1
|
Pereira JRP, Rocha DC, Neng NR, Maurício P, Torres ME, Ahmad SM, Quintas A. Bar Adsorptive Microextraction Approach for Trace Determination of Local Anesthetics in Urine Matrices. Molecules 2024; 30:68. [PMID: 39795124 PMCID: PMC11722190 DOI: 10.3390/molecules30010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The present work reports the development, optimization, and validation, of a methodology to determine lidocaine, procaine, tetracaine, and benzocaine in urine matrices. Two extractive preconcentration techniques, solid-phase microextraction (SPME) LC Tips and bar adsorptive microextraction (BAμE), were studied and applied to the four target anesthetics, followed by gas chromatography-mass spectrometry (GC-MS) analysis. Several parameters that could affect microextraction and back-extraction were optimized using two different designs of experiments (Box-Behnken and full-factorial) to maximize extraction efficiency from aqueous media. Under optimized experimental conditions, the BAμE technique showed better performance than SPME LC Tips and was chosen for validation assays and urine sample analysis. In blank urine, the BAµE/GC-MS methodology revealed suitable sensitivity (LOD between 2 and 18 ng/mL), good linearity (r2 ≥ 0.9945) between 0.5 and 30.0 µg/mL and recovery yields of 30.3-97.9%. Good precision (%RSD ≤ 8.8%) and accuracy (bias % between -15.9 and 15.0%) values were achieved. The developed methodology was successfully applied to the target anesthetics analysis of volunteers' urine matrices and proved to be an environmentally friendly alternative to monitor trace levels of local anesthetics in complex matrices compared to other extraction techniques.
Collapse
Affiliation(s)
- Joana R. P. Pereira
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Daniela C. Rocha
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
| | - Nuno R. Neng
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Paulo Maurício
- Oral Rehabilitation Department, CiiEM, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - M. Edite Torres
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
| | - Samir M. Ahmad
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexandre Quintas
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Quinta da Granja, 2829-511 Almada, Portugal; (J.R.P.P.); (M.E.T.)
| |
Collapse
|
2
|
Ahmad SM, Neng NR, Queirós CR, Gaspar H, Nogueira JMF. Bar adsorptive microextraction and liquid chromatography-diode array detection of synthetic cannabinoids in oral fluid. Anal Bioanal Chem 2024; 416:6307-6316. [PMID: 39259273 PMCID: PMC11541396 DOI: 10.1007/s00216-024-05517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
In recent years, synthetic cannabinoids (SCs) have become a major public health issue. For this reason, there is a need for innovative analytical methods that allow its monitoring in biological matrices. In this work, we propose a novel methodology to screen eight SCs (AM-694, cumyl-5F-PINACA, MAM-2201, 5F-UR-144, JWH-018, JWH-122, UR-144 and APINACA) in oral fluids. A bar adsorptive microextraction method followed by microliquid desorption combined with high-performance liquid chromatography with diode array detection (BAµE-µLD/HPLC-DAD) was developed to monitor the target SCs. The main factors affecting the BAµE technology were fully optimized for oral fluid analysis. Under optimized experimental conditions, the proposed methodology showed good linear dynamic ranges from 20.0 to 2000.0 µg L-1 (r2 > 0.99, relative residuals < 15%), limits of detection between 2.0 and 5.0 µg L-1 and suitable average recovery yields (87.9-100.5%) for the eight studied SCs. The intra- and interday accuracies (bias ≤ ± 14.7%) and precisions (RSD ≤ 14.9%) were also evaluated at three spiking levels. The validated methodology was then assayed to oral fluid samples collected from several volunteers. The proposed analytical approach showed remarkable performance and could be an effective alternative for routine monitoring of the target compounds in oral fluid.
