1
|
Liu Y, Bei K, Zheng W, Yu G, Sun C. Multiple pesticide residues and risk assessment of Dendrobium officinale Kimura et Migo: a three-year investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107827-107840. [PMID: 37740810 DOI: 10.1007/s11356-023-29892-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) is a traditional Chinese medicine homologous to food, and its safety has attracted considerable attention. Pesticide residues are critical indicators for evaluating the safety of D. officinale. This study investigated the levels of 130 pesticides in 137 stem samples and 82 leaf samples from five main production areas of D. officinale in Zhejiang Province, along with the associated risk of dietary exposure for the population between 2019 and 2021. Forty-five pesticides were detected in 171 samples, of which pyraclostrobin had the highest detection frequency. Multiple residues were detected in 52.56% of the stem samples and 54.88% of the leaf samples, and one stem sample contained up to 18 pesticides. Here, the level of difenoconazole in three samples (two stem samples and one leaf sample) was higher than the maximum residue limit (MRL) in China. Considering the possible health risks related to pesticide residues, a risk assessment of human exposure to pesticides via the intake of D. officinale stems and leaves was evaluated, indicating negligible short-term, long-term, and cumulative risks to human health. However, considering the high detection rate of unregistered pesticides, the supplementation of pesticide registration information on D. officinale should be expedited, and MRLs should be established to ensure food and drug safety.
Collapse
Affiliation(s)
- Yuhong Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Weiran Zheng
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Guoguang Yu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Caixia Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Zheng Z, Liu H, Hou D, Li H, Li Y, Jing W, Jin H, Wang Y, Ma S. Residual Change of Four Pesticides in the Processing of Pogostemon cablin and Associated Factors. Molecules 2023; 28:6675. [PMID: 37764451 PMCID: PMC10535192 DOI: 10.3390/molecules28186675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Before use as medicines, most traditional Chinese medicine (TCM) plants are processed and decocted. During processing, there may be some changes in pesticide residues in TCM. In recent years, reports have studied the changes of pesticides during the processes of boiling, drying and peeling of TCM materials but have rarely involved special processing methods for TCM, such as ethanol extraction and volatile oil extraction. The changes of carbendazim, carbofuran, pyridaben and tebuconazole residues in common processing methods for P. cablin products were systemically assessed in this study. After each processing step, the pesticides were quantitated by UPLC-MS/MS. The results showed amount decreases in various pesticides to different extents after each processing procedure. Processing factor (PF) values for the four pesticides after decoction, 75% ethanol extraction and volatile oil extraction were 0.02~0.75, 0.40~0.98 and 0~0.02, respectively, which indicated that residual pesticide concentrations may depend on the processing technique. A risk assessment according to the hazard quotient with PF values showed that residual pesticide amounts in P. cablin were substantially lower than levels potentially posing a health risk. Overall, these findings provide insights into the safety assessment of P. cablin.
Collapse
Affiliation(s)
- Yuanxi Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Zuntao Zheng
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Hongbin Liu
- China Animal Disease Control Center, Ministry of Agriculture and Rural Affairs, Beijing 102629, China
| | - Dongjun Hou
- China Animal Disease Control Center, Ministry of Agriculture and Rural Affairs, Beijing 102629, China
| | - Hailiang Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Yaolei Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Wenguang Jing
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing 100050, China; (Y.L.)
