1
|
van den Broek S, Nybom I, Hartmann M, Doetterl S, Garland G. Opportunities and challenges of using human excreta-derived fertilizers in agriculture: A review of suitability, environmental impact and societal acceptance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177306. [PMID: 39515389 DOI: 10.1016/j.scitotenv.2024.177306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Human excreta-derived fertilizers (HEDFs) are organic fertilizers made from human excreta sources such as urine and feces. HEDFs can contribute to a sustainable and circular agriculture by reuse of valuable nutrients that would otherwise be discarded. However, HEDFs may contain contaminants such as pharmaceuticals, persistent organic compounds, heavy metals and pathogens which can negatively affect plant, water and soil quality. Moreover, consumer prejudice, farmer hesitance and strict regulations can discourage utilization of HEDFs. Here, we conducted a thorough review of published literature to explore the opportunities and challenges of using HEDFs in agricultural systems by evaluating the suitability of human excreta as a nutrient source, their typical contaminant composition, how they affect the quality of crops, soils and water and their societal impact and acceptance. We found that HEDFs are suitable nutrient-rich fertilizers, but may contain contaminants. Processing treatments increase the fertilizer quality by reducing these contaminants, but they do not remove all contaminants completely. Regarding the environmental impacts of these fertilizers, we found overall positive effects on crop yield, soil nutrients, plant-soil-microbe interactions and plant pathogen suppression. The use of HEDFs reduces water contamination from sewage waste dumping, but nutrient leaching dependent on soil type may still affect water quality. We found no increased risks with human pathogens compared to inorganic fertilizers but identified processing treatment as well as crop and soil type significantly affect these risks. Lastly, we found that public acceptance is possible with clear regulations and outreach to inform consumers and farmers of their multi-faceted benefits and safe usage after processing treatments. In summary, this review emphasizes the great potential of HEDFs and its positive impacts on society, especially in regions where conventional fertilizers are scarce, while also stressing the need for adaptation to specific soils and crops.
Collapse
Affiliation(s)
- Sarah van den Broek
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland.
| | - Inna Nybom
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Environmental Analytics, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Sebastian Doetterl
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Gina Garland
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Soil Quality and Soil Use, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| |
Collapse
|
2
|
Yang R, Shi C, Li X, Gan P, Pan X, Peng R, Tan L. Human biomonitoring of serum polycyclic aromatic hydrocarbons and oxygenated derivatives by gas chromatography coupled with tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4817-4826. [PMID: 38966930 DOI: 10.1039/d4ay00758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
While polycyclic aromatic hydrocarbons (PAHs) are well-known for their potential carcinogenic and mutagenic effects, the health implications of exposure to oxygenated PAHs (OPAHs), which are significant substitutes with increased persistence and bioaccumulation, are less understood. In this work, we compared the background levels of liquid-liquid, solid-phase, and supported-liquid extraction for the determination of serum PAHs and OPAHs. Liquid-liquid extraction demonstrated minimal background interference and was validated and used for human biomonitoring of PAHs and OPAHs in 240 participants using gas chromatography coupled with tandem mass spectrometry. We observed significant positive correlations between these compounds using Spearman correlation analysis. Furthermore, we investigated the concentration levels and compositions of PAHs and OPAHs among different demographic characteristics, including gender, age, and body mass index. Linear regression analysis demonstrated a weak but significant correlation between total concentrations of PAHs and OPAHs and age and body mass index. A multivariate linear regression analysis was then conducted to examine the association of exposure to individual PAHs and OPAHs with the body mass index. Naphthalene exposure and body mass index showed a statistically significant positive correlation, suggesting that higher levels of naphthalene exposure are associated with higher body mass index values. This study establishes a robust method for biomonitoring PAHs and OPAHs in serum, evaluating the exposure levels of these compounds in healthy adults and highlighting their associations with demographic characteristics.
