highly responsive polymeric networks in drug's solubility. Developed nanogels were characterized by percent entrapment efficiency, sol-gel, percent swelling, percent drug loaded content (%DLC), percent porosity, stability, solubility, in vitro dissolution studies, FTIR, XRD, and SEM analysis. Furthermore, cytotoxicity study was conducted on rabbits to check the biocompatibility of the system. Particle size of nanogels was found with 178.99 ± 15.32 nm, and in vitro dissolution study exhibited that drug release properties were considerably enhanced as compared to the marketed formulation OLANZIA. The solubility studies indicated that solubility of OLP was noticeably improved up to 36.7-fold in phosphate buffer of pH 6.8. In vivo cytotoxicity study indicated that prepared PVP-K30-based formulation was biocompatible. On the basis of results obtained, the developed PVP-K30-co-poly (AMPS) nanogel delivery system is expected to be safe, effective, and cost-effective for solubility improvement of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, UAE
| | | | - Abubakar Munir
- Faculty of Pharmacy, Superior University Lahore, Punjab, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Punjab, Pakistan
| | - Abdul Basit
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, UAE
| |
Collapse
|
4
|
ALSaeedy M, Al-Adhreai A, Öncü-Kaya EM, Şener E. An Overview of Advances in the Chromatography of Drugs Impurity Profiling. Crit Rev Anal Chem 2022; 53:1455-1471. [PMID: 35180027 DOI: 10.1080/10408347.2022.2032587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A systematic literature survey published in several journals of pharmaceutical chemistry and of chromatography used to analyze impurities for most of the drugs that have been reviewed. This article covers the period from 2016 to 2020, in which almost of chromatographic techniques have been used for drug impurity analysis. These chromatography techniques are important in the analysis and description of drug impurities. Moreover, some recent developments in forced impurity profiling have been discussed, such as buffer solutions, mobile phase, columns, elution modes, and detectors are highlighted in drugs used for the study. This primarily focuses on thorough updating of different analytical methods which include hyphenated techniques for detecting and quantifying impurity and degradation levels in various pharmaceutical matrices.
Collapse
Affiliation(s)
- Mohammed ALSaeedy
- Department of Chemistry, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
- Department of Analytical Chemistry, Faculty of Sciences, Eskisehir Technical University, Eskisehir, Turkey
| | - Arwa Al-Adhreai
- Department of Chemistry, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, India
| | - Elif Mine Öncü-Kaya
- Department of Analytical Chemistry, Faculty of Sciences, Eskisehir Technical University, Eskisehir, Turkey
| | - Erol Şener
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
5
|
Jahani M, Fazly Bazzaz BS, Akaberi M, Rajabi O, Hadizadeh F. Recent Progresses in Analytical Perspectives of Degradation Studies and Impurity Profiling in Pharmaceutical Developments: An Updated Review. Crit Rev Anal Chem 2022; 53:1094-1115. [PMID: 35108132 DOI: 10.1080/10408347.2021.2008226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Forced degradation studies have been used to simplify analytical methodology development and achieve a deeper knowledge about the inherent stability of active pharmaceutical ingredients (API) and drug products. This provides insight into degradation species and pathways. Identification of impurities in pharmaceutical products is closely related to the selection of the most appropriate analytical methods like HPLC-UV, LC-MS/MS, LC-NMR, GC-MS, and capillary electrophoresis. Herein, recent trends in analytical perspectives during 2018-April 14, 2021, are discussed based on forced and impurity degradation profiling of pharmaceuticals. Literature review showed that several methods have been used for experimental design and analysis conditions such as matrix type, column type, mobile phase, elution modes, detection wavelengths, and therapeutic category. Thus, since these factors influence the separation and identification of the impurities and degradation products, we attempted to perform a statistical analysis for the developed methods according to the abovementioned factors.