| |
Collapse
|
3
|
Hu Z, Wu L, Gan H, Lan H, Zhu B, Ye X. Toxicological effects, residue levels and risks of endocrine-disrupting chemicals in Chinese medicine: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79724-79743. [PMID: 37332031 DOI: 10.1007/s11356-023-28138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Traditional Chinese medicine (TCM) that is used worldwide possesses the satisfactory function of disease prevention, treatment and health care, and this natural medicine seems to be favored due to its low side effects. Endocrine disrupting chemicals (EDCs), which exist in all aspects of our lives, may interfere with the synthesis, action and metabolism of human sex steroid hormones, resulting in the development and fertility problems as well as obesity and the disturbance of energy homeostasis. From planting to processing, TCM may be polluted by various EDCs. Many studies pay attention to this problem, but there are still few reviews on the residues and toxicity risks of EDCs in TCM. In this paper, researches related to EDCs in TCM were screened. The possible contamination sources of TCM from planting to processing and its toxic effects were introduced. Moreover, the residues of metals, pesticides and other EDCs in TCM as well as the health risks of human exposure to EDCs through ingestion of TCM materials were reviewed.
Collapse
Affiliation(s)
- Zhiqin Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huili Lan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
Liu Y, Li H, Chen L, Zhao H, Liu J, Gong S, Ma D, Chen C, Zeng S, Long H, Ren W. Mechanism and Pharmacodynamic Substance Basis of Raw and Wine-Processed Evodia rutaecarpa on Smooth Muscle Cells of Dysmenorrhea Mice. Pain Res Manag 2023; 2023:7711988. [PMID: 37305097 PMCID: PMC10250099 DOI: 10.1155/2023/7711988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Objectives Evodia rutaecarpa (ER) is a well-known herbal Chinese medicine traditionally used for analgesia in dysmenorrhea, headaches, abdominal pain, etc. Notably, the analgesic effect of wine-processed Evodia rutaecarpa (PER) was more potent than that of raw ER. This research aimed to investigate the mechanism and pharmacodynamic substance basis of raw ER and PER on smooth muscle cells of dysmenorrhea mice. Methods Metabolomics methods based on UPLC-Q-TOF-MS were utilized to analyse the differential components of ER before and after wine processing. Afterwards, the uterine smooth muscle cells were isolated from the uterine tissue of dysmenorrhea and normal mice. The isolated dysmenorrhea uterine smooth muscle cells were randomly divided into four groups: model group, 7-hydroxycoumarin group (1 mmol/L), chlorogenic acid (1 mmol/L), and limonin (50 μmol/L). The normal group consisted of the isolated normal mouse uterine smooth muscle cells, which were repeated 3 times in each group. The cell contraction and the expression of P2X3 and Ca2+ in vitro were determined using immunofluorescence staining and laser confocal; ELISA was used for detection of PGE2, ET-1, and NO content after 7-hydroxycoumarin, chlorogenic acid, and limonin administered for 24 h. Results The metabolomics results suggested that seven differential compounds were identified in the extracts of raw ER and PER, including chlorogenic acid, 7-hydroxycoumarin, hydroxy evodiamine, laudanosine, evollionines A, limonin, and 1-methyl-2-[(z)-4-nonenyl]-4 (1H)-quinolone. The in vitro results showed that 7-hydroxycoumarin, chlorogenic acid, and limonin were able to inhibit cell contraction and PGE2, ET-1, P2X3, and Ca2+ in dysmenorrhea mouse uterine smooth muscle cells and increase the content of NO. Conclusion Our finding suggested that the compounds of the PER were different from those of the raw ER, and 7-hydroxycoumarin, chlorogenic acid, and limonin could improve dysmenorrhea in mice whose uterine smooth muscle cell contraction was closed with endocrine factors and P2X3-Ca2+ pathway.