Collapse
Affiliation(s)
- Rong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Chenwen Shi
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
- School of Public Health, Guangzhou Medical University, Guangzhou 510515, China
| | - Xiaojing Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Pingsheng Gan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
- School of Public Health, Guangzhou Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Deng F, He J, Dai Y, Peng R, Pan X, Yuan J, Tan L. Biomonitoring urinary pesticide metabolites in preschool children by supported liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry and their association with oxidative stress. J Chromatogr A 2024; 1725:464944. [PMID: 38703459 DOI: 10.1016/j.chroma.2024.464944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Investigating pesticide exposure and oxidative stress in preschool children is essential for elucidating the determinants of environmental health in early life, with human biomonitoring of urinary pesticide metabolites serving as a critical strategy for achieving this objective. This study demonstrated biomonitoring of 2 phenoxyacetic acid herbicides, 2 organophosphorus pesticide metabolites, and 4 pyrethroid pesticide metabolites in 159 preschool children and evaluated their association with oxidative stress biomarker 8-hydroxydeoxyguanosine. An enzymatic deconjugation process was used to release urinary pesticide metabolites, which were then extracted and enriched by supported liquid extraction, and quantified by ultra-high performance liquid chromatography-tandem mass spectrometry with internal standard calibration. Dichloromethane: methyl tert‑butyl ether (1:1, v/v) was optimized as the solvent for supported liquid extraction, and we validated the method for linear range, recovery, matrix effect and method detection limit. Method detection limit of the pesticide metabolites ranged from 0.01 μg/L to 0.04 μg/L, with satisfactory recoveries ranging from 70.5 % to 95.5 %. 2,4,5-Trichlorophenoxyacetic acid was not detected, whereas the other seven pesticide metabolites were detected with frequencies ranging from 10.1 % to 100 %. The concentration of urinary pesticide metabolites did not significantly differ between boys and girls, with the median concentrations being 9.39 μg/L for boys and 4.90 μg/L for girls, respectively. Spearman correlation analysis indicated that significant positive correlations among urinary metabolites. Bayesian kernel machine regression revealed a significant positive association between urinary pesticide metabolites and 8-hydroxydeoxyguanosine. Para-nitrophenol was the pesticide metabolite that contributed significantly to the elevated level of oxidative stress.
Collapse
Affiliation(s)
- Fenfang Deng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jia He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Dai Y, Deng Q, Liu Q, Zhang L, Gan H, Pan X, Gu B, Tan L. Humoral immunosuppression of exposure to polycyclic aromatic hydrocarbons and the roles of oxidative stress and inflammation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123741. [PMID: 38458516 DOI: 10.1016/j.envpol.2024.123741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
Previous studies have indicated adverse health effects of exposure to polycyclic aromatic hydrocarbons (PAHs), but evidence on the association between PAH exposure and immunity is scarce and its underlying mechanism is largely unknown. This study assessed human exposure to PAHs by determining the concentrations of PAHs in serum and their metabolites in paired urine. The oxidative stress and inflammation levels were evaluated by urinary DNA damage biomarker 8-hydroxydeoxyguanosine, white blood cell counts and C-reaction protein. We investigated the relationship between PAH exposure and seven immunological components, and explored the indirect roles of oxidative stress and inflammation by mediation and moderation analysis. Multivariate regression analysis revealed that 1-hydroxynaphthalene and 2-hydroxyfluorene were negatively associated with immunoglobulin A, and 3-hydroxyphenanthrene was negatively correlated with complement component 3. Restricted cubic spline analysis demonstrated nonlinear relationships between some individual PAHs or their metabolites with immunological components. Bayesian kernel machine regression and quantile g-computation revealed significant associations of higher PAH exposure with decreased immunoglobulin G and kappa light chain levels. Phenanthrene was the compound that contributed the most to reduced immunoglobulin G. Mediation analysis demonstrated significant indirect effects of 8-hydroxydeoxyguanosine and white blood cell counts on the association between higher PAH exposure and decreased immunological components. Moderation analysis revealed that PAH exposure and decreased immunological components are significantly associated with higher levels of C-reaction protein and white blood cell counts. The results demonstrated significant immunosuppression of PAH exposure and highlighted the indirect roles of oxidative stress and inflammation. Interventions to reduce systemic inflammation may mitigate the adverse immune effects of PAH exposure.