Collapse
Affiliation(s)
- Maryam Jahani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Li Y, Yuan M, Ding D, Jiang X, Ye Q, Guo F. Isolation and structural characterization of eight impurities in aztreonam. J Pharm Biomed Anal 2022; 210:114587. [PMID: 35026590 DOI: 10.1016/j.jpba.2022.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/16/2022]
Abstract
To comply with regulatory requirements, it is necessary to detect and separate the impurities generated during aztreonam synthesis or storage. The chromatogram of aztreonam revealed eight major impurities, which were purified through medium-pressure reversed-phase column and preparative High Performance Liquid Chromatography (HPLC). Through high resolution electrospray ionization mass spectroscopy (HRESIMS), as well as one- and two-dimensional nuclear magnetic resonance (NMR), their structures were confirmed as aztreonam acetate (Ⅰ), desulfated aztreonam (Ⅱ), anti-aztreonam (Ⅲ), open-ring aztreonam (Ⅳ), open-ring desulfated aztreonam (Ⅴ), open-ring desulfated aztreonam ethyl ester (VI), cis-deamino open-ring desulfated aztreonam (VII), and trans-deamino open-ring desulfated aztreonam (Ⅷ). Their exact concentrations were determined through quantitative nuclear magnetic resonance (qNMR) technique. Structural elucidation of the eight impurities through 1H NMR, 13C NMR, the 1H-1H COSY, NOESY, HSQC, HMBC NMR and MS spectra was conducted. Especially, ⅥI and Ⅷ were identified as undescribed impurities here.
Collapse
Affiliation(s)
- Yahui Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Minghua Yuan
- Fuan Pharmaceutical Group, Chongqing Bosen Pharmaceutical Co., Ltd, Chongqing 401254, PR China.
| | - Dong Ding
- Fuan Pharmaceutical Group, Chongqing Bosen Pharmaceutical Co., Ltd, Chongqing 401254, PR China
| | - Xiong Jiang
- Fuan Pharmaceutical Group, Chongqing Bosen Pharmaceutical Co., Ltd, Chongqing 401254, PR China
| | - Qing Ye
- Shanghai U-sea Biotech Co.,Ltd., Shanghai 200941, PR China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
7
|
β-cyclodextrin modification by cross-linking polymerization as highly porous nanomatrices for olanzapine solubility improvement; synthesis, characterization and bio-compatibility evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Isolation, structural characterization and quality control strategy of an unknown process-related impurity in sugammadex sodium. J Pharm Biomed Anal 2021; 200:114072. [PMID: 33866296 DOI: 10.1016/j.jpba.2021.114072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 02/02/2023]
Abstract
Sugammadex sodium is the first selective relaxant binding agent (SRBA) indicated for reversal of neuromuscular blockade induced by rocuronium or vecuronium during surgery. The chemical synthesis of sugammadex involved the nucleophilic substitution reaction between 6-per-deoxy-6-per-halo-γ-cyclodextrin and 3-mercaptopropionic acid under basic conditions. During the manufacture of sugammadex sodium, an unknown process-related impurity was observed in pilot batches in the range of 0.21-1.9 % based upon HPLC analysis. The same impurity was also detected in commercial Bridion® samples at the levels of more than 0.1 %. Thus this unknown impurity was enriched from the mother liquor of reaction by preparative HPLC and characterized by LC-MS/QTOF, 1D-NMR (1H, 13C, DEPTQ) and 2D-NMR (1H-1H COSY, TOCSY, HSQC, HMBC, NOESY) techniques. Based on spectroscopic analysis and the synthetic route of sugammadex sodium, this new impurity was identified as monocyanoethyl sugammadex (impurity-I). The prospects to the formation mechanism and control strategy of impurity-I were discussed in detail. Moreover, the toxicological properties of impurity-I were evaluated using ADMET Predictor® software.