Collapse
Affiliation(s)
- Yeqian Liu
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hong Li
- Department of Pharmacy, The Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, Hefei, Anhui Province, China
| | - Lei Chen
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hongxia Zhao
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Shan Gong
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Danfeng Ma
- Department of Pharmacy, The Children's Hospital of Hunan Province, No. 86 Ziyuan Road, Changsha, Hunan Province, China
| | - Chunming Chen
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Shuiqing Zeng
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hongping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Weiqiong Ren
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| |
Collapse
|
5
|
Zhang H, Chang Q, Li J, Qiu G, Wu F, Zhu R, Wang X, Su M. A liquid chromatography-time-of-flight/mass spectrometry method for analysis of pesticides and transfer behavior in Radix Codonopsis and Angelica sinensis decoctions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2121-2131. [PMID: 37144343 DOI: 10.1039/d3ay00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The safety of traditional Chinese medicine (TCM) has garnered considerable interest worldwide. In this study, a high-throughput method for the determination of 255 pesticide residues in decoctions of Radix Codonopsis and Angelica sinensis was developed using liquid chromatography-time-of-flight/mass spectrometry. The methodological verification demonstrated the accuracy and reliability of this method. The frequently detected pesticides in Radix Codonopsis and Angelica sinensis were determined to build a correlation between pesticide properties and the transfer rate of pesticide residues in their decoctions. Water solubility (WS) with a higher correlation coefficient (R) made a significant contribution to the accuracy of the transfer rate prediction model. The regression equations for Radix Codonopsis and Angelica sinensis were T = 13.64 log WS + 10.56 with a correlation coefficient (R) of 0.8617 and T = 10.66 log WS + 25.48 with a correlation coefficient (R) of 0.8072, respectively. This study provides preliminary data on the potential risk of exposure to pesticide residues in Radix Codonopsis and Angelica sinensis decoctions. Furthermore, as a case study on root TCM, this approach may serve as a model for other TCMs.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Chemistry and Environmental Science, Hebei University, Hebei, P. R. China
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug Control, Gansu, P. R. China
| | - Qiaoying Chang
- Chinese Academy of Inspection and Quarantine, Beijing, P. R. China.
| | - Jian Li
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug Control, Gansu, P. R. China
| | - Guoyu Qiu
- Gansu Pharmaceutical Group Science and Technology Research Institute Co. Ltd, Gansu, P. R. China
| | - Fuxiang Wu
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug Control, Gansu, P. R. China
| | - Renyuan Zhu
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug Control, Gansu, P. R. China
| | - Xingzhi Wang
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug Control, Gansu, P. R. China
| | - Ming Su
- College of Chemistry and Environmental Science, Hebei University, Hebei, P. R. China
| |
Collapse
|
6
|
Liu Y, Bei K, Zheng W, Yu G, Sun C. Assessment of health risks associated with pesticide and heavy metal contents in Fritillaria thunbergii Miq. (Zhe Beimu). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26807-26818. [PMID: 36369441 DOI: 10.1007/s11356-022-23995-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Fritillaria thunbergii Miq. (Zhe Beimu, F. thunbergii) is widely cultivated in China's Zhejiang province, and pesticides and heavy metals are two major factors affecting its quality and safety. A total of 106 F. thunbergii samples from six main production areas were analyzed for 76 pesticides and four heavy metal content (As, Cd, Hg, and Pb). The pesticide detection rate of the samples was 66.98%; overall, the pesticide residues were very low, and residue levels ranged from 0.010 to 0.231 mg kg-1. The detection rates of As, Cd, Hg, and Pb were 95.3%, 100%, 76.4%, and 100%, respectively. A risk assessment of human exposure to pesticides and heavy metals via intake of F. thunbergii was performed, and the results revealed that the pesticide residues and heavy metal content detected in F. thunbergii does not pose a potential risk to human health, either in the long or short term. The exposure assessment showed that the levels of pesticides and heavy metals in F. thunbergii were safe for human consumption. These results provide useful information on F. thunbergii consumption.
Collapse
Affiliation(s)
- Yuhong Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
- State Key Laboratory for Quality and Safety of Agro-Products, Key Lab for Pesticide Residue Detection, Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Weiran Zheng
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
- State Key Laboratory for Quality and Safety of Agro-Products, Key Lab for Pesticide Residue Detection, Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China
| | - Guoguang Yu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
- State Key Laboratory for Quality and Safety of Agro-Products, Key Lab for Pesticide Residue Detection, Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China
| | - Caixia Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China.