Collapse
Affiliation(s)
- Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Qianyun Deng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Qiaojuan Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Huiquan Gan
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Zhou S, Li X, Dai Y, Guo C, Peng R, Qin P, Tan L. Association between polycyclic aromatic hydrocarbon exposure and blood lipid levels: the indirect effects of inflammation and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123148-123163. [PMID: 37979116 DOI: 10.1007/s11356-023-31020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Although previous studies have indicated polycyclic aromatic hydrocarbons (PAHs) as cardiovascular health risk factors, evidence linking exposure to PAHs and blood lipids is still lacking, and the mechanism remains largely unknown. In this study, we evaluated the association between human internal exposure to PAHs and blood lipid levels in adults, as well as the indirect effects of inflammation and oxidative stress. The internal exposure of PAHs was assessed by determining serum PAHs and their hydroxylated metabolites (OH-PAHs) in the paired urine samples. Multivariable linear regression results demonstrated significant positive associations of individual PAHs and OH-PAHs with blood lipid biomarkers. The Bayesian kernel machine regression model revealed positive joint effects of PAH internal exposure on the fasting blood glucose, low-density lipoprotein cholesterol, total cholesterol, and total triglyceride, as well as an increased ratio of apolipoprotein B to apolipoprotein A1. In evaluating individual effects, serum phenanthrene played the most significant role in the association of increased PAH exposure with elevated fasting blood glucose. Quantile g-computation demonstrated the significant change in the levels of apolipoprotein B, ratio of apolipoprotein B to apolipoprotein A1, low-density lipoprotein cholesterol, and total cholesterol per quartile increase in PAH internal exposure. The restricted cubic spline analysis demonstrated the non-linear relationship between individual PAHs and OH-PAHs on blood lipid biomarkers. The mediation analysis indicated that PAH exposure may affect blood lipids not directly, but rather indirectly through intermediate inflammation and oxidative stress. The results demonstrated a significant association between increased PAH exposure levels and elevated blood lipids, highlighting the indirect effects of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Si Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Xiaotong Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chongshan Guo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Pengzhe Qin
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
- School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Cesila CA, Souza MCO, Cruz JC, Bocato MZ, Campíglia AD, Barbosa F. Biomonitoring of polycyclic aromatic hydrocarbons in Brazilian pregnant women: Urinary levels and health risk assessment. ENVIRONMENTAL RESEARCH 2023; 235:116571. [PMID: 37467941 DOI: 10.1016/j.envres.2023.116571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Over the years, humans have been continuously exposed to several compounds directly generated by industrial processes and/or present in consumed products. Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants ubiquitous in the environment and represent the main chemical pollutants in urban areas. Worldwide, studies that aim to understand the impacts of exposure to these chemicals have gained increasing prominence due to their potential toxicity profile, mainly concerning genotoxicity and carcinogenicity. Human biomonitoring (HB) is an analytical approach to monitoring population exposure to chemicals; however, these studies are still limited in Brazil. Thus, this work aimed to evaluate the exposure of Brazilian pregnant women to PAHs through HB studies. Besides, the risk characterization of this exposure was performed. For this purpose, urine samples from 358 Brazilian pregnant women were used to evaluate 11 hydroxylated metabolites of PAHs employing gas chromatography coupled to mass spectrometry. The 1OH-naphthol and 2OH-naphthol were detected in 100% of the samples and showed high levels, corresponding to 16.99 and 3.62 μg/g of creatinine, respectively. 2OH-fluorene (8.12 μg/g of creatinine) and 9OH-fluorene (1.26 μg/g of creatinine) were detected in 91% and 66% of the samples, respectively. Benzo(a)pyrene (BaP) metabolites were detected in more than 50% of the samples (0.58-1.26 μg/g of creatinine). A hazard index of 1.4 and a carcinogenic risk above 10-4 were found for BaP metabolites in the risk characterization. Therefore, our findings may indicate that exposure to PAHs poses a potential risk to pregnant women's health and a high probability of carcinogenic risk due to their exposure to BaP. Finally, this work shows the need for more in-depth studies to determine the sources of exposure and the implementation of health protection measures regarding the exposure of the Brazilian population to PAHs.
Collapse
Affiliation(s)
- Cibele Aparecida Cesila
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Jonas Carneiro Cruz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Zuccherato Bocato
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
7
|
Yang Z, Chen S, Zhou S, Xu C, Jing C, Guo C, Pan X, Zeng L, Tan L. Association of polycyclic aromatic hydrocarbon internal exposure and urinary iodine concentration with thyroid volume in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121912. [PMID: 37247771 DOI: 10.1016/j.envpol.2023.121912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Thyroid volume was proposed as a factor for malignancy in evaluating thyroid nodules. Previous studies have demonstrated the endocrine disrupting effect of polycyclic aromatic hydrocarbons (PAHs), but studies on the association between internal exposure of PAHs and thyroid volume are still scarce. In this work, we evaluated the association of polycyclic aromatic hydrocarbon internal exposure and urinary iodine concentration with thyroid volume in 590 school-age children without thyroid disease in Guangzhou, China. Urinary hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs), urinary iodine concentrations, and thyroid volumes were measured. The mean concentrations of urinary iodine and ΣOH-PAHs were 271.1 μg/L and 3.27 μg/L, respectively, and the mean thyroid volume was 2.4 mL. The associations of urinary iodine and OH-PAH concentrations with thyroid volume were investigated by multivariable linear regression and the Bayesian kernel machine regression models. Urinary ΣOH-PAHs were observed to be significantly positively associated with thyroid volume in multivariable linear regression models. The increase in each unit in the log-transformed concentration of ΣOH-PAHs caused 3.88% change in thyroid volume. The Bayesian kernel machine regression model demonstrated a positive joint effect of increased urinary ΣOH-PAHs on thyroid volume. Moreover, urinary ΣOH-PAHs were statistically significant linked to urinary iodine, and iodine mediated the relationship between urinary OH-PAHs and thyroid volume with the mediated proportions of 15.2.
Collapse
Affiliation(s)
- Zhiyu Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Si Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Conghui Xu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chongshan Guo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Lixi Zeng
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|