Collapse
Affiliation(s)
- Samir M Ahmad
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Nuno R Neng
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Cláudio R Queirós
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Helena Gaspar
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - José Manuel F Nogueira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
3
|
Liu YJ, Bian Y, Zhang Y, Zhang YX, Ren A, Lin SH, Feng XS, Zhang XY. Diuretics in Different Samples: Update on the Pretreatment and Analysis Techniques. Crit Rev Anal Chem 2023; 54:2777-2809. [PMID: 37130012 DOI: 10.1080/10408347.2023.2202260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diuretics are drugs that promote the excretion of water and electrolytes in the body and produce diuretic effects. Clinically, they are often used in the treatment of edema caused by various reasons and hypertension. In sports, diuretics are banned by the World Anti-Doping Agency (WADA). Therefore, in order to monitor blood drug concentration, identify drug quality and maintain the fairness of sports competition, accurate, rapid, highly selective and sensitive detection methods are essential. This review provides a comprehensive summary of the pretreatment and detection of diuretics in various samples since 2015. Commonly used techniques to extract diuretics include liquid-liquid extraction, liquid-phase microextraction, solid-phase extraction, solid-phase microextraction, among others. Determination methods include methods based on liquid chromatography, fluorescent spectroscopy, electrochemical sensor method, capillary electrophoresis and so on. The advantages and disadvantages of various pretreatment and analytical techniques are elaborated. In addition, future development prospects of these techniques are discussed.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ai Ren
- School of Pharmacy, China Medical University, Shenyang, China
| | - Shu-Han Lin
- School of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Olędzka I, Plenis A, Kowalski P, Bączek T, Roszkowska A. Analytical aspects of sample handling during the quantification of selective serotonin reuptake inhibitors in clinical applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
5
|
HS-BAμE: A New Alternative Approach for VOCs Analysis-Application for Monitoring Biogenic Emissions from Tree Species. Molecules 2023; 28:molecules28031179. [PMID: 36770845 PMCID: PMC9919248 DOI: 10.3390/molecules28031179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
In this work, a new analytical approach is proposed for monitoring biogenic volatile organic compounds (BVOCs) by combining headspace bar adsorptive microextraction (HS-BAμE) with gas chromatography-mass spectrometry (GC-MS). The HS-BAμE methodology was developed, optimized, validated and applied for the analysis of BVOCs emitted from two tree species (Eucalyptus globulus Labill. and Pinus pinaster Aiton) and compared with headspace solid phase microextraction (HS-SPME), commonly accepted as a reference technique. To achieve optimum experimental conditions, numerous assays were carried out by both methodologies, studying the release of the five major monoterpenoids (α-pinene, β-pinene, myrcene, limonene and 1,8-cineole) from the leaves of the tree species, whereas the maximum selectivity and efficiency were obtained using an activated carbon and PDMS/DVB fiber as sorbent phases for HS-BAμE and HS-SPME, respectively. Under optimized experimental conditions, both methodologies showed similar profiling and proportional responses, although the latter present a higher sensitivity in the analytical configuration used. For the five monoterpenoids studied, acceptable detection limits (LODs = 5.0 μg L-1) and suitable linear dynamic ranges (20.0-100.0 mg L-1; r2 ≥ 0.9959) were achieved, and intra- and inter-day studies proved that both methodologies exhibited good results (RSD and %RE ≤ 19.9%), which indicates a good fit for the assessment of BVOCs by the HS-BAμE/GC-MS methodology. Assays performed on sampled leaves by both optimized and validated methodologies showed high levels of the five major BVOCs released from E. globulus Labill. (10.2 ± 1.3 to 7828.0 ± 40.0 μg g-1) and P. pinaster Aiton (9.2 ± 1.4 to 3503.8 ± 396.3 μg g-1), which might act as potential fuel during forest fire's propagation, particularly under extreme atmospheric conditions. This is the first time that BAμE technology was applied in the HS sampling mode, and, in addition to other advantages, it has proven to be an effective and promising analytical alternative for monitoring VOCs, given its great simplicity, easy handling and low cost.