- State Key Laboratory for Quality and Safety of Agro-Products, Key Lab for Pesticide Residue Detection, Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China.
| |
Collapse
|
7
|
Zhang H, Chang Q, Wang X, Li J, Qiu G, Wu F, Zhu R, Su M. Rapid screening of 15 highly toxic pesticide residues in Angelica sinensis decoctions by thermal desorption electrospray ionization mass spectrometry. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2119942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hongyan Zhang
- College of Chemistry and Environmental Science, Hebei University, Hebei, P.R. People’s Republic of China
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug control, Gansu, P.R. People’s Republic of China
| | - Qiaoying Chang
- Chinese Academy of Inspection and Quarantine, Beijing, P.R. People’s Republic of China
| | - Xingzhi Wang
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug control, Gansu, P.R. People’s Republic of China
| | - Jian Li
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug control, Gansu, P.R. People’s Republic of China
| | - Guoyu Qiu
- Gansu Pharmaceutical Group Science and Technology Research Institute Co. Ltd, Gansu, P.R. People’s Republic of China
| | - Fuxiang Wu
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug control, Gansu, P.R. People’s Republic of China
| | - Renyuan Zhu
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation/Lanzhou Institute for Food and Drug control, Gansu, P.R. People’s Republic of China
| | - Ming Su
- College of Chemistry and Environmental Science, Hebei University, Hebei, P.R. People’s Republic of China
| |
Collapse
|
8
|
Li C, Wang Y. Non-Targeted Analytical Technology in Herbal Medicines: Applications, Challenges, and Perspectives. Crit Rev Anal Chem 2022; 54:1951-1970. [PMID: 36409298 DOI: 10.1080/10408347.2022.2148204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herbal medicines (HMs) have been utilized to prevent and treat human ailments for thousands of years. Especially, HMs have recently played a crucial role in the treatment of COVID-19 in China. However, HMs are susceptible to various factors during harvesting, processing, and marketing, affecting their clinical efficacy. Therefore, it is necessary to conclude a rapid and effective method to study HMs so that they can be used in the clinical setting with maximum medicinal value. Non-targeted analytical technology is a reliable analytical method for studying HMs because of its unique advantages in analyzing unknown components. Based on the extensive literature, the paper summarizes the benefits, limitations, and applicability of non-targeted analytical technology. Moreover, the article describes the application of non-targeted analytical technology in HMs from four aspects: structure analysis, authentication, real-time monitoring, and quality assessment. Finally, the review has prospected the development trend and challenges of non-targeted analytical technology. It can assist HMs industry researchers and engineers select non-targeted analytical technology to analyze HMs' quality and authenticity.
Collapse
Affiliation(s)
- Chaoping Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
9
|
Shen P, Jia Y, Shi S, Sun J, Han X. Analytical and biomedical applications of microfluidics in traditional Chinese medicine research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Xiao O, Li M, Chen D, Chen J, Simal-Gandara J, Dai X, Kong Z. The dissipation, processing factors, metabolites, and risk assessment of pesticides in honeysuckle from field to table. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128519. [PMID: 35231811 DOI: 10.1016/j.jhazmat.2022.128519] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Globally, honeysuckle is consumed as a food and administered as a medicinal agent. However, pesticide residues in honeysuckle limit its application and development of the honeysuckle industry, affecting food safety and endangering human health. Here, the degradation kinetics of 11 typical pesticides, including insecticides, fungicides, and an acaricide, in honeysuckle were investigated. The half-lives of pesticides in Henan and Liaoning fields were 1.90-4.33 and 2.05-4.62 d, respectively. The processing factors (PFs) of these pesticides after oven, sun, and shade drying ranged from 3.52 to 11.2. After decocting, the PFs of the pesticides were <1. Twenty degradation products were identified using ultra high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and pathways were proposed based on drying and decoction. The ecotoxicities of the degradation products were evaluated using the Toxicity Estimation Software Tool. Finally, the acute hazard indices of these pesticides, as determined via dietary exposure assessment combined with the PFs, were 0.227 and 0.911 for adults and children, respectively. Thus, special populations, such as children, require particularly careful risk control in terms of dietary exposure.