Collapse
|
9
|
Khan KU, Akhtar N, Minhas MU. Poloxamer-407-Co-Poly (2-Acrylamido-2-Methylpropane Sulfonic Acid) Cross-linked Nanogels for Solubility Enhancement of Olanzapine: Synthesis, Characterization, and Toxicity Evaluation. AAPS PharmSciTech 2020; 21:141. [PMID: 32419084 DOI: 10.1208/s12249-020-01694-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Current study is focused to enhance the solubility of poorly soluble drug olanzapine (OLZ) by nanogels drug delivery system, as improved solubility is one of the most important applications of nanosystems. Poor solubility is a major issue, and 40% of marketed and about 75% of new active pharmaceutical ingredients are poorly water soluble which significantly affect the bioavailability and therapeutic effects of these drugs. In this study, nanogels, a promising system for solubility enhancement, were developed by free-radical polymerization technique. Different formulations were synthesized in which poloxamer-407 was cross-linked with 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with the help of cross-linker methylene bisacrylamide (MBA). The chemically cross-linked nanogels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermos gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta size, swelling, sol-gel analysis, drug loading, solubility, and in vitro drug release studies. In order to determine the biocompatibility and cytotoxicity of nanogels to biological system, toxicity study on rabbits was also carried out. It was confirmed that the developed nanogels was thermally stable, safe, effective, and compatible to biological system, and the solubility of olanzapine (OLZ) was enhanced up to 38 folds as compared with reference product.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Naveed Akhtar
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| |
Collapse
|
10
|
Wang J, Zhou J, Xu Y, Zhu B, Jin Y. Characterization of two unknown impurities in roxithromycin by 2D LC–QTOF/MS/MS and NMR. J Pharm Biomed Anal 2020; 184:113196. [DOI: 10.1016/j.jpba.2020.113196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
|
11
|
He L, Qian J, Zhu P, Yang W, She Y. Separation and characterization of unknown impurities in latamoxef sodium by LC-Q-TOF MS and a summary of their positive-ion fragmentation regularities. J Pharm Biomed Anal 2019; 175:112793. [PMID: 31377652 DOI: 10.1016/j.jpba.2019.112793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
A simple and sensitive method was developed for separation and characterization of seventeen impurities from commercial latamoxef sodium for injection by liquid chromatography combined with electrospray ionization and QTOF mass spectrometer (LC-ESI-QTOF MS). The chromatographic separation was performed on a Boston Green ODS-AQ C18 column (250 mm × 4.6 mm, 5 μm) under gradient mode using binary mobile phase: (A) ammonium acetate (10 mM)-methanol (99:1, v/v) and (B) ammonium acetate (10 mM)-methanol (70:30, v/v). Based on tandem multistage MS and high resolution MS data, the molecular formulas and structures of unknown impurities were inferred. A plausible formation mechanism of impurities was also proposed. In addition, the fragmentation regularity of degraded impurities in positive-ion mode was summarized.
Collapse
Affiliation(s)
- Lulu He
- Zhejiang University of Technology, Hangzhou 310004, China
| | - Jianqin Qian
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Peixi Zhu
- Zhejiang University of Technology, Hangzhou 310004, China
| | - Weifeng Yang
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China.
| | - Yuanbin She
- Zhejiang University of Technology, Hangzhou 310004, China.
| |
Collapse
|
12
|
Shelke M, Deshpande SS, Sharma S. Quinquennial Review of Progress in Degradation Studies and Impurity Profiling: An Instrumental Perspective Statistics. Crit Rev Anal Chem 2019; 50:226-253. [DOI: 10.1080/10408347.2019.1615863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Madhav Shelke
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, Maharashtra, India
| | | | | |
Collapse
|
13
|
Multi-Steps Fragmentation-Ion Trap Mass Spectrometry Coupled to Liquid Chromatography Diode Array System for Investigation of Olaparib Related Substances. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24050843. [PMID: 30818845 PMCID: PMC6429096 DOI: 10.3390/molecules24050843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Abstract
A high-performance liquid chromatography-diode array-mass spectrometric (LC-DAD-MS) method was developed and validated to investigate the related substances of olaparib (OLA) in bulk form. OLA was exposed to acid–base hydrolysis, boiling, oxidation with hydrogen peroxide, and UV light followed by LC-DAD-MS analysis. OLA and OLA-related substances were simultaneously and quantitatively monitored by DAD at 278 nm and triple quadrupole mass spectrometry (QQQ-MS). The investigated compounds were auto-scanned by an ion trap MS which applied positive and negative modes separately. The fragmentation pathway was confirmed by applying multi-steps fragmentation to identify the resulted cleaved ions and their parent ion. OLA was found to be sensitive to the alkaline hydrolysis and less sensitive to UV light. Two major hydrolytic degradation products, including the protonated molar ions m/z 299 and m/z 367, were identified. Three potential impurities were also characterized. The LC-MS limit of detection (LOD) and limit of quantification (LOQ) were 0.01 and 0.05 ng/µL, respectively. The quantitative results obtained by LC-DAD was comparable with that of LC-QQQ-MS. The proposed method shows good intra-day and inter-day precision with relative standard deviation (RSD) <2%.
Collapse
|