Collapse
|
6
|
Magro C, Gonçalves OC, Morais M, Ribeiro PA, Sério S, Vieira P, Raposo M. Volatile Organic Compound Monitoring during Extreme Wildfires: Assessing the Potential of Sensors Based on LbL and Sputtering Films. SENSORS (BASEL, SWITZERLAND) 2022; 22:6677. [PMID: 36081137 PMCID: PMC9460900 DOI: 10.3390/s22176677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 05/21/2023]
Abstract
A new theory suggests that flammable gases generated by heated vegetation, in particular the volatile organic compounds (VOC) common to Mediterranean plants, may, under certain topographic and wind conditions, accumulate in locations where, after the arrival of the ignition source, they rapidly burst into flames as explosions. Hence, there is a need for the development of a system that can monitor the development of these compounds. In this work, a sensor's array is proposed as a method for monitoring the amount of eucalyptol and α-pinene, the major VOC compounds of the Eucalyptus and Pine trees. The detection of the target compounds was assessed using the impedance spectroscopy response of thin films. Combinations of layers of polyelectrolytes, such as poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), poly(sodium 4-sytrenesulfonate) (PSS) graphene oxide (GO), and non/functionalized multiwall nanotubes (MWCNT-COOH or MWCNT), namely, PAH/GO, PEI/PSS, PEI/GO, PAH/MWCNT, PAH/MWCNT-COOH, films, and TiO2 and ZnO sputtered films, were deposited onto ceramic supports coated with gold interdigitated electrodes. The results showed that concentrations of the target VOCs, within the range of 68 to 999 ppmv, can be easily distinguished by analyzing the impedance spectra, particularly in the case of the ZnO- and PAH/GO-film-based sensors, which showed the best results in the detection of the target compounds. Through principal component analysis (PCA), the best set of features attained for the ZnO and PAH/GO based sensor devices revealed a linear trend of the PCA's first principal component with the concentration within the range 109 and 807 ppmv. Thus, the values of sensitivity to eucalyptol and α-pinene concentrations, which were (2.2 ± 0.3) × 10-4 and (5.0 ± 0.7) × 10-5 per decade, respectively, as well as resolutions of 118 and 136 ppbv, respectively, were identified.
Collapse
Affiliation(s)
- Cátia Magro
- Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Almada, Portugal
- School for International Training, World Learning Inc., Brattleboro, VT 05302, USA
| | - Oriana C. Gonçalves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marcelo Morais
- Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Almada, Portugal
| | - Paulo A. Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Almada, Portugal
| | - Susana Sério
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Almada, Portugal
| | - Pedro Vieira
- Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Almada, Portugal
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Almada, Portugal
| |
Collapse
|
7
|
Medyantseva EP, Gazizullina ER, Brusnitsyn DV, Fedorenko SV, Mustafina AR, Eremin SA. Determination of Amitriptyline by Fluorescence Polarization Immunoassay. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822070085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Roszkowska A, Plenis A, Kowalski P, Bączek T, Olędzka I. Recent advancements in techniques for analyzing modern, atypical antidepressants in complex biological matrices and their application in biomedical studies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Fagnani E, Montemurro N, Pérez S. Multilayered solid phase extraction and ultra performance liquid chromatographic method for suspect screening of halogenated pharmaceuticals and photo-transformation products in freshwater - comparison between data-dependent and data-independent acquisition mass spectrometry. J Chromatogr A 2022; 1663:462760. [PMID: 34979338 DOI: 10.1016/j.chroma.2021.462760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Since conventional biological wastewater treatments are not admittedly effective to convert pharmaceutical active compounds (PhACs) into nontoxic products, natural abiotic mechanisms such as solar photolysis arises as an important degradation process, especially for halogenated molecules. In the present work, photolysis simulation was carried out in-lab for precursors and their respective photo-transformation products (photo-TPs), which were analyzed through reversed-phase ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (RP-UHPLCHRMS). An in-house library was created in order to provide reference information for target (precursors) and suspect screening (photo-TPs) analysis of freshwater samples from impacted aquatic environments. Strategies in the use of data-dependent acquisition (DDA) and data-independent acquisition (DIA), as well as the data processing software are discussed here for the identification of 6 PhACs and photo-TPs. Because no standards of photo-TPs were available, only the target compounds, i.e. sitagliptin (398 ± 2 ng L-1), iohexol (209 ± 5 ng L-1), lamotrigine (103 ± 10 ng L-1), losartan (43 ± 10 ng L-1), ofloxacin (28 ± 7 ng L-1), and sertraline (25 ± 7 ng L-1) could be quantified through multiple standard additions.