Collapse
Affiliation(s)
- Ouli Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Deyong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Life Sciences, Tarim University, Alar 843300, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Wang Y, Gou Y, Zhang L, Li C, Wang Z, Liu Y, Geng Z, Shen M, Sun L, Wei F, Zhou J, Gu L, Jin H, Ma S. Levels and Health Risk of Pesticide Residues in Chinese Herbal Medicines. Front Pharmacol 2022; 12:818268. [PMID: 35177984 PMCID: PMC8844025 DOI: 10.3389/fphar.2021.818268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
In the present study, 168 pesticides in 1,017 samples of 10 Chinese herbal medicines (CHMs) were simultaneously determined by high-performance liquid (HPLC-MS/MS) and gas (GC-MS/MS) chromatography–tandem mass spectrometry. A total of 89.2% of the samples encompassed one or multiple pesticide residues, and the residue concentrations in 60.5% of samples were less than 0.02 mg kg−1, revealing the relatively low residue levels. The hazard quotient and hazard index methods were used to estimate the health risk for consumers. For a more accurate risk assessment, the exposure frequency and exposure duration of CHMs were involved into the exposure assessment, which was obtained from a questionnaire data of 20,917 volunteers. The results of chronic, acute, and cumulative risk assessment indicated that consumption of CHMs is unlikely to pose a health risk to consumers. Ranking the risk of detected pesticides revealed that phorate, BHC, triazophos, methidathion, terbufos, and omethoate posed the highest risk. Our results also showed that pollution of the aboveground medicinal part was more serious. Although exposure to pesticides in tested CHMs was below dangerous levels, more strict controlled management should be carried out for banned pesticides due to the high detection rate and illegal use in the actual planting practice.
Collapse
Affiliation(s)
- Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yan Gou
- Sichuan Institute for Drug Control, Sichuan Testing Center of Medical Devices/NMPA Key Laboratory of Quality Evaluation of Chinese Patent Medicines, Chengdu, China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Chun Li
- Guangzhou Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Medicine, Guangzhou, China
| | - Zhao Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yuanxi Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhao Geng
- Sichuan Institute for Drug Control, Sichuan Testing Center of Medical Devices/NMPA Key Laboratory of Quality Evaluation of Chinese Patent Medicines, Chengdu, China
| | - Mingrui Shen
- Chinese Pharmacopoeia Commission, Beijing, China
| | - Lei Sun
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Juan Zhou
- Sichuan Institute for Drug Control, Sichuan Testing Center of Medical Devices/NMPA Key Laboratory of Quality Evaluation of Chinese Patent Medicines, Chengdu, China
| | - Lihong Gu
- Guangzhou Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Medicine, Guangzhou, China
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
12
|
Detection and Risk Assessments of Multi-Pesticides in Traditional Chinese Medicine Chuanxiong Rhizoma by LC/MS-MS and GC/MS-MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030622. [PMID: 35163887 PMCID: PMC8840347 DOI: 10.3390/molecules27030622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/18/2022]
Abstract
With the internationalization of traditional Chinese medicines (TCMs) and the increasing use of herbal medicines around the world, there are concerns over their safety. In recent years, there have been some sporadic reports of pesticide residues in Chuanxiong Rhizoma (CX), although the lack of systematic and comprehensive analyses of pesticide residues and evaluations of toxicological risks in human health has increased the uncertainty of the potential effects of pesticides exposure in humans. This study aimed to clarify the status of pesticide residues and to determine the health risks of pesticide residues in CX. The findings of this study revealed that 99 batches of CX samples contained pesticide residues ranging from 0.05 to 3013.17 μg/kg. Here, 6–22 kinds of pesticides were detected in each sample. Prometryn, carbendazim, dimethomorph, chlorpyrifos, chlorantraniliprole, pyraclostrobin, and paclobutrazol were the most frequently detected pesticides, with detection rates of 68.69–100%. Insecticides and fungicides accounted for 43.23% and 37.84% of the total pesticides detected, respectively. Here, 86.87% of the pesticide content levels were lower than 50 μg/kg, and a small number of samples contained carbofuran, dimethoate, and isofenphos-methyl exceeding the maximum residue levels (MRLs). A risk assessment based on the hazard quotient/hazard index (HQ/HI) approach revealed that the short-term, long-term, and cumulative risks of pesticide residues in CX are well below the levels that may pose a health risk. Worryingly, six banned pesticides (carbofuran, phorate sulfone, phorate-sulfoxide, isofenphos-methyl, terbufos-sulfone, and terbufoxon sulfoxide) were detected. This study has improved our understanding of the potential exposure risk of pesticide multi-residues in CX. The results of the study will have a positive impact on improving the quality and safety of CX and the development of MRLs for pesticide residues.
Collapse
|
13
|
Xie H, Li H, Zhao Y, Liu L, Chen X. Analysis of dietary exposure and risk assessment of pesticide residues in roots and rhizomes of Chinese herbs. J Food Sci 2021; 87:124-140. [PMID: 34939193 DOI: 10.1111/1750-3841.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
Medicine food homologous (MFH) plants provide therapeutic and health care effects through diet. Thus, a risk assessment system for hazardous ingredient residues is urgently required to ensure their safe use. In this study, the pesticide contamination of six root and rhizome Chinese herbs, Ginseng Radix et Rhizoma, Panacis Quinquefolii Radix, Pseudostellariae Radix, Salviae Miltiorrhizae Radix et Rhizoma, Codonopsis Radix, and Glehniae Radix, and the risks associated with their intake were investigated. A total of 420 MFH plant samples collected from 22 provinces in China were tested, and 61 pesticides were detected in 413 samples. Multiple pesticide residues were detected in each MFH sample, with contents ranging from 0.0002 to 3.010 mg/kg dry weight. Carbendazim (≥47.14%) and propham (≥40%) were the most frequently detected pesticides. Risk assessment determined by hazard quotients indicated that the risks were acceptable, with no short- or long-term adverse health effects. However, considering the high incidence of residues and the detection of unregistered or even prohibited pesticides, strict supervision of soil quality and pesticide application (particularly cadusafos) in MFH plant cultivation are recommended to aid in monitoring MFH plant quality and ensuring diet and drug safety. PRACTICAL APPLICATION: Ensure the diet and drug safety of Chinese herbs.
Collapse
Affiliation(s)
- Hanyi Xie
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huijuan Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanfang Zhao
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lanqi Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
14
|
Abstract
The presence of pesticide residues in Dendrobium officinale (D. officinale), a commonly used herbal medicine, has attracted much attention in recent years. Therefore, this study presents the levels of 141 pesticide residues in forty D. officinale samples, which were measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). And we used a deterministic estimate model to assess chronic and acute dietary exposure risk, as well as the cumulative risks for adults, children, and specific groups of consumers. Furthermore, the residual risk of individual pesticides was sorted by adapting the matrix-ranking scheme. In 92.5% of the samples, 43 pesticides were detected, of which difenoconazole had the highest detection frequency. Multiple residues were detected in 85.0% of the samples, and one sample contained even up to 17 pesticides. The chronic hazard quotient (HQc) and the acute hazard quotient (HQa) were far below 100%, and both cumulative chronic and acute hazard indices (HI) did not exceed 100%. The risk scoring scheme showed that four pesticides were considered to pose a comparatively potential high risk, including difenoconazole, carbofuran, fipronil, and emamectin benzoate. The results indicated that the occurrence of pesticide residues in D. officinale could not pose a serious health problem to the public.