Collapse
Affiliation(s)
- Enelton Fagnani
- Research Group for Optimization of Analytical Technologies Applied to Environmental and Sanitary Samples (GOTAS), School of Technology, University of Campinas (FT-UNICAMP), Rua Paschoal Marmo, 1888, Limeira, SP 13484-332, Brazil; Water, Environmental and Food Chemistry research group (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research from the Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain.
| | - Nicola Montemurro
- Water, Environmental and Food Chemistry research group (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research from the Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain.
| | - Sandra Pérez
- Water, Environmental and Food Chemistry research group (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research from the Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
10
|
Ghorbani M, Mohammadi P, Keshavarzi M, Ziroohi A, Mohammadi M, Aghamohammadhasan M, Pakseresht M. Developments of Microextraction (Extraction) Procedures for Sample Preparation of Antidepressants in Biological and Water Samples, a Review. Crit Rev Anal Chem 2021; 53:1285-1312. [PMID: 34955046 DOI: 10.1080/10408347.2021.2018648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Antidepressants are an important class of drugs to treat various types of depression. The determination of antidepressants is crucial in biological samples to control adverse effects in humans and study pharmacokinetics and bioavailability. Direct measurement of antidepressants in biological and water samples is a considerable challenge for analysts due to their low concentration, the high matrix effects of real samples, and the presence of metabolites of these drugs in biological samples. The challenge leads to using sample preparation processes as a critical step in determining antidepressants. Extraction and microextraction procedures have been widely utilized as sample preparation procedures for these drugs. The purposes of extraction or microextraction methods for antidepressant medications are to preconcentrate the analyte, reduce the matrix effects, increase the selectivity of the procedures, and convert the sample to a suitable format for introducing it into detection systems. In the review, the various extraction and microextraction methods of these drugs in biological, real water, and wastewater samples were investigated. The theory of each technique was briefly addressed to understand the features and factors affecting each method. The extraction and microextraction methods were classified based on their application for antidepressants, and the advantages and disadvantages of each technique were reviewed. The new developments to overcome the limitations of each procedure were discussed. The investigation indicated the number of applications of liquid-phase microextraction for extracting antidepressants has been almost equal to that of solid-phase microextraction.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parisa Mohammadi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Majid Keshavarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Aliakbar Ziroohi
- Department of biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Morteza Mohammadi
- School of Medicine, Sechenov University of Medical Sciences, Moscow, Russia
| | | | - Maryam Pakseresht
- Department of Chemistry, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
11
|
Oliveira MN, Gonçalves OC, Ahmad SM, Schneider JK, Krause LC, Neng NR, Caramão EB, Nogueira JMF. Application of Bar Adsorptive Microextraction for the Determination of Levels of Tricyclic Antidepressants in Urine Samples. Molecules 2021; 26:3101. [PMID: 34067333 PMCID: PMC8196885 DOI: 10.3390/molecules26113101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022] Open
Abstract
This work entailed the development, optimization, validation, and application of a novel analytical approach, using the bar adsorptive microextraction technique (BAμE), for the determination of the six most common tricyclic antidepressants (TCAs; amitriptyline, mianserin, trimipramine, imipramine, mirtazapine and dosulepin) in urine matrices. To achieve this goal, we employed, for the first time, new generation microextraction devices coated with convenient sorbent phases, polymers and novel activated carbons prepared from biomaterial waste, in combination with large-volume-injection gas chromatography-mass spectrometry operating in selected-ion monitoring mode (LVI-GC-MS(SIM)). Preliminary assays on sorbent coatings, showed that the polymeric phases present a much more effective performance, as the tested biosorbents exhibited low efficiency for application in microextraction techniques. By using BAμE coated with C18 polymer, under optimized experimental conditions, the detection limits achieved for the six TCAs ranged from 0.2 to 1.6 μg L-1 and, weighted linear regressions resulted in remarkable linearity (r2 > 0.9960) between 10.0 and 1000.0 μg L-1. The developed analytical methodology (BAμE(C18)/LVI-GC-MS(SIM)) provided suitable matrix effects (90.2-112.9%, RSD ≤ 13.9%), high recovery yields (92.3-111.5%, RSD ≤ 12.3%) and a remarkable overall process efficiency (ranging from 84.9% to 124.3%, RSD ≤ 13.9%). The developed and validated methodology was successfully applied for screening the six TCAs in real urine matrices. The proposed analytical methodology proved to be an eco-user-friendly approach to monitor trace levels of TCAs in complex urine matrices and an outstanding analytical alternative in comparison with other microextraction-based techniques.