Collapse
|
15
|
Xiao J, Ma J, Wang F, Xu X, Liao M, Shi Y, Cao H. Effect of decocting on the pesticide residues in Paeoniae radix lactiflora and corresponding exposure risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16655-16662. [PMID: 33389468 DOI: 10.1007/s11356-020-11945-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Numerous natural preparations in traditional Chinese medicine are prepared as decoctions. Processing factors (PFs) comparing the levels of pesticide residues in decoctions to those in the corresponding unprocessed products should be considered in exposure assessments. Thus, this study determined the residue levels of six pesticides (chlorpyrifos, phoxim, imidacloprid, thiamethoxam, fenpropathrin, and emamectin benzoate), as well as 3,5,6-trichloropyridinol, the primary metabolite of chlorpyrifos, and clothianidin, the main metabolite of thiamethoxam in Baishao, Paeoniae radix lactiflora (Fam. Ranunculaceae). The results showed that significant time-response effects were present for the release of pesticides from P. radix. The PFs calculated were < 1, indicating a significant reduction in pesticide residues after TCM processing. The water solubility and partition coefficient values of the pesticides may have played a basic role in the dissipation of the residues during the TCM decocting process. A risk assessment based on the hazard quotient with PFs revealed that exposure to pesticide residues in P. radix was far below the levels that might pose a health risk. In conclusion, the results presented here are of theoretical and practical value for the safety evaluation of TCMs.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, 130 Changjiangxilu, Hefei, Anhui Province, 230036, People's Republic of China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Jinjuan Ma
- School of Plant Protection, Anhui Agricultural University, 130 Changjiangxilu, Hefei, Anhui Province, 230036, People's Republic of China
| | - Fan Wang
- School of Plant Protection, Anhui Agricultural University, 130 Changjiangxilu, Hefei, Anhui Province, 230036, People's Republic of China
| | - Xing Xu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, 130 Changjiangxilu, Hefei, Anhui Province, 230036, People's Republic of China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Yanhong Shi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, 130 Changjiangxilu, Hefei, Anhui Province, 230036, People's Republic of China.
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China.
| |
Collapse
|
16
|
Zhang X, Du J, Wu D, Long X, Wang D, Xiong J, Xiong W, Liao X. Anchoring Metallic MoS 2 Quantum Dots over MWCNTs for Highly Sensitive Detection of Postharvest Fungicide in Traditional Chinese Medicines. ACS OMEGA 2021; 6:1488-1496. [PMID: 33490808 PMCID: PMC7818587 DOI: 10.1021/acsomega.0c05253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/25/2020] [Indexed: 06/01/2023]
Abstract
Carbendazim, a very common contamination to the traditional Chinese medicines (TCMs), has posed serious threat to the environment and human health. However, sensitive and selective detection of carbendazim (MBC) in the TCMs is a big challenge for their complex chemical constituents. In this work, a 0D/1D nanohybrid was developed by anchoring 1T-phased MoS2 quantum dots (QDs) over multiwall carbon nanotubes (MWCNTs) via a facile assembly method. High-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis (TGA) together with EIS reveal that the 1T-phased QDs can anchor over MWCNTs via van der Waals forces, and the anchoring improves the nanohybrid surface area and conductivity. Therefore, the electrochemical sensor fabricated based on the MoS2 QDs@MWCNT nanohybrid shows excellent catalytic activity to MBC oxidation. Under optimized conditions, the sensor presents a linear voltammetry response to MBC concentration from 0.04 to 1.00 μmol·L-1, a low detection limit of 2.6 × 10-8 mol·L-1, as well as high selectivity, good reproducibility, and long-term stability. Moreover, the sensor has been successfully employed to determine MBC in two typical TCMs and the obtained recoveries are in good accordance with the results achieved by HPLC, showing that the constructed sensor plate holds great practical application in MBC analysis with complex matrix.
Collapse
Affiliation(s)
- Xue Zhang
- Collaborative
Innovation Center of Postharvest Key Technology and Quality Safety
of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, P. R. China
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Juan Du
- College
of Food Science and Engineering, Jiangxi
Agricultural University, Nanchang 330045, P. R. China
| | - Dongping Wu
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Xiaoyi Long
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Dan Wang
- College
of Food Science and Engineering, Jiangxi
Agricultural University, Nanchang 330045, P. R. China
| | - Jianhua Xiong
- College
of Food Science and Engineering, Jiangxi
Agricultural University, Nanchang 330045, P. R. China
| | - Wanming Xiong
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Xiaoning Liao
- Collaborative
Innovation Center of Postharvest Key Technology and Quality Safety
of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, P. R. China
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
- Key
Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry
of Education, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| |
Collapse
|
17
|
Tan P, Xu L, Wei XC, Huang HZ, Zhang DK, Zeng CJ, Geng FN, Bao XM, Hua H, Zhao JN. Rapid Screening and Quantitative Analysis of 74 Pesticide Residues in Herb by Retention Index Combined with GC-QQQ-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:8816854. [PMID: 33510929 PMCID: PMC7826212 DOI: 10.1155/2021/8816854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
In this research, a very practical QuEChERS-GC-MS/MS analytical approach for 74 pesticide residues in herb based on retention index was established. This novel analytical approach has two important technical advantages. One advantage is to quickly screen pesticide compounds in herbs without having to use a large number of pesticide standard substances at the beginning of the experiment. The other advantage is to assist in identifying the target pesticide compound accurately. A total of 74 kinds of pesticides were quickly prescreened in all chuanxiong rhizoma samples. The results showed that three kinds of pesticides were screened out in all the samples, including chlorpyrifos, fipronil, and procymidone, and the three pesticides were qualitatively and quantitatively determined. The RSD values for interday and intraday variation were acquired to evaluate the precision of the analytical approach, and the overall interday and intraday variations are not more than 1.97% and 3.82%, respectively. The variations of concentrations of the analyzed three pesticide compounds in sample CX16 are 0.74%-4.15%, indicating that the three pesticides in the sample solutions were stable in 48 h. The spiked recoveries of the three pesticides are 95.22%, 93.03%, and 94.31%, and the RSDs are less than ± 6.0%. The methodological verification results indicated the good reliability and accuracy of the new analytical method. This research work is a new application of retention index, and it will be a valuable tool to assist quickly and accurately in the qualitative and quantitative analysis of multipesticide residues in herbs.
Collapse
Affiliation(s)
- Peng Tan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu 610041, China
| | - Li Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xi-Chuan Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao-Zhou Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ding-Kun Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen-Juan Zeng
- Sichuan Key Laboratory for Medicinal American Cockroach, Sichuan Good Doctor Panxi Pharmaceutical Co.,Ltd., Chengdu 610000, China
| | - Fu-Neng Geng
- Sichuan Key Laboratory for Medicinal American Cockroach, Sichuan Good Doctor Panxi Pharmaceutical Co.,Ltd., Chengdu 610000, China
| | - Xiao-Ming Bao
- Shimadzu Enterprise Management (China) Co.,Ltd., Chengdu 610023, China
| | - Hua Hua
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu 610041, China
| | - Jun-Ning Zhao
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu 610041, China
| |
Collapse
|
18
|
Dai J, Jiang C, Gao G, Zhu L, Chai Y, Chen H, Liu X. Dissipation pattern and safety evaluation of cartap and its metabolites during tea planting, tea manufacturing and brewing. Food Chem 2020; 314:126165. [DOI: 10.1016/j.foodchem.2020.126165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/12/2019] [Accepted: 01/05/2020] [Indexed: 10/25/2022]
|