Collapse
Affiliation(s)
- Mariana N. Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
| | - Oriana C. Gonçalves
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
| | - Samir M. Ahmad
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- Forensic and Psychological Sciences Laboratory Egas Moniz, Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Jaderson K. Schneider
- Instituto de Química, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, Brazil; (J.K.S.); (L.C.K.); (E.B.C.)
| | - Laiza C. Krause
- Instituto de Química, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, Brazil; (J.K.S.); (L.C.K.); (E.B.C.)
| | - Nuno R. Neng
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Elina B. Caramão
- Instituto de Química, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, Brazil; (J.K.S.); (L.C.K.); (E.B.C.)
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, 49032-490 Aracaju, Brazil
| | - José M. F. Nogueira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.N.O.); (O.C.G.); (S.M.A.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
12
|
Exploring the use of cork pellets in bar adsorptive microextraction for the determination of organochloride pesticides in water samples with gas chromatography/electron capture detection quantification. J Chromatogr A 2021; 1645:462099. [PMID: 33848658 DOI: 10.1016/j.chroma.2021.462099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022]
Abstract
In this study, a biosorbent material with characteristics for the adsorption of organic compounds was used for a cork pellet-based bar adsorptive microextraction technique, as a new greener alternative for the determination of organochlorine compounds. Aldrin, chlordane, dieldrin, endrin, lindane, 4,4-DDD, 4,4-DDE, 4,4-DDT, α-endosulfan and β-endosulfan were analyzed in water samples (drinking water, stream water and river water) with separation/detection by gas chromatography and electron capture detection (GC/ECD). The parameters that can affect the sample preparation efficiency such as desorption solvent and time as well as extraction time and ionic strength were evaluated by multivariate and univariate designs. Cork pellets (10 × Ø 3 mm) were used for the extraction of 15 mL of sample in the optimal conditions: 60 min of agitation with no salt added to the sample, followed by desorption of the cork pellet with 120 µL of ethyl acetate for 30 min. The bar-to-bar RSD out with five different bars showed good results with RSD ≤ 15.6%, allowing the use of simultaneous extractions. LOD and LOQ values ranged from 3 to 15 ng L-1 and 10 to 50 ng L-1 respectively, and the determination coefficients were greater than 0.9869. The target analytes were not detected in the three analyzed samples. Therefore, the recovery study was performed fortifying the water samples. Analyte recovery ranged from 48.7 - 138.2% for drinking water, 40.2 - 128.2% for stream water and 67.5 - 128.7% for river water.
Collapse
|
13
|
Investigating the Utility of Fabric Phase Sorptive Extraction and HPLC-UV-Vis/DAD to Determine Antidepressant Drugs in Environmental Aqueous Samples. SEPARATIONS 2020. [DOI: 10.3390/separations7030039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Depression is considered to be one of the most prevalent mental disorders in humans. Antidepressant drugs are released in large concentrations and cause adverse effects on the environment and/or human health. Fabric Phase Sorptive Extraction (FPSE), a contemporary solid sorbent-handling technique, is a quick, sensitive, and simple analytical process. This paper describes a micro-extraction FPSE procedure coupled with High-Performance Liquid-Chromatography–Photodiode Array Detection (FPSE-HPLC–DAD) for the simultaneous extraction and analysis of five antidepressants, namely citalopram, clozapine, mirtazapine, bupropion and sertraline. Three fabric media (Whatman Cellulose filter, Whatman Microfiber Glass filter and Polylactic acid disks) and two different sol–gel sorbents (polyethylene glycol (PEG 300), alongside poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG 5.800)) were tested. The best FPSE device was observed to be the microfiber glass filter coated with PEG 300 sol–gel sorbent. In addition, the parameters that affect the efficiency of the process (FPSE media and sorbents, sample pH, extraction time, elution time, etc.) were optimized. The proposed methodology displays a linear range with absolute recovery values higher than 60%, RSD% of less than 13% and LOQs in the range between 1.9–10.7 μg·L−1. Finally, the method was applied in hospital and urban effluents and lake water samples, but none of the analytes were detected.
Collapse
|
14
|
Ahmad SM, Oliveira MN, Neng NR, Nogueira J. A Fast and Validated High Throughput Bar Adsorptive Microextraction (HT-BAµE) Method for the Determination of Ketamine and Norketamine in Urine Samples. Molecules 2020; 25:molecules25061438. [PMID: 32235801 PMCID: PMC7145298 DOI: 10.3390/molecules25061438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 11/16/2022] Open
Abstract
We developed, optimized and validated a fast analytical cycle using high throughput bar adsorptive microextraction and microliquid desorption (HT-BAμE-μLD) for the extraction and desorption of ketamine and norketamine in up to 100 urine samples simultaneously, resulting in an assay time of only 0.45 min/sample. The identification and quantification were carried out using large volume injection-gas chromatography-mass spectrometry operating in the selected ion monitoring mode (LVI-GC-MS(SIM)). Several parameters that could influencing HT-BAµE were assayed and optimized in order to maximize the recovery yields of ketamine and norketamine from aqueous media. These included sorbent selectivity, desorption solvent and time, as well as shaking rate, microextraction time, matrix pH, ionic strength and polarity. Under optimized experimental conditions, suitable sensitivity (1.0 μg L−1), accuracy (85.5–112.1%), precision (≤15%) and recovery yields (84.9–105.0%) were achieved. Compared to existing methods, the herein described analytical cycle is much faster, environmentally friendly and cost-effective for the quantification of ketamine and norketamine in urine samples. To our knowledge, this is the first work that employs a high throughput based microextraction approach for the simultaneous extraction and subsequent desorption of ketamine and norketamine in up to 100 urine samples simultaneously.
Collapse
Affiliation(s)
- Samir M. Ahmad
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (S.M.A.); (M.N.O.)
| | - Mariana N. Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (S.M.A.); (M.N.O.)
| | - Nuno R. Neng
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (S.M.A.); (M.N.O.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: (N.R.N.); (J.M.F.N.)
| | - J.M.F. Nogueira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (S.M.A.); (M.N.O.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: (N.R.N.); (J.M.F.N.)
| |
Collapse
|
15
|
Ahmad SM, Nogueira JMF. High throughput bar adsorptive microextraction: A simple and effective analytical approach for the determination of nicotine and cotinine in urine samples. J Chromatogr A 2019; 1615:460750. [PMID: 31866132 DOI: 10.1016/j.chroma.2019.460750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023]
Abstract
A simple, effective, convenient and environmentally friendly methodology using high throughput bar adsorptive microextraction (HT-BAμE) with microliquid desorption in combination with large volume injection-gas chromatography-mass spectrometry operating in the selected-ion monitoring acquisition mode (LVI-GC-MS(SIM)) was applied for the determination of nicotine and cotinine in urine samples. Under optimized experimental conditions, the developed methodology allowed for linear dynamic ranges between 20.0 and 2000.0 μg L-1 with determination coefficients of 0.9991 and 0.9992, as well as average recovery yields of 61.7-67.5% and 53.9-57.8% for nicotine and cotine, respectively. The developed methodology was applied to monitor urine samples from 86 volunteers having different smoking habits, where nicotine and cotinine were quantified in the range from 23.6 to 2612.6 μg L-1. The target compounds were extracted in a HT-BAμE apparatus, which allows for simultaneous microextraction and subsequent back-extraction of up to 100 samples. This is a major improvement over other microextraction techniques. The data from the proposed methodology were satisfactory and in line with current green analytical chemistry guidelines, and proved to be an effective sample preparation alternative with substantial potential for high throughput bioanalysis.
Collapse
Affiliation(s)
- S M Ahmad
- Centro de Química e Bioquímica e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - J M F Nogueira
- Centro de Química e Bioquímica e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
16
|
Determination of Hydrophilic UV Filters in Real Matrices Using New-Generation Bar Adsorptive Microextraction Devices. SEPARATIONS 2019. [DOI: 10.3390/separations6040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present contribution, new-generation bar adsorptive microextraction devices combined with microliquid desorption, followed by high-performance liquid chromatography–diode array detection (BAµE-µLD/HPLC–DAD) are proposed for the determination of two very polar ultraviolet (UV) filters (2-phenylbenzimidazole-5-sulfonic acid (PBS) and 5-benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BZ4)) in aqueous media. Different sorbents were evaluated as BAµE coating phases, in which polystyrene–divinylbenzene polymer showed the best selectivity for the analysis of both UV filters, with average extraction efficiency of 61.8 ± 9.1% for PBS and 69.5 ± 4.8% for BZ4. The validated method showed great reproducibility for the analysis of PBS and BZ4 UV filters, providing suitable limits of detection (0.04 µg L−1 and 0.20 µg L−1), as well as good linear dynamic ranges (0.16–16.0 and 0.8–80.0 µg L−1), respectively. The proposed methodology was applied for monitoring the target analytes in several real matrices, including tap, sea, and estuarine waters, as well as wastewater samples. Despite some matrix effects being observed for some real samples, good selectivity and linearity were obtained. The present contribution showed an innovative analytical cycle that includes the use of disposable devices, which make BAµE much more user-friendly and suitable for the routine work, being a remarkable analytical alternative for trace analysis of priority compounds in real matrices.
Collapse
|
17
|
Yan X, Zhong D, Zhan Y, Li Y, Wu D. Porous polyimide particle-coated adsorptive microextraction bar combined with thermal desorption-gas chromatography for rapid determination of parabens in condiments. J Chromatogr A 2019; 1601:71-78. [DOI: 10.1016/j.chroma.2019.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023]
|
18
|
Zilfidou E, Kabir A, Furton KG, Samanidou V. An improved fabric phase sorptive extraction method for the determination of five selected antidepressant drug residues in human blood serum prior to high performance liquid chromatography with diode array detection. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121720. [DOI: 10.1016/j.jchromb.2019.121720] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/12/2019] [Accepted: 07/13/2019] [Indexed: 11/25/2022]
|
19
|
Ahmad SM, Nogueira JMF. High throughput bar adsorptive microextraction: A novel cost-effective tool for monitoring benzodiazepines in large number of biological samples. Talanta 2019; 199:195-202. [PMID: 30952246 DOI: 10.1016/j.talanta.2019.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/19/2023]
Abstract
In this work, we propose an innovative high throughput (HT) apparatus using the bar adsorptive microextraction (BAμE) technique, which enables the simultaneous enrichment of up to 100 samples. This novel configuration was combined with microliquid desorption and high-performance liquid chromatography-diode array detection to monitor trace levels of eight benzodiazepines (diazepam, prazepam, bromazepam, oxazepam, lorazepam, alprazolam, temazepam and loflazepate) in biological samples. The proposed methodology was fully developed, optimized and validated, resulting in suitable intraday and interday precision (RSD ≤ 15%), with recovery yields ranging from 33.0% to 104.5%. The lower limits of quantification were between 20.0 and 100.0 µg L-1, using 1.0 mL of urine and 0.5 mL of plasma or serum samples. The application of the proposed methodology to real matrices resulted in average sample preparation time of around 2 min per sample, demonstrating that it is user-friendly, cost-effective and a rapid decision-making tool, whenever large number of samples are involved.
Collapse
Affiliation(s)
- S M Ahmad
- Centro de Química e Bioquímica e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - J M F Nogueira
- Centro de Química e Bioquímica e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
20
|
Mafra G, Spudeit D, Brognoli R, Merib J, Carasek E. Expanding the applicability of cork as extraction phase for disposable pipette extraction in multiresidue analysis of pharmaceuticals in urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:159-166. [DOI: 10.1016/j.jchromb.2018.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/04/2018] [Accepted: 10/21/2018] [Indexed: 01/29/2023